
Stationary Iterative Methods Study Questions Home-

work 5 Foundations of Computational Math 1 Fall 2021

Problem 5.1

Consider the minimization problem
min
x∈Rn

f(x)

where f(x) = 1
2
xTAx− xT b, A ∈ Rn×n is symmetric positive definite, and b ∈ Rn.

(5.1.a) Show that ∀0 ≤ β ≤ 1
βf(x) ≥ f(βx)

(5.1.b) Show that f(x) is a convex function.

Problem 5.2

Consider solving a linear system Ax = b where A is symmetric positive definite using steepest
descent.

5.2.a

Suppose you use steepest descent without preconditioning. Show that the residuals, rk and
rk+1 are orthogonal for all k.

5.2.b

Suppose you use steepest descent with preconditioning. Are the residuals, rk and rk+1

orthogonal for all k? If not is there any vector from step k that is guaranteed to be orthogonal
to rk+1?

Problem 5.3

Let A = QΛQT be a symmetric positive definite matrix where Q is an orthogonal matrix
and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues
of A. Define

x̃ = QTx and b̃ = QT b

Ax = b and Λx̃ = b̃
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Given x0 and x̃0, define the sequence xk as the sequence of vectors produced by steepest
descent applied to Ax = b and the sequence x̃k as the sequence of vectors produced by
steepest descent applied to Λx̃ = b̃.

Let ek = xk − x and ẽk = x̃k − x̃. Show that if x̃0 = QTx0 then

‖ek‖2 = ‖ẽk‖2, k > 0

Problem 5.4

5.4.a

Consider the iteration:

y0 = 0

yi+1 = yi + α̃iei+1

r̃i = b−Dyi

α̃i =
eTi+1r̃i

eTi+1Dei+1

where D ∈ Rn×n is a nonsingular diagonal matrix.
Show that yn = y = D−1b.

5.4.b

Suppose A ∈ Rn×n is a symmetric positive definite matrix and Ax = b. Let p1, p2, · · · , pn
be real vectors that are A-orthogonal, i.e., < pi, pj >= 0 if i 6= j and < pi, pi >> 0 where
< w, v >= wTAv is the inner product on Rn defined by A.

Use the result from the first part of the problem to show that the conjugate direction
iteration:

x0 = 0

xi+1 = xi + αipi+1

ri = b− Axi

αi =
pTi+1ri

pTi+1Api+1

is such that xn = x = A−1b.

Problem 5.5

Let A ∈ Rn×n be symmetric postive definite with an eigendecompositon A = QΛQT with
Q ∈ Rn×n and orthogonal matrix, i.e., QTQ = QQT = I, and Λ ∈ Rn×n a diagonal matrix
with positive diagonal elements λi = eTi Λei > 0.
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Consider the two systems Ax = b and Λx̃ = b̃ with Qx̃ = x and Qb̃ = b. The iterations
defined by applying Steepest Descent (SD) to each are

xk+1 = xk + αkrk, rk = b− Axk, αk =
rTk rk
rTkArk

x̃k+1 = x̃k + α̃kr̃k, r̃k = b̃− Λx̃k, α̃k =
r̃Tk r̃k
r̃Tk Λr̃k

given x0 and Qx̃0 = x0. The elements of the vectors with the tildes are the coefficients of
the corresponding vectors without the tildes with respect to the basis of eigenvectors given
by the columns of Q.

(5.5.a) Show that αk = α̃k and that

α−1k = α̃−1k =
n∑

i=1

γiλi, γi ≥ 0,
n∑

i=1

γi = 1.

(5.5.b) Any x0 ∈ Rn can be corrected to A−1b by

A−1b = x0 + c0, c0 = A−1(b− Ax0) = A−1r0.

Consider applying SD to Ax = b. Derive a sufficient condition on A so that for
any x0 convergence to A−1b occurs in one step, i.e.,

A−1b = x1 = x0 + α0r0.

(5.5.c) Is the condition also a necessary condition for convergence of SD in one step
for any x0?

Problem 5.6

The conjugate direction iteration (CD) can also be derived from a basis expansion point of
view. Let etrue = x − x0 = A−1b − x0 where A is a symmetric positive definite matrix. Let
< w, v >= wTAv be the inner product on Rn defined by A and p1, p2, · · · , pn be real vectors
that are A-orthonormal, i.e., < pi, pj >= 0 if i 6= j and < pi, pi >= 1.

5.6.a Show that any vector can be easily written in terms of a basis that is orthonormal
with respect to some inner product and apply this to etrue to get

etrue = p1 < p1, etrue > + · · · pn < pn, etrue > (1)
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5.6.b Show that for any x0

αi = pTi+1ri

xi+1 = xi + αipi+1

ri = b− Axi

is such that xn = x = A−1b.

Hint: Define an iteration based on (1) that yields xn = x and then show it can
be computed via the CD iteration given in this problem.

Problem 5.7

Recall the basic CD/CG properties that hold given the assumption that CG has not con-
verged at step k,

• xk = α0d0 + · · ·+ αk−1dk−1 is optimal (inherited from CD), i.e.,

∀x ∈ x0 + span[d0, d1, . . . , dk−1], ‖xk − A−1b‖A ≤ ‖x− A−1b‖A

• < dk, dj >A= 0 i 6= j for 0 ≤ i, j ≤ k − 1 (inherited from CD).

• < rk, dj >= 0 for 0 ≤ j ≤ k − 1 (inherited from CD).

• < rk, rj >= 0 for 0 ≤ j ≤ k − 1 (CG-specific).

• span[d0, d1, . . . , dk] = span[r0, r1, . . . , rk] (CG-specific).

• span[r0, r1, . . . , rk] = span[r0, Ar0, . . . , A
kr0] (CG-specific).

Given the inherited properties prove the three CG-specific properties.

Problem 5.8

Suppose A ∈ Rn×n is a symmetric positive semidefinite matrix and f(x) = 0.5xTAx−
xT b with b ∈ Rn and b ∈ R(A). Show that Steepest Descent will converge to an uncon-
strained minimizer of f(x) for any x0 such that Ax0 6= 0.

Hint: Find a smaller, symmetric positive definite linear system and use the
fact that steepest descent converges on a symmetric positive definite system.
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Problem 5.9

Let A ∈ Rn×n be a symmetric positive definite matrix, C ∈ Rn×n be a symmetric nonsingular
matrix, and b ∈ Rn be a vector. The matrix M = C2 is therefore symmetric positive definite.
Also, let Ã = C−1AC−1 and b̃ = C−1b.

The preconditioned Steepest Descent algorithm to solve Ax = b is:

A, M are symmetric positive definite
x0 arbitrary; r0 = b− Ax0; solve Mz0 = r0

do k = 0, 1, . . . until convergence

wk = Azk

αk =
zTk rk
zTk wk

xk+1 ← xk + zkαk

rk+1 ← rk − wkαk

solve Mzk+1 = rk+1

end

The Steepest Descent algorithm to solve Ãx̃ = b̃ is:

Ã is symmetric positive definite

x̃0 arbitrary; r̃0 = b̃− Ãx̃0; ṽ0 = Ãr̃0

do k = 0, 1, . . . until convergence

α̃k =
r̃Tk r̃k
r̃Tk ṽk

x̃k+1 ← x̃k + r̃kα̃k

r̃k+1 ← r̃k − ṽkα̃k

ṽk+1 ← Ãr̃k+1

end

Show that given the appropriate consistency between initial guesses the preconditioned
steepest descent recurrences to solve Ax = b can be derived from the steepest descent
recurrences to solve Ãx̃ = b̃.
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Problem 5.10

5.10.a

Let the cost function f : R2 → R be defined by

f(x) = xTd+ xTx, where d =

(
δ1
δ2

)
where δ1 > 0, δ2 > 0 and µ = ‖d‖2 > 1. Consider the problem

min
x∈R2

f(x).

(i) Find a minimizer x∗. Is it unique?

(ii) Write the iteration that defines applying the steepest descent algorithm to solve
the minimization problem.

(iii) How would you set the stepsize αk and why?

(iv) Will your choice of αk yield an algorithm that converges in a finite number of
steps?

5.10.b

Now suppose the minimization problem is constrained so that we are only interested in
x ∈ R2 on the circle of radius 1, i.e., the unit circle

S1 = {x ∈ R2 | xTx = 1}

Specifically, we want to solve
min
x∈S1

f(x)

(i) Show that this problem can be viewed as an unconstrained minimization problem
on R by writing the cost function over S1 as a function of a real variable θ.

(ii) Write the iteration that defines applying the steepest descent algorithm to solve
the minimization problem over R.

(iii) How would you set the stepsize αk and why?

(iv) Will your choice of αk yield an algorithm that converges in a finite number of
steps when started at an initial guess θ0 = 0?

6


