
Study Problems 5 Foundations of Computational Math

1 Fall 2024

These study questions concern some of the basic properities of Steepest Descent, Conju-
gate Gradient and members of the Richardson’s family of stationary methods. They build
on earlier results in earlier study questions, class notes and statements made in the lectures.

Problem 5.1

Let A ∈ Rn×n be symmetric postive definite with an eigendecompositon A = QΛQT with
Q ∈ Rn×n and orthogonal matrix, i.e., QTQ = QQT = I, and Λ ∈ Rn×n a diagonal matrix
with positive diagonal elements λi = eTi Λei > 0.

Consider the two systems Ax = b and Λx̃ = b̃ with Qx̃ = x and Qb̃ = b. The iterations
defined by applying Steepest Descent (SD) to each are

xk+1 = xk + αkrk, rk = b− Axk, αk =
rTk rk
rTkArk

x̃k+1 = x̃k + α̃kr̃k, r̃k = b̃− Λx̃k, α̃k =
r̃Tk r̃k
r̃Tk Λr̃k

given x0 and Qx̃0 = x0. The elements of the vectors with the tildes are the coefficients of
the corresponding vectors without the tildes with respect to the basis of eigenvectors given
by the columns of Q.

We have shown in other problems that the two iterations are essentially equivalent in the
behavior of the norms of the error and residual at each step. It is also known that αk = α̃k

and that α−1
k can be written as a weighted average of the eigenvalues of A with weights

determined by rk.

(5.1.a) Consider applying SD to Ax = b. Derive a sufficient condition on A so that for
any x0 convergence to A−1b occurs in one step, i.e.,

A−1b = x1 = x0 + α0r0.

(5.1.b) Is the condition also a necessary condition for convergence of SD in one step
for any x0?

(5.1.c) Does the condition imply that the stationary Richardson’s method without
preconditioning, xk+1 = xk + αrk, converges in one step?

(5.1.d) Does the condition imply that CG without preconditioning xk+1 = xk + αrk
converges in one step?
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Problem 5.2

Suppose we are to solve Ax = b where A ∈ Rn×n is symmetric positive definite using a
method based like Steepest Descent or CG that is based on reducing the error

E(x) = ‖x− x∗‖2A
where x∗ = A−1. Recall, that it is known that x∗ is also the unique minimizer of

f(x) =
1

2
xTAx− bTx.

Each step of the standard methods chooses a direction pk and then optimizes the choice
of stepsize αk so that xk+1 = xk + αkpk is a minimum of f(xk + αpk) with respect to α, i.e.,
it minimizes f along a line defined by pk.

5.2.a. Suppose that the particular method is of the form xk+1 = xk +αkpk where αk is
chosen so xk+1 is a minimum of f(xk + αpk) with respect to α, i.e., it minimizes
f along a line defined starting at xk and moving in the direction of pk. Derive
an expression for f(xk + αpk) of the form

φk(α) = f(xk + αpk) = f(xk) + ωk(α)

where ωk(α) a scalar polynomial in α with the coefficients defined in terms of pk,
rk, xk, and A.

5.2.b. What condition on pk is required such that α > 0 can be chosen so that f(xk +
αpk) < f(xk)?

5.2.c. Derive the expression for αk for any given pk in the iteration that minimizes
f(xk + αpk) for α > 0. Is this formula consistent with what is used for Steeptest
Descent, i.e., when pk = rk?

5.2.d. Show that for this choice of αk we have rTk+1pk = 0, i.e., rk+1 ⊥ pk.

5.2.e. Consider the optimal value αk for a given pk. For what range of α is f(xk +
αpk) < f(xk), i.e., consider α = σαk for 0 ≤ σ ≤ σmax and determine σmax.

Problem 5.3

Recall, we have the two convergence theorems for A symmetric positive definition for a
stationary iteration xk+1 = xk +P−1rk that depend on whether P is also symmetric positive
definite.

1. In general, if M = P + P T − A is positive definite then the iteration converges.

2. A corollary says that if P is also symmetric positive definite then if M = 2P − A is
positive definite the iteration converges.

The corollary can be proven directly without appealing to the first theorem. This problem
considers that proof.
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5.3.a

The following basic lemma that relates a spectral radius to the definiteness of M is a key to
proving this result.

Lemma. Let B ∈ Rn×n be a symmetric positive definite matrix. The matrix M = 2I −B is
positive definite if and only if ρ(I −B) < 1.

Prove the lemma.

5.3.b

Prove the following theorem.

Theorem 1. Let A ∈ Rn×n and P ∈ Rn×n be symmetric positive definite matrices. Also
assume that P = CCT where C ∈ Rn×n is nonsingular.

M = 2P − A is positive definite if and only if ρ(I − P−1A) < 1.

Problem 5.4

5.4.a

Let A = D − L − U ∈ Rn×n be a nonsingular matrix, where −L is the matrix of strictly
lower triangular elements and −U is the matrix of strictly upper triangular elements. Recall
the three methods and their preconditioners

• Gauss-Seidel (forward): Pgs = D − L

xk+1 = xk + P−1
gs rk = xk + (D − L)−1rk

• Gauss-Seidel (backward): Pbgs = D − U

xk+1 = xk + P−1
bgsrk = xk + (D − U)−1rk

• Symmetric Gauss-Seidel: Psgs = (D − L)D−1(D − U)

xk+1 = xk + P−1
sgsrk = xk + (D − U)−1D(D − L)−1rk.

5.4.a. Show that one iteration of Symmetric Gauss-Seidel is equivalent to one iteration
of forward Gauss-Seidel followed by one iteration of backward Gauss-Seidel.

5.4.b. Now assume A ∈ Rn×n is a symmetric positive definite matrix and consider
solving the linear system Ax = b. Show that the Forward Gauss-Seidel iteration
converges for any x0.

5.4.c. Again assume A ∈ Rn×n is a symmetric positive definite matrix and consider
solving the linear system Ax = b. Show that the Symmetric Gauss-Seidel itera-
tion converges for any x0.
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Problem 5.5

(5.5.a) Suppose you are to solve Ax = b where A is known to be nonsingular via
an iterative method. Which, if any, of the iterative methods, Jacobi, (forward)
Gauss-Seidel, Symmetric Gauss-Seidel, Steepest Descent and CG, would converge
if

A =


1 1 1 1
1 2 2 2
1 2 3 3
1 2 3 4

?

(5.5.b) In order to have a unique solution for Ax = b the matrix A must be nonsingular.
If Gauss-Seidel is to converge we must have the spectral radius ρ(Ggs) < 1 where
Ggs is the iteration matrix defining Gauss-Seidel. Must Ggs be nonsingular? If
so, explain why. If not, i.e., if Ggs can be singular, identify a vector in its null
space.

Problem 5.6

Let A ∈ Rn×n be a symmetric positive definite matrix, C ∈ Rn×n be a symmetric nonsingular
matrix, and b ∈ Rn be a vector. The matrix P = C2 is therefore symmetric positive definite.
Also, let Ã = C−1AC−1 and b̃ = C−1b.

The preconditioned Steepest Descent algorithm to solve Ax = b is:

A, P are symmetric positive definite
x0 arbitrary; r0 = b− Ax0; solve Pz0 = r0

do k = 0, 1, . . . until convergence

wk = Azk

αk =
zTk rk
zTk wk

xk+1 ← xk + zkαk

rk+1 ← rk − wkαk

solve Pzk+1 = rk+1

end

The Steepest Descent algorithm to solve Ãx̃ = b̃ is:

Ã is symmetric positive definite

x̃0 arbitrary; r̃0 = b̃− Ãx̃0; ṽ0 = Ãr̃0

do k = 0, 1, . . . until convergence
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α̃k =
r̃Tk r̃k
r̃Tk ṽk

x̃k+1 ← x̃k + r̃kα̃k

r̃k+1 ← r̃k − ṽkα̃k

ṽk+1 ← Ãr̃k+1

end

Show that given the appropriate consistency between initial guesses the preconditioned
steepest descent recurrences to solve Ax = b can be derived from the steepest descent
recurrences to solve Ãx̃ = b̃.
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