
Programming Assignment 1 Foundations of Computa-

tional Math 1 Fall 2024

The solutions are due on Canvas by 11:59 PM on Monday, September 16, 2024

Programming Problems

General Task

This assignment concerns the implementation and testing of structured matrix-vector prod-
ucts and a structured matrix-matrix product. These will be adapted to be used in the
implementation and testing of the LU factorization in a later programming assignment. The
structure in this assignment is triangular matrices and multiple data structure restrictions.

To provide some assistance in getting used to implementing the types of experiments to
be performed in FCM 1 and FCM 2, an example MATLAB code for a driver routine that
specifies the experiments to be performed, performs the experiments, collects and displays the
results in a user-specified format for the matrix-matrix products and matrix-vector routines.
Additionally, routines are provided for

• computing the product w ← Uv given the vector v and the upper triangular matrix U
using

– row-oriented inner product form

– column-oriented vector triad form .

These codes use a standard 2-D array to store the associated matrices. Other data structures
will be specifed for testing for your assigned codes.

You are encouraged to consult with Yue and/or me early in the development and testing
of these routines.

Your tasks will unit lower triangular matrices in matrix-vector products as well as the
product with an upper triangular matrix. The driver includes testing of routines for a unit
lower triangular matrix times a vector.

Note that you need not use a this driver or a single driver for your testing.
In fact, initially you should develop a simpler one that contains only the pieces
of specific concern for particular tests. You can then gradually build up the
complexity of the tester. The example provided gives a form of driver that is
not unusual when testing a set of routines that require the generation of similar
test data and presents typical ways of organizing the results to support the
contention that your codes work. It also can be modified to be a tester for later
assignments.
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Definitions

The matrix L ∈ Rn×n is a lower triangular matrix if

λij = eTi Lej

∀i = 1, . . . , n, j > i, λij = eTi Lej = 0, i.e., elements strictly above the main diagonal are 0

∀i = 1, . . . , n, j ≤ i, λij = eTi Lej, may or may not be 0.

and the matrix L ∈ Rn×n is a unit lower triangular matrix if additionally

∀i = 1, . . . , n, λii = eTi Lei = 1, i.e., elements on the main diagonal are 1

In other words all nonzeros other must occur strictly on or below the main diagonal. and
for a unit lower triangular matrix 1’s are required on the main diagonal

The matrix U ∈ Rn×n is an upper triangular matrix, i.e.,

µij = eTi Uej∀i = 1, . . . , n, j < i, µij = eTi Uej = 0, elements strictly below the main diagonal are 0

∀i = 1, . . . , n, j ≥ i, µij = eTi Uej, may or may not be 0.

In other words all nonzeros must occur on or strictly above the main diagonal.
The matrix product M = LU ∈ Rn×n is, in general, a dense square matrix, Given vectors

v ∈ Rn and s ∈ Rn, the products w = Lv and z = Us are vectors in Rn. In some important
cases, the vectors v may have structure, e.g., 0 values in specific positions. This occurs for
example when considering the middle product implmentation of the matrix-matrix product
M = LU since Mej = L(Uej) and Uej, being the j-th column of an upper triangular matrix
is guaranteed to have 0 values for its elements in position j + 1 to n. A similar observation
can be made for inner products of rows and columns of triangular matrices, 0’s in either mean
some operations that are in the general dense matrix vector product can be removed. These
facts must be exploited in any matrix-vector product involving such structured vectors.

The Codes

The following subroutine/data structure combinations must be implemented and tested.

1. A subroutine that computes the product w ← Lv given the vector v and matrix L
where L is a unit lower triangular matrix stored in a 2-D array.

2. A subroutine that computes the product w ← Lv given the vector v and matrix L
where L is a unit lower triangular matrix stored using compressed columns or rows
depending on your choice of algorithm.
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3. A subroutine that computes the product w ← Lv given the vector v and matrix
L where L is a banded unit lower triangular matrix where the nonzeros in L are
restricted to the 1’s on the main diagonal (which should not be stored explicitly) and
the two subdiagonals λ2,1, . . . , λi,i−1, . . . , λn,n−1 and λ3,1, . . . , λi,i−2, . . . , λn,n−2. The two
diagonals are the only elements of L to be stored and this should be done in no more
than 2n storage locations.

4. A subroutine that computes the product M = LU given the matrices L and U where
L is a unit lower triangular matrix and U is an upper triagular matrix that are stored
together in a single 2-D array. Note that combined L and U have exactly n2 potentially
nonzero elements that must be specified other than the known elements that must be
0 and 1 to enforce the assumed structure of the matrices.

For these routines you may use any of the approaches described in the class notes, i.e.,
inner product, middle product, outer product etc. You may implement these codes using
a compiled typed language such as C, Fortran, C++ or in a coding/problem solving envi-
ronment such as Matlab or Python. However, your coding style must be ”basic”, i.e., you
must write code that exposes clearly the loop or vector control constructs and the singly and
doubly indexed data structures required.

For the banded unit lower triangular matrix-vector product, your routine should be
organized in such a way that vectors as long as possible are used. See the solution in the
study questions (Problem 1.6) that explains the implementation of a matrix-vector product
Tv → w where T ∈ Rn×n tridiagonal matrix.

Your subroutines must be callable from a driver code that implements your testing and
validation approaches in a manner similar to the one provided.

You may use libaries and external routines in your test routines to generate solutions
for comparisons, to generate historgrams, graphs and any other useful summary display
mechanisms. You may not use library routines inside your assigned subroutines.

Routine Development

As with our discussions in class concerning the basic primitives for matrices and vectors and
as will be discussed for triangular systems solving next week, you are encouraged to start with
the definition of the dense matrix-vector product y ← Ax using the various mathematical

3



specifications of the operation

A ∈ Rn×n, eTi Aej = αij, x ∈ Rn, eTi x = ξi, y ∈ Rn, eTi y = ηi

ηi =
n∑

j=1

αijξj =
(
eTi A

)
x, 1 ≤ i ≤ n

y = (Ae1)ξ1 + (Ae2)ξ2 + · · ·+ (Aen)ξn

=


α11

α21
...
αn1

 ξ1 +


α12

α22
...
αn2

 ξ2 + · · ·+


α1n

α2n
...
αnn

 ξn

y =


η1
η2
...
ηn

 =


eT1Ax
eT2Ax

...
eTnAx


and then imposing the structural requirments to simplify, first the mathematical description
and then mathematical pseudocode. The latter might need to be rearranged to expose the
desired long vector operations as was done in the solution for Study Question 1.6 for a
tridiagonal matrix. Then the last step is to map the mathematical objects to the assumed
data structure locations and minimizing additional work storage for intermediate results.

A similar approach should be taken for the matrix-matrix product. This routine will use
all of the structure exploitation seen in the routines for w ← Uv provided and the w ← Lv
you design and implement. You need only implement one approach out of the three: inner,
middle and outer product, but you are encouraged to look at all three versions when solutions
are provided.

Data Structures

The key issue for exploiting structure such as triangular, unit triangular and banded is to
only store values that are not known due to the structure assumed. These values have
particular positions in the matrices and may take on any value including 0 but since they
may be nonzero a storage location must be provided. Any element in a position required
to be 0 or 1 should not be stored and the influence of the restriction on its value on the
associated operation must be exploited, e.g., a 0 never generates a multiplication or addition;
and and 1 never generates a multiplication.
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2-D Array: L and U can be stored individually or simultaneously in a doubly indexed
array, e.g., ARRAY(1:RDIM,1:CDIM), where RDIM and CDIM are dimensions that are
greater than or equal to n for the problems in a set you are testing and the colon notation
indicates a range of index values (like Matlab or any vector supporting language). Note that
this means in general that RDIM and CDIM will not be the same as n for most problems.
This is encouraged since it is not unusual in practice.

When storing U the 0’s below the main diagonal are not stored in ARRAY, i.e., AR-
RAY(I,J) = µij, with I = i, J = j and i ≤ j. Other elements of ARRAY must be viewed as
undefined when computing with U .

Similarly, when storing L the 0’s above the main diagonal and the 1’s on the main
diagonal are not stored in ARRAY, i.e., ARRAY(I,J) = λij, with I = i, J = j and j < i.
Other elements of ARRAY must be viewed as undefined when computing with L.

When testing your matrix-matrix product routine to compute M = LU , L and U should
both be stored in ARRAY and M should be placed in a second doubly indexed array MAR-
RAY(1:MRDIM,1:MCDIM) that need not be the same size as ARRAY but of course must
have row and column dimensions large than n.

Input and output vectors for the routines should be stored in appropiate singly index
arrays.

Compressed Column and Row Triangular Storage: If a triangular or unit lower
triangular (similarly for upper) is not involved in computations with another matrix that
can be complementarily stored in a 2-D array then fewer than n2 locations are required. Two
standard methods to map a lower triangular matrix to a singly indexed 1-D array ARRAY[I],
I = 1, . . . , S where S = n(n+ 1)/2 for a lower triangular matrix and n fewer for a unit lower
triangular matrix is to store columns or rows togther and sequentially in the array. For
example, if n = 4 then

L =


λ11 0 0 0
λ21 λ22 0 0
λ31 λ32 λ33 0
λ41 λ42 λ43 λ44


and S = 10 and the dimension of ARRAY must be at least S with the elements of L mapped
as

ARRAY [1 : S] = [λ11, λ21, λ31, λ41, λ22, λ32, λ42, λ33, λ43, λ44]

ARRAY [1 : S] = [λ11, λ21, λ22, λ31, λ32, λ33, λ41, λ42, λ43, λ44]

for compressed column and row respectively. These typically are used with the middle and
inner product approaches respectively. If L is a unit lower triangular matrix then the λii
elements are not stored.
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Banded Lower Triangular Storage: If L is a unit lower triangular matrix with its other
potentially nonzero locations restricted to its two subdiagonals λ2,1, . . . , λi,i−1, . . . , λn,n−1
and λ3,1, . . . , λi,i−2, . . . , λn,n−2 then the subdiagonals are best stored in a 2-D array AR-
RAY[NDIM,2] with NDIM ≥ n and the assignment, for example for n = 5

L =


1 0 0 0 0
λ21 1 0 0 0
λ31 λ32 1 0 0
0 λ42 λ43 1 0
0 0 λ53 λ54 1


and

ARRAY [1 : 4, 1] = [−−, λ3,1, λ4,2, λ5,3]
ARRAY [1 : 4, 2] = [λ2,1, λ3,2, λ4,3, λ5,4]

where the first location in the first column of ARRAY is not used but the location is included
to use a simple 2-D ARRAY with 2 columns.

Tests

Your testing must demonstrate the correctness of your codes. This does not mean you run
them on small number of problems and verify manually the results. While such small simple
cases are a useful part of the validation procedure you should also:

1. Run a range of problem sizes from n = 10 to n in the hundreds.

2. Generate problems for which you know the result analytically, i.e., not as the result of
running a library code. For example, a matrix with integer entries times a vector of
all 1s must give row sums.

3. Generate problems for which you know the result and compare them to a library code,
e.g., Matlab library routines.

4. Generate problems for which you know the result using your routines.For example, once
you have validated your matrix vector product routines you can generate a matrix M
given L and U and exploiting the 0s in the column or row vectors.

5. You may use library codes to generate matrices and vectors, e.g., random matrix and
vector generators in Matlab, and then to check the correctness of your routines.

6. When running a large number of problems over a range of n values and w and v vectors,
you should not simply display the result of each subroutine. That is not acceptable and
not useful. You should present your results in a summarizing fashion. For example,
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when comparing your computed results, wcomp, to true results, wtrue, (however they
are known).

When doing so, it is useful to examine the absolute and relative errors

εabs = ‖wcomp − wtrue‖ and εrel = εabs/‖wtrue‖,

where ‖z‖, is a chosen vector norm, and organizing their values over various sets, e.g.,
fixed L or U and many input vectors for matrix-vector products. (Of course, for the
relative error the norm of the true result should be kept away from a small number.)

Form comparing Mcomp to Mtrue = LU similar expressions should be used. The matrix
norms ‖M‖1, ‖M‖∞ and ‖M‖F are all finite in complexity and easily computed. The
matrix 2-norm, ‖M‖2, should be computed using a library routine, e.g., in Matlab, if
you decided to use it.

Histograms, means and variances of the error are useful. Selected plotting of trends
can also be convincing. Note that this is one of the main lessons of the assignment –
thinking about how to present in a coherent and convincing manner the correctness of
your codes to a reader. This computation, organization and presentation of evidence
of correctness is where a computing enviorment such as Matlab is valuable. Examples
of this are given in the testing driver provided.

Submission of Results

All solutions must be submitted through Canvas. As noted in the requirements for reporting
your programming assignments given on the class webpage, you should submit a document
that includes the following:

1. A section that describes you choices of algorithm and the organization of your testing
routines and subroutines.

2. A section describing your validation strategies. This should include:

• how your problems are generated;

• the range of sizes and characteristics you are using in your problems;

• how the correctness is being evaluated;

• what information is displayed in your evaluation section and why it is appropriate
for assessing the correctness of your codes.

3. One or more sections presenting your evidence of correctness of your subroutines and
your arguments supporting the assertion of correctness given the evidence.

You should also submit your codes. You may be called upon to demonstrate their usage
and to reproduce evidence contained in your document.
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