
Programming Assignment 2 Foundations of Computa-

tional Mathematics 1 Fall 2024

The solutions are due on Canvas by 11:59 PM on Wednesday, October 16, 2024

General Task

This programming assignment implements and empirically evaluates the transformation of
a full-rank matrix A ∈ Rn×n to an upper triangular form, i.e.,

T−1L A→ U

where U ∈ Rn×n and nonsingular. You must produce code to use Gauss transformations and
row permutations to achieve this transformation

PrA = LU

where Pr ∈ Rn×n is a permutation matrix based on a series of interchanges of pairs of rows,
L ∈ Rn×n is a unit lower triangular matrix, and U ∈ Rn×n is a nonsingular upper triangular
matrix.

It is not required but you are encouraged to also add the capability to your code to apply
complete pivoting, i.e.,

PrAPc = LU

where Pc is a permutation based on a series of interchanges of pairs of columns. Extra credit
will be awarded for a successful implementation and evaluation of complete pivoting.

This assignment empirically evaluates the predictions you make about the structure of the
factors and the general performance of the method across a large set of randomly generated
problems and selected specific problems.

The Codes

1. Implement a code that computes the LU factorization of a matrix A without pivoting
first, then add partial pivoting (rows), and finally add complete pivoting if you wish.
You should use the immediate update form of algorithm based on rank-one updates.
The final code should be capable of performing the various tasks, based on a user
specified parameters. Your code should also detect situations where the factorization
may not proceed and exit gracefully. Clearly, this is the case when the candidate
pivot set contains no acceptable value. In exact arithmetic this means they are all
0. Your code should also allow the detection of a set of candidate pivots that are all
“too small” and warn the user. For no pivoting this would be the (1, 1) element of
the current active part of the matrix is below some threshold; for partial pivoting this
would be all elements in the first column of the current active part of the matrix are

1

below some threshold; for complete pivoting this would be all elements in the entire
active part of the matrix are below some threshold.

Your factorization routine, which must be a separate routine from the driver/tester
routine, should accept the matrix A stored in a simple 2-dimensional array-like data
structure and other relevant parameters such as n and a flag indicating what form of
the factorization should be attempted, e.g., no pivoting, partial pivoting, or complete
pivoting. The routine should return the matrices L and U stored within the array
that contained A on input, i.e., you should implement the in-place algorithm strategy
described in the class notes and lectures. You should also keep a copy of A in an
additional data structure for correctness checking. The 1 values on the diagonal of
L, the 0 values in the upper triangular portion of L and the 0 values in the lower
triangular portion of U should not be stored at any point in the code. The routine
should also return the permutation matrix Pr when partial pivoting is used and Pr
and Pc if you implement complete pivoting. These permutation matrices should not
be stored as as a full matrix within any array. A permutation matrix or equivalently
the set of elementary permutations that are its factors, can be represented by at most
n integers.

2. You will also need various test routines designed to evaluate and validate the correctness
of the code and accomplish the tasks described below. You may code in Matlab, Python
(as long as you write basic code that exposes data structure details and vector or scalar
loop constructs) or any compiled and typed language you wish although C, C++, Julia,
and Fortran are preferred. In all cases, however, you may not use standard libraries
such as LAPACK or built-in matrix routines for pieces of your routines implementing
the computations described above. (They may be used for the validation codes.)

3. For both the factorization, triangular solutions and testing codes you should make use
of your solutions to programming assignment 1, the posted solutions and other posted
example codes. If you were unable to get any of them working reliably then you are free
to use or convert my solutions. The testing drivers from my posted solutions should
also be adatped or used to inspire your test driver’s design for this assignment. A driver
to test LU factorization has also been posted to assist your solution development.

Routines to support the evaluation of the factorization include but are not limited to:

1. Implement a routine that accepts as input the one or two 1-dimensional arrays spec-
ifying Pr and Pc and applies them to a matrix stored in a 2-dimensional arrays and
returns the result in a separate 2-dimensional array, i.e., A2 ← PrA1Pc.

2. Implement or use the posted solution routines that accepts as input a vector b stored in
a simple 1-dimensional array, input the 2-dimensional array containing the information
specifying the L and U matrices and the 1 dimensional arrays specifying Pr and Pc
if appropriate. Any application of these permutations should used the permutation
routine listed earlier. The forward and backward solves Ly = b and Ux = y must also

2

work only with the information specificed in the 2-dimensional array and not expanded
version of L and U . The routine should return the solution x Ax = b.

3. Implement, or use your code from Program 1 or the posted solution, a matrix multipli-
cation routine that accepts as input the 2-dimensional array containing the information
specifying the L and U matrices and returns in a separate 2-dimensional array the prod-
uct M = LU or the product M = |L||U | based on user selection indicated by an input
flag. (This second function requires an addition to your routines from Program 1 if you
use them.) Note that these matrix multiplications must use the information specifying
L and U within the data structure. It must not expand them into separate arrays
that include the 1 and 0 values that are not stored in the input array. The notation |B|
defines a matrix with elements equal to the absolute values of corresponding elements
of B, i.e., eTi |B|ej = |eTi Bej|.

4. The test routines should include the computation of ‖W‖ where W is a matrix. The
norms used should be finite in computation, i.e., ‖W‖1, ‖W‖∞, or ‖W‖F . You may
use library routines to compute ‖W‖2 if you wish but you are definitely not expected
to generate the code for the 2-norm.

Library Codes

You may use libaries and external routines in your test drivers to generate solutions for
comparisons, to generate historgrams, graphs and any other useful summary display mecha-
nisms. Make sure when using library routines as part of your empirical analysis, you carefully
check, e.g., Pr, Pc, L and U generated by your routines and those generated by the library,
e.g., MATLAB. These factors are not unique given that pivoting choices are not unique in
general. So they may not match. The products LU however should match the matrices
PrAPc generated by your routine and a library respectively.

Metrics

There are several important metrics to use when assessing the code’s correctness. These
metrics should be computed in double precision espeicially if you have run your routines in
single precision. (The ability to run in both is not required for this assignment but is easily
done if you use a compiled and typed language and is, in general, a good idea to design into
your code.)

Some suggestions follow:

1. When comparing matrices use one of the finitely computable ones, ‖M‖1, ‖M‖∞ and
‖M‖F which you can easily implement. You may also use a library function from
Matlab etc. to compute the matrix 2-norm if you wish.

3

2. Check the factorization accuracy

‖PrAPc − LU‖
‖A‖

where ‖A‖ ≥ 1, i.e., relative error for large A, and Pc − I for partial pivoting and
Pr = Pc = I for no pivoting.

3. If the solution is known by design of the problem check

‖x− x̃‖
‖x‖

where x̃ is the computed solution and ‖x‖ ≥ 1.

4. You should check the accuracy via the residual b− Ax̃ and

‖b− Ax̃‖
‖b‖

assuming ‖b‖ ≥ 1 for all attempts to solve a system, i.e., whether or not you know the
true solution.

5. If you have access to a standard library you may also use the results of its LU factoriza-
tion algorithms. However, as noted above care must be taken since details of pivoting
strategies may yield differences in the factors and permutations. The library routines
or your Program 1 solutions are very useful when you generate a system by choosing A
and b and need a reliable way of generating x to compare with your computed solution.

6. You should compute the growth factor

γε =
‖ |Lε||Uε| ‖
‖A‖

where LεUε = PrA is the computed factorization of PrA using the selected pivoting
strategy. This is important in that is used to assess the numerical stability of the
chosen method to reliably computing the factorization and solving a system. This can
be large for a poor choice of pivoting strategy even for well-conditioned matrices, i.e.,
ones that are not inherently difficult to factor accurately. This use will be discussed
when we cover the numerical aspects of factorizations but it is also useful for checking
the correctness of structured problems such as the one in the study questions with the
large growth of elements.

4

Generation of Test Problems

A key consideration in this assignment is the generation of test problems. They must have
full rank, i.e., linearly independent columns.

Some suggestions follow:

1. The matrices should be generated using double precision storage and computation.
You can then coerce the type to single when storing the matrix before calling your
single precision code if you decide to check both single and double precision execution
of your codes. This is, however, not required but it is encouraged that you do this at
some point.

2. Generate L and U so they are nonsingular unit lower triangular and upper triangular
matrices respectively. Evaluate their product to define A. By their structure these
matrices have linearly independent columns and therefore their product has full-rank.

This is useful for both small and large values of n. For small values you can also
constrain L and U to have integer values so A will have integer values. Take care
with the magnitude of the elements of L and U . Nicely conditioned problems tend to
be specified by off-diagonal elements in L smaller than 1 in magnitude and diagonal
elements in U that have a reasonable range in magnitudes.1The off-diagonal elements
in U should not be significantly larger in magnitude than the diagonal elements of U .
Recall, it was suggested to do this in Program 1 problems.

3. Remember even if A is generated from L and U when you run your routine with partial
pivoting, nontrivial permutation matrices Pr and Pc may result and you may return L̃
and Ũ such that PrAPc = L̃Ũ .

4. Square randomly generated matrices tend may be nonsingular and reasonably con-
ditioned. Random triangular matrices tend not to be well-conditioned, as you have
seen. You can make sure any matrix is nonsingular by adding to the diagonal elements
until the matrix is diagonally dominant by rows, columns or both.2 This guarantees
success of the factorization if it is run without pivoting. As noted above, if you allow
pivoting the routine may so do even for a diagonally dominant matrix depending on
the form of dominance and the pivoting strategy used. It is also useful to note that
after generating such a matrix, A you can apply random permutations P̃ and P̂ to
generate a new test matrix Ã = P̃AP̂ that will not be diagonally dominant but will

1Conditioning refers to a property of nonsingular matrices that indicates how senistive the problem is
to perturbations. This is used to alert a user to problems that may cause accuracy problems even for
numerically robust and stable algorithms. You are encouraged to use the appropriate library routine, e.g.,
cond(A) in MATLAB, to compute the condition number of some of your test matrices. A condition number
on the order of 10k for moderate k is reasonable. A value of k around 6 or 7 and above may cause accuracy
difficulties.

2A matrix is strictly diagonally dominant by rows (columns) if the magnitude of each diagonal element
is strictly larger than the sum of the magnitudes of all off-diagonal elements in the same row (column). A
matrix may of course be diagonally dominant by rows and columns simultaneously.

5

still be nonsingular. Of course, P̃ and P̂ are not necessarily the permuations that will
be generated by applying partial or complete pivoting to Ã.

5. You can generate a symmetric positive definite A ∈ Rn×n from a lower triangular L̃
with positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular by
definition and factorization will succeed without pivoting. Note that your code will still
produce an LU factorization since your factorization routine is not designed to exploit
symmetry. However, there is a relationship between L, U and L̃. This is probed in the
first set of structured factorization tasks.

6. Matrices with known structures that influence the structure or magnitude pattern of
their factorizations are also useful. This is especially true if the patterns scale in a
known way with n. Recall the example in the homework problems that has large
elements in U . Consider what should happen when no pivoting or partial pivoting is
used for various n values. Also, nonzero patterns such as banded matrices for A should
produce specific nonzero patterns in L and U . Structure is the subject of the first set
of empirical tasks discussed below.

7. Make sure that the matrices you use to check pivoting actually require some piv-
oting when factored.

8. You should run a range of problem sizes for each algorithm and problem type you
evaluate.

9. Do not simply report the the factors or accuracy of the factorization for a small number
of small systems. Think about how you would report the results of testing each of the
routines with many matrices including those of sizes too large to display for any useful
effect.

6

Empirical Tasks Set 1 : Structure

You are strongly encouraged to think about this set of experiments carefully in preparation
for the Midterm Exam along with similar related study questions and written homework
problems.

1. Consider a matrix A ∈ Rn×n that is is diagonal with positive elements, i.e., αij =
eTi Aej = 0 for all i 6= j and αii > 0 for 1 ≤ i, j ≤ n. For example, let αii = i or
αii = n− i+ 1

n = 5→ A =


1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 and A =


5 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , Pr and Pc factors as a function of your choice of structure
in the positive diagonal elements? What is the growth factor for your chosen problems
and the pivoting choices?

2. Consider a matrix A ∈ Rn×n that is is antidiagonal with positive elements, i.e., α1,n >
0, α2,n−1 > 0, . . . , αn−1,2 > 0, αn,1 > 0. For example,

n = 5→ A =


0 0 0 0 1
0 0 0 2 0
0 0 3 0 0
0 4 0 0 0
5 0 0 0 0

 and A =


0 0 0 0 5
0 0 0 4 0
0 0 3 0 0
0 2 0 0 0
1 0 0 0 0

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting if you
choose to implement it. What can be said about the L, U , Pr and Pc factors as a
function of your choice of structure in the positive antidiagonal elements? What is the
growth factor for your chosen problems and pivoting choices?

3. Consider a matrix A ∈ Rn×n that is is the sum of a diagonal matrix and an antidiagonal
matrix with positive elements, i.e., and X nonzero pattern. Consider factoring with
no pivoting, partial row pivoting and complete pivoting. What can be said about
the L, U , Pr and Pc factors as a function of your choice of structure in the positive
antidiagonal elements? If complete pivoting is there any structure that follows for a
particular choice of pivot elements?

4. Consider a matrix A ∈ Rn×n that is unit lower triangular and the elements in the strict
lower part all have magnitude less than 1, i.e., |λij| < 1 for i > j, λij = 0 for i < j,
and λii = 1. Consider factoring with no pivoting, partial row pivoting and complete

7

pivoting. What can be said about the L, U , Pr and Pc factors? (Note that your code
does not know that A is unit lower triangular and will eliminate the elements below
the diagonal by applying Gauss transforms.)

5. Consider a lower triangular matrix A again but this time let the diagonal elements be
positive and not 1 and the elements in the strictly lower triangular part be larger than
1, e.g.,

A =


2 0 0 0 0
3 2 0 0 0
4 3 2 0 0
5 4 3 2 0
6 5 4 3 2

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , Pr and Pc factors?

6. Consider a matrix A ∈ Rn×n that is tridiagonal with all elements on the main diagonal
and the first super and subdiagonals nonzero, i.e., αii 6= 0, αi+1,i 6= 0, and αi,i+1 6= 0.
Of course, these must be such that the matrix is nonsingular.

Suppose A is, additionally, strictly diagonally dominant by rows and columns. Consider
factoring with no pivoting, partial row pivoting and complete pivoting. What can be
said about the L, U , Pr and Pc factors?

7. Consider a matrix A ∈ Rn×n with

• αij = eTi Aej = −1 when i > j, i.e., all elements strictly below the diagonal are
−1;

• αii = eTi Aei = 1, i.e., all elements on the diagonal are 1;

• αin = eTi Aen = 1, i.e., all elements in the last column of the matrix are 1;

• all other elements are 0

e.g., for n = 4 we have

A =


1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1


Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , Pr and Pc factors? What is the growth factor for the
different pivoting choices?

8. Suppose A ∈ Rn×n is a symmetric positive definite generated from a lower triangular
L̃ with positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular
by definition and factorization will succeed without pivoting. Note that your code will
still produce an LU factorization since your factorization routine is not designed to
exploit symmetry. What is the relationship between L, U and L̃?

8

Empirical Tasks Set 2 : General Trends

As with the assignment for Program 1, this set requries the generation of a large set of
problems grouped and empirically analyzed by problem size n and, if appropriate the class
of matrix problem considered.

For each problem size and class of problem, generate many example problems and evaluate
the various metrics discussed earlier You should present your results in a form appropriate
to characterize these metrics over a large data set, i.e., too large to look at each problem
individually. This can be done, for example, by graphs and histograms. The latter is
particularly useful for detecting outliers in the performance such as large factorization error.
These outliers can be discussed in more detail and explained if you wish.

9

