
Programming Assignment 3 Foundations of Computa-

tional Mathematics 1 Fall 2024

The solutions are due on Canvas by 11:59 PM on Tuesday November 26, 2024

Part 1: Behavior of RF, SD, and CG in Eigen Coordi-

nate System

This part of the assignment concerns implementing and observing the performance of Richard-
son’s method (often called Richardson’s First Order Stationary method, hence RF), Steepest
Descent (SD), and Conjugate Gradient (CG). This part will exploit the fact that for symmet-
ric positive definite A = QΛQT , where the columns of Q are the n orthonormal eigenvectors
of A and Λ is a positive real diagonal matrix with the eigenvalues of A on the diagonal, the
behavior of the methods for a problem can be seen in the coordinates defined by the eigenvec-
tors. In practice, of course, this decomposition is not known but for developing understand-
ing, analyzing and demonstrating the relative performance of these methods, it is sufficient
to consider systems of the form Λx̃ = b̃ related to Ax = b by x̃ = QTx and b̃ = QT b since,
as seen in the notes, study questions, and homework problems ‖A−1b−xk‖2 = ‖Λ−1b̃− x̃k‖2
for the iterations defined by all three methods. (This is not true, in general, for the other
stationary methods.)

The notes and lectures (Sets 7, 8, 9, and 10; Study Question Sets 4 and 5; and written
problems from Homework 3) have discussed and derived the bounds on the behavior of the
damping of the error and residuals. For RF and SD each step must reduce the error norm
by at the factor

κ− 1

κ+ 1

with SD’s single step reduction being no less and typically better than RF. CG’s one step
damping factor is between √

κ− 1√
κ+ 1

and 2

√
κ− 1√
κ+ 1

.

For CG, the performance, in exact arithmetic, is also related to the number of distinct
eigenvalues, e.g., the identity matrix as a single eigenvalue, 1, with multiplicity n, as well as
the eccentricity of the spectrum as measured by κ.

Therefore, part of your task is comparing your observed reductions in the norms of the
error and resdiual to these bounds and to results across methods. This implies that you will
be working with problems for which you know the solution. Your discussion for this part of
the assignment should generate matrices of various sizes and for each matrix, Λ, you should
generate a solution vector, x̃, and the associated righthand side b̃ = Λx̃. Additionally, for
each problem Λx̃ = b̃ you should generate a set of initial guesses and run all three methods
with each initial guess for each problem, for each matrix. Your main task is to collect the
appropriate information from each of these runs and to analyze and present it in such a
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way that it clearly probes the behavior of each method relative to each expectation and the
relative performances of the three methods, e.g., was SD typically better than RF?; Was
CG typically better than both SD and RF? What is the characteristic of problems where
methods achieved good or bad performance? All of these questions should be based on a
clear understanding of the course material.

The experiments in this section can be run over fairly large problems since you do not
need a large sparse or dense A; the problem is defined by three vectors, the eigenvalues
λ1, . . . , λn, the solution x̃ and the righthand side vector b̃, i.e., 3n data. The work space
is also O(n) for all three methods. Computationally, the methods differ somewhat in the
number of operations per step and you should determine this number as a function of n and
compute and compare the total work defined as the number of operations times the number
of iterations. You may find it useful to run at least some of your experiments interactively
without a termination criterion in order to generate some insight into the peformance of
the methods. However, at some point the large parameterized set of experiments should
use a termination criterion of the ratio ‖rk‖/‖r0‖ ≤ ε where ε = 10s for some integer s
that indicates by how many digits the residual norm has been reduced. You will have to
probe this value to see what is effective in allowing you to make appropraite observations
and conclusions about the performance of the methods.

The matrices Λ should be generated by a combination of problems with specific spectra,
e.g.,

• all n eigenvalues the same;

• k distinct eigenvalues with the multiplicties of each chosen deterministically or ran-
domly;

• k distinct eigenvalues that are used as the mean of a normally distributed selection of
a “cloud” of eigenvalues around each distinct eigenvalue (the number in each must also
be chosen as the multiplicities in the previous item);

• from a uniform distribution between parameters the two extreme eigenvalues included
in the problem, λmin and λmax, that you chooose in order to set κ;

• from a normal distribution between parameters the two extreme eigenvalues included
in the problem, λmin and λmax, that you chooose in order to set κ with a selected mean
and variance.

Consider carefully and express clearly the predictions you are testing with each set of
data from the experiments relative to what is known from the class material.

Part 2: Behavior of Stationary Methods Jacobi, Gauss-

Seidel, and Symmetric Gauss-Seidel

For this part of the assignment, you should implement these stationary methods in a single
code with a selectable choice of preconditioner that defines the method as given in Set 10
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of the class notes and Study Questions Set 5. Since these methods are sensitive to the
ordering of the variables in the vector in the coordinate system defined by the matrix A in
Ax = b, problems cannot be run in the eigen coordinate system. For this part, you may
implement a version of the code that uses a dense matrix and the associated computational
primitives. You will modify this for large sparse matrices in the the third and final part of
the assignment.

For this part of the assignment you are required to compare the predicted behavior of the
methods based on a matrix norm and spectral radius of the iteration matrix G associated
with each problem/method combination. As in part 1, you should generate many solutions
and righthand side vectors for each matrix, and many initial guesses for each problem. These
methods converge for problems other than symmetric positive definite, although that has
not been discussed in detail in the notes, and there is a vast literature characterizing the
properties of associated matrices.

The following examples contain matrices with various properties.

A0 =

 3 7 −1
7 4 1
−1 1 2

 A1 =

 3 0 4
7 4 2
−1 −1 2

 A2 =

−3 3 −6
−4 7 −8
5 7 −9



A3 =

4 1 1
2 −9 0
0 −8 −6

 A4 =

 7 6 9
4 5 −4
−7 −3 8



A5 =

 6 −2 0
−1 2 −1
0 −6/5 1

 A6 =

 5 −1 0
−1 2 −1
0 −3/2 1



A7 =



4 −1 0 0 0 0 0
−1 4 −1 0 0 0 0
0 −1 4 −1 0 0 0
0 0 −1 4 −1 0 0
0 0 0 −1 4 −1 0
0 0 0 0 −1 4 −1
0 0 0 0 0 −1 4


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A8 =



2 −1 0 0 0 0 0
−1 2 −1 0 0 0 0
0 −1 2 −1 0 0 0
0 0 −1 2 −1 0 0
0 0 0 −1 2 −1 0
0 0 0 0 −1 2 −1
0 0 0 0 0 −1 2


Consider first taking the b for a solution x that is all 1’s and x0 = 0 and iterated until

‖xk − x‖2/‖x‖2 ≤ 10−6. For each matrix, compute, using an appropriate numerical linear
algebra library, e.g., Matlab or LAPACK, the spectral radii: ρ(GJ), ρ(GGS) and ρ(GSGS);
the matrix norms ‖GJ‖2, ‖GGS‖2, and ‖GGS‖2; and the number of iterations: kJ , kGS, and
kSGS required to satisfie the termination condition (or record lack of convergence).

Next, take each of the matrices and generate multiple known solutions x and correspond-
ing b vectors. Solve each problem and compare the performance observed to the behavior
seen with the reference problem above.

Part 3: Behavior of All Methods for Large Sparse Sym-

metric Positive Definite Matrix Problems

For this part of the problem you must implement a sparse symmetric matrix vector product
as described in the lectures and notes based on the assumption that A = D−L−LT where
D is the positive diagonal matrix comprising the diagonal elements of A stored as a separate
vector, −L is the strictly lower triangular sparse matrix stored in either a compressed row
or compressed column storage data structure, and −LT is the strictly upper triangular
sparse matrix that is not stored since it is already stored in the data structure for −L
when interpreted as the alternate storage scheme, i.e., compressed row if −L is viewed as
compressed column storage and vice versa. The sparse primitive should also be adapted to
do matrix vector multiplication by −L or −LT and to do a triangular solve (D−L)v1 = v2,
Dv1 = v2 and (D−LT )v1 = v2 as needed for the stationary methods. Note that as seen in the
earlier programming assignments and homework solutions these system solve routines can
be derived from the column-oriented or row-oriented matrix vector product in an organized
and straightforward way since they share a similar control flow.

As with the other parts of the problem you should generate many sparse symmetric
positive definite matrices with varying levels of sparsity, along with many solutions for each
matrix, and many initial guesses for each problem. The matrices can be generated by
first generating −L by choosing the number of nonzeros below the diagonal and randomly
generating values. You can place them anywhere in −L but a reasonable approach is to
generate a row or column at a time with a maximum number of elements prescribed and
placing them in randomly selected column or row positions. The diagonal should be randomly
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selected positive numbers. In order to make the matrix positive definite the diagonal elements
should be boosted so that the matrix A is strictly diagonally dominant, i.e., so that each
diagonal element is larger than the sum of the magnitudes of the elements in its column and
row (note the implication of symmetry that simplifies this constraint).

Consider carefully and express clearly the predictions you are testing with each set of data
from the experiments relative to what is known from the class material in terms of expected
performance. You may use any library to compute the eigenvalues of selected problems, e.g.,
those that are unexpectedly good or bad, in order to explain your observations. Note this
may require you to move the associated matrix to a data structure required by that libary.
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