
Program 2

1 Executive Summary
In this report I will use 6 algorithms to interpolate two target functions and evaluate the numerical
properties and conditionning of these algorithms.

2 Statement of the Problem
In this assignment, we are supposed to solve the polynomial interpolation problem, that is assume
we are given a function f(x) and n distinct points x0, x1, ..., xn, we want to find a polynomial
pn(x) ∈ Pn s.t. pn(xi) = f(xi), i = 0, ..., n.

3 Description of the Mathematics
In this section I will derive the mathematical expression for the algorithm that I will use to interpo-
late the target functions.

3.1 Barycentric form 2
We first define the characteristic polynomials li(x) ∈ Pn, s.t.

li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

=

{
0, x 6= xi

1, x = xi
(1)

Therefore, the desired pn is simply

pn(x) =
n∑
i=0

f(xi) ∗ li(x) (2)

If we define the nodal polynomial of degree n+1 as

wn+1(x) =
n∏
i=0

(x− xi) (3)

1

and we have

li(x) =
n∏

j=0,j 6=i

x− xj
xi − xj

=

∏n
j=0,j 6=i(x− xj)∏n
j=0,j 6=i(xi − xj)

=
(x− xi)

∏n
j=0,j 6=i(x− xj)

(x− xi)
∏n

j=0,j 6=i(xi − xj)

=

∏n
j=0(x− xj)

(x− xi)
∏n

j=0,j 6=i(xi − xj)

= wn+1(x)
wi

x− xi

(4)

where wi is defined as wi = 1∏n
j=0,j 6=i(xi−xj)

. Also, if the target function f(x) is a constant function
f(x)=1, the interpolating function pn(x) is just simply pn(x) = 1, and from 2 we have

pn(x) =
n∑
i=0

f(xi) ∗ li(x) =
n∑
i=0

li(x) = 1 (5)

and from 4:

1 =
n∑
i=0

li(x) =
n∑
i=0

wn+1(x)
wi

x− xi
= wn+1(x)

n∑
i=0

wi
x− xi

(6)

thus
wn+1(x) =

1∑n
i=0

wi

x−xi
(7)

From 2, 4 and 7, we have

pn(x) =
n∑
i=0

f(xi) ∗ li(x)

=
n∑
i=0

f(xi) ∗ wn+1(x)
wi

x− xi
= wn+1(x)

n∑
i=0

f(xi) ∗
wi

x− xi

=

∑n
i=0

wi

x−xif(xi)∑n
i=0

wi

x−xi

(8)

Thus we have the second form of the Barycentric interpolation formula 8. In order to evaluate the
expression 8, one important task is to obtain wi = 1∏n

j=0,j 6=i(xi−xj)
, i = 0, ..., n . If the mesh points

xi has some certain distribution, the expression for wi could be simplified.

3.1.1 Uniform mesh points

Consider the mesh points xi are uniformly distributed in the interval [a,b], and we have xi = a+ ih,
where h = (b− a)/n. According to [1], the weights wj can be calculated directly

wj =
(−1)n−j

(
n
j

)
hnn!

= (−1)j
(
n

j

)
∗ (

(−1)n

hnn!
)

= βj(
(−1)n

hnn!
)

(9)

Since the factor (−1)n
hnn!

is independent of j, we only need to worry about βj ,that

βj = (−1)j
(
n

j

)
(10)

2

Luckily, we have recursive expression for βj ,

βj+1 = −βj
n− j
j + 1

(11)

3.1.2 Chebyshev points of the first kind

The Chebyshev points of the first kind are defined as

xj = cos
(2j + 1)π

2n+ 2
, j = 0, ..., n. (12)

According to [2], the simplified weights βj after canceling all the common factors are

βj = (−1)jsin
(2j + 1)π

2n+ 2
(13)

3.1.3 Chebyshev points of the second kind

The Chebyshev points of the second kind are defined as

xj = cos
jπ

n
, j = 0, ..., n. (14)

Also, we the simplified weights βj canceling all the common factors[3]

βj = (−1)jδj, δj =

{
1/2, j = 0 or j = n

1, otherwise
(15)

3.2 Newton divided difference form
Besides the above Bartcentric form, we can also write the interpolating polynomial in the follow
form:

pn(x) = pn−1(x) + qn(x) (16)

where qn(x) ∈ Pn and pn−1(x) interpolate the target function f(x) at x0, ..., xn−1. Since qn(xi) =
pn(xi)− pn−1(xi) = 0 for i = 0, ..., n-1, we can then write qn(x) in the following the form:

qn(x) = an(x− x0)(x− x1)...(x− xn−1) = anwn(x) (17)

By convention, we also denote the coefficient an by an = f [x0, x1, ..., xn], and we now have:

pn(x) = pn−1(x) + f [x0, x1, ..., xn]wn(x) (18)

And if we f(x0) = f [x0] and w0 = 1, by the above recursive relation, we can obtain the following
formula:

pn(x) =
n∑
k=0

wk(x)f [x0, ..., xk] (19)

By some algebraic manipulation from [6], we could have the explicit expresion for the coefficients:

f [x0, ..., xn] =
n∑
i=0

f(xi)

w′n+1(xi)
(20)

where w′n+1(xi) =
∏n

j=0,j 6=i(xi−xj). Based on 19 and 20, we are able to evaluate the interpolating
polynomial pn(x).

3

3.3 Bernstein polynomial
The n-th Bernstein polynomial for a real function f(x) which is defined on [0,1] is denoted by
Bn(x), such that,

Bn(x) = Bn(x; f) =
n∑
k=0

f(
k

n
)

(
n

k

)
xk(1− x)n−k

=
n∑
k=0

g(k, n; f) ∗ φn,k(x)

(21)

where g(k, n; f) = f(k
n
)
(
n
k

)
and φn,k(x) = xk(1− x)n−k.

In [6] Bartle showed that if f(x)inC(0)[0, 1] then Bn(x) converges uniformly to f(x) on [0,1],
i.e.

lim
n→inf

‖f(x)−Bn(x)‖inf = 0. (22)

Thus, in theory, we can use the Bernstein polynomial Bn(x) to approximate the target function
f(x) if n is large enough.

4 Description of the Algorithm and Implementation

4.1 Barycentric form 2
In Barycentric form 2, since the weights wi and f(xi), i=0,...,n are only related to the mesh points,
to avoid excessive computation, I will store the all the values for wi and f(xi), i=0,...,n when
evaluating pn(x), which takes up O(n) space.

First, we need to the compute weight wi i=0,...,n according to 11, 7 and 15 ,which all have O(n)
complexity. Note that for 11, we first compute β0 which need O(n) operations and then use the
recursive relation 11 to compute all the rest βi i=1,...,n, which also takes O(n) operations. In total,
the algorithm for uniform mesh points is also O(n) in operation.

4

Algorithm 1 Pre-processing with different mesh points
int n
function fun
array x[n+1] . mesh points
array y[n+1] . function value
array w[n+1] . weights
if MeshType==Uniform then

diff=2/n
factor = (−1)n/(diffnn!)
for i=0 to n do

x[i]= -1 + diff*i
y[i]= fun(x[i])
if i==0 then

w[i]=1*factor
else

w[i+1] = w[i]*n−i
i+1

*factor

if MeshType==Chebyshev1 then
for i=0 to n do

x[i] = cos iπ
n

y[i] = fun(x[i])
w[i] = (−1)isin (2i+1)π

2n+2

if MeshType==Chebyshev2 then
for i=0 to n do

x[i] = cos (2i+1)π
2n+2

y[i] = fun(x[i])
w[i] = (−1)i

w[0]=w[0]/2
w[n]=w[n]/2

Algorithm 2 Evaluating pn(x∗) in Barycentric form 2
int n
function fun
array x[n+1] . x[n+1], y[n+1] and w[n+1] are already computed.
array y[n+1]
array w[n+1]
if x∗ in x[:] then . Return the exact function value if evaluated at the mesh point.

return fun(x∗)
else

numer=0
denom=0
for i = 0 to n do

numer = numer + w[i]*y[i]/(x∗ - x[i])
denom = denom + w[i]/(x∗ - x[i])

return numer/denom

5

4.2 Newton divided difference form
The algorithm for Newton divided difference form will mainly based on equation 19 and 20. For
computing the coefficients, I will adapt the ideas of Smoktunowicz et al [5]:

f [x0, ..., xn] =
n∑
i=0

f(xi)

w′n+1(xi)

= {
n−1∑
i=0

[
f(xi)

w′n(xi)
] ∗ 1

xi − xn
}+

f(xn)

w′n+1(xn)

(23)

And we also have the recursive relation for w′n+1(xi):

w′n+1(xi) = w′n(xi)(xi − xn), i < n (24)

And the following is the algorithm for generating all the coefficients:

Algorithm 3 Divided Difference Coefficients
int n
function fun
array d[n+1]
array x[n+1]
array f[n+1] . f[n+1] is the divided difference coefficients
f[0] = fun(x[0])
d[0] = f[0]
for i = 1 to n do

p = (x[0]-x[i])
d[0] = d[0]/p
s = d[0]
for j = 1 to (i-1) do

t = x[j] - x[i]
d[j] = d[j]/t
p = p * t
s = s + d[j]

d[i] = (−1)ifun(x[i])/p
f[i] = d[i] + s

Note that the above algorithm is O(n) in space and O(n2) in operations. After obtain the
coefficients, we could apply the following algorithm to compute pn(x∗), which is directly from 19,

Algorithm 4 Evaluating pn(x∗) in Newton divided difference form
array f[n+1] . divided difference coefficients.
array x[n+1] . mesh points
w = 1
s = f[0] * w
for i = 1 to n do

w = w * (x∗ - x[i-1])
s = s + w * f[i]

return s

Note that the above algorithm 4 require O(n) in operations and O(1) in space.

6

4.3 Bernstein polynomial
By the definition of Bernstein polynomial Bn(x), it only aims to approximate smooth functions
defined on [0,1], and in our problem, we need to approximate functions defined on [-1, 1]. For
x ∈ [−1, 0], we have −x ∈ [0, 1] and f(−x) would be the target function for approximating when
x ∈ [−1, 0]. Thus, we divide the original interpolation problem into two separated problems i.e.
interpolating f(x) for x ∈ [0, 1] and interpolating f(−x) for x ∈ [−1, 0].

When evaluating 21, g(k, n; f) = f(k
n
)
(
n
k

)
is independent of the variable x, thus we can com-

pute g(k, n; f), k = 0, ..., n and store these values. So when evaluating Bn(x) we only need to
compute φn,k(x) = xk(1− x)n−k for different value of x. In general, computing g(k, n; f), k =
0, ..., n requires O(n2) operations and computing Bn(x) require extra O(n) operations.

Algorithm 5 Algorithm for the coefficients of Bn(x) i.e. g(k, n; f)

function fun
int n
array g[n+1] . g(k, n; f)
array binomial[n+1] . Binomial coefficients
for i = 0 to ceil(n/2) do

temp = 1
temp = temp*(n - i)/(i + 1)
binomial[i] = temp
binomial[n-i] = temp

for i = 0 to n do
g[i] = binomial[i] * fun(i/n)

return g[:]

7

Algorithm 6 Algorithm for evaluating Bb(x) given values g(k, n; f)

int n
initialize g pos[n+1] . coefficients for fun(x)
initialize g neg[n+1] . coefficients for fun(-x)
initialize g[n+1]
if x >= 0 then . Determine whether x in positive and choose the corresponding coefficients

g = g pos[n+1]
else

g = g neg[n+1]
x = -x . make x positive

if x == 0 then . Evaluating the end points.
return g[0]

if x == 1 then
return g[n]

sum = 0
d = x/(1− x)
temp = (1− x)n/d
for i = 0 to n do

temp = temp * d
sum = sum + g[i]*temp

return sum

5 Description of the Experimental Design and Results
In this section, I will use two different target functions on [-1,1] to test the numerical behaviour of
our algorithms. And the two functions are:

f1(x) = |x|+ x

2
− x2 (25)

and
f2(x) =

1

1 + x2
(26)

For each algorithm, I will evaluate the value of pn(x) at 1000 equally spaced points on [-1,1] and
compare these result with the true function value f(x). Note that, the Bernstein polynomial divide
the interpolation on [-1,1] into two separated problems, interpolation on [-1,0] and interpolation on
[0,1]. To make the Bernstein polynomial comparable to other algorithms, I only use the Bernstein
polynomial of degree n/2 in each interval.

5.1 Stability analysis
I will use the difference between the double and single version of the same algorithms to roughly
measure the stability of the algorithms. For each functions, I test 3 degrees which are 10, 30 and
70 to explore the numerical stability for different algorithms at different degree. The a-axis is the
value for which pn(x) is evaluated and y-axis is the error in log scale.

8

Figure 1: Error of single algorithm at degree of 10 (function1)

Figure 2: Error of single algorithm at degree of 30 (function1)

9

Figure 3: Error of single algorithm at degree of 70 (function1)

Figure 4: Error of single algorithm at degree of 10 (function2)

10

Figure 5: Error of single algorithm at degree of 30 (function2)

Figure 6: Error of single algorithm at degree of 70 (function2)

From the above results, it is obvious that the Newton divided difference form become extremely
unstable when the degree is large as the error blow up when the degree is high in both functions.

The Barycentric form 2 with Chebyshev points is best performer in terms of the stability as the
error is bounded by 10−6 in both functions even when the degree is very big.

For Barycentric form 2 with uniform points, the algorithm behaves good when the degree is
small, but when the degree increases, for a small number of points the error blow up in scale, while
most of the points have error that is bounded by 10−6

For the Bernstein polynomial, the stability is good in general, but the only problem is the error
will blow up near 1 when the degree becomes large.

11

5.2 Convergence analysis
For the following convergence analysis and the conditioning analysis, I will only consider the
double precision algorithms. To analysis the convergence, I use the infinity norm to define the
interpolation error:

error = max(|f(x)− pn(x)|), x ∈ [−1, 1] (27)

which is basically the largest difference between pn(x) and f(x). The following results shows the
relation between the degree and the error.

Figure 7: Maximum interpolation error V.S. degree (function1)

For function 1, the Bartcentric form 2 with Chebyshev points is also the best performer as the
error decrease with the degree which indicates that interpolating function converge to the target
function as degree increases. And they also have the fastest decrease in the error. The Bernstein
polynomial also has good convergence when degree is below 55 as the Bartcentric form 2 with
Chebyshev points, but when the degree is above 60, the error seems blow up and destroy the con-
vergence.

Newton divided difference form and Bartcentric form 2 with uniform points behave okay when
the degree in below 10, when the degree is above 10, the error begin to grow. For Newton divided
difference form, the error grow exponentially, and for Bartcentric form 2 with uniform points the
error seems growing much slower that Newton divided difference form. And they all have similar
behaviour when degree is below 25.

12

Figure 8: Maximum interpolation error V.S. degree (function2)

For function 2, the Bernstein polynomial has the slowest rate of convergence while all other
methods converge much faster. Similarly, when degree is above 25, the Newton divided difference
form and Bartcentric form 2 with uniform points begin to diverge with similar behaviour that one
is faster than the other. Bernstein polynomial begin to diverge when degree is above 55.

As function 2 is smooth, we could observe a faster convergence rate of the Newton and Barycen-
tric form. When a target function is not smooth like function 1, the the Newton and Barycentric
form would converge slowly as the Bernstein polynomial because the error at the break point can-
not be eliminate completely by the smooth polynomial functions. And the following figures show
the where the function value pn(x) converge or diverge in different degree.

Function 1: (f1(x) = |x|+ x
2
− x2)

Figure 9: p50(x) and true function value (degree of 50) (function1)

13

Figure 10: Interpolation error(log scale) of p50(x) (degree of 50) (function1)

Figure 11: p70(x) and true function value (degree of 70) (function1)

14

Figure 12: Interpolation error(log scale) of p70(x) (degree of 70) (function1)

For Barycentric form 2 with uniform mesh strategy, a number of points have significant inter-
polation error and the error is relatively large near the end points. When the degree increase from
50 to 70, the maximum error decreases from about 102 to below 10, but the overall magnitude of
error is not decreased.

For Barycentric form 2 with Chebyshev points, the interpolating polynomial converge very
well. In both Chebyshev points, the maximum error is achieved at 0, because the target function is
not differentiable at 0 ,i.e. not smooth at near 0, using smooth global polynomial strategy is slow
and difficult to eliminate the error at the break point.

The Chebyshev points of first kind do not include the end points, and the information of the
target function values at the end point is not accessed in the interpolating process. So the Chebyshev
points of first kind have the error increased at the end points and also the error have larger range
of fluctuations near the end point. The Chebyshev points of second kind, basically have monotonic
decreasing error pn(x) is evaluated away from 0.

For Newton divided difference form, when degree is 50, the pn(x) is still around the target
function near 0, but when the degree increase to 70, pn(x) only close to the target function when
x is negative and also close to 0, which accord the Runge’s phenomenon discussed in the lecture
that the interpolation polynomial diverge at the end points of the interval. For degree 70, the results
seems not follow Runge’s phenomenon exactly, as nearly all x above 0 diverges and I will dig into
that matter. The following figure shows the magnitude of the Newton divided coefficients, wk(x)
k=1,...,n and intermediate sum for evaluating pn(x)

15

Figure 13: Intermediate result of Newton divided difference form p70(x) (degree of 70) (function1)

Note that in the figure I plotted the magnitude of 1/wk(x) to compare the magnitude with
the coefficients. The left figure shows that when x increase from -0.2 to 0.2, the magnitude of
wk(x), k = 1, ..., 70 increases. When x = -0.2, the magnitude of wk(x) is small enough to cancel
the magnitude of the Newton coefficients and magnitude of the intermediate sum stay small. When
x = 0.2, the magnitude of wk(x) become too big to cancel the magnitude of the Newton coefficients,
thus the intermediate sum blows up, which result in severe cancellation and round off error. In the
right figure, we can see that the intermediate sum grow up to 106 and then go back to normal size
number and this process generate huge round off error and numerical instability, which also accord
with the previous stability analysis.

For Bernstein polynomial, the error grow up when pn(x) is evaluated away from the end points
-1, 0 and 1. The value of Bernstein polynomial goes to 0 around -0.5 and 0.5 when degree is high,
which produce error around -0.5 and 0.5. Since the target function is close to 0 at -0.5, error near
-0.5 is smaller that the error at 0.5. The following plot shows the value of

∑n
k=0

(
n
k

)
xk(1 − x)n−k

for x ∈ [−1, 1].

Figure 14:
∑n

k=0

(
n
k

)
xk(1− x)n−k for x ∈ [−1, 1] of B70(x) (degree of 70)

16

Note that
∑n

k=0

(
n
k

)
xk(1 − x)n−k show be identically 1 for x ∈ [−1, 1] in exact sum. As the

weights goes to 0 near -0.5 and 0.5, the function value Bn(x) will also goes to 0 near -0.5 and 0.5.
Since the Bn(x) work well for x near -1, 0 and 1, we binomial coefficients and target function work
correctly. Thus the problem lie in the terms xk(1− x)n−k for k = 0, ..., n. When x = 0.5, the term
xk(1 − x)n−k is identically small for all k if n is large. The magnitude of xk(1 − x)n−k is about
10−22 and the largest magnitude for

(
n
k

)
is about 1020. So similarly, severe cancellation happens in

the
∑n

k=0

(
n
k

)
xk(1− x)n−k, which is the main source of the error.

Function 2: (f2(x) = 1
1+x2

)

Figure 15: p50(x) and true function value (degree of 50) (function2)

Figure 16: Interpolation error(log scale) of p50(x) (degree of 50) (function2)

17

Figure 17: p70(x) and true function value (degree of 70) (function2)

Figure 18: Interpolation error(log scale) of p70(x) (degree of 70) (function2)

For Bartcentric form 2, now the error mainly mainly exist in the end points which accord with
the Runge’s phenomenon. Similarly, the Chebyshev points of first kind have more error near the end
points compared with the Chebyshev points of second kind. And other behaviours are similar with
the behaviour discussed above, e.g. the divergence of Newton divided difference form for when x
increase from -1 to 1 and Bernstein polynomial converge to 0 near -0.5 and 0.5 when degree is high.
However, some of the above numerical instability can be improved by other summation strategies
like the sorted sum.

18

5.3 Conditioning analysis
I define my perturbed functions as the following:

f̃1(x) = |x|+ x

2
− x2 +M ∗ sin(100x) (28)

and
f̃2(x) =

1

1 + x2
+M ∗ sin(100x) (29)

where M is the perturbation size. In the following result, I choose the value of M to be 1 and 10
times of the machine epsilon in single precision(10−7) to test the conditioning. By this setup, the
change in the input f(xi) − f̃(x) is bounded by M, and I also use the infinity norm to measure the
difference in pn(x) and p̃n(x).

Figure 19: Perturbation: 1 machine epsilon(float)

19

Figure 20: Perturbation: 10 machine epsilon(float)

First of all, the conditioning for Newton divided difference form is not good when degree is
large as a small change in the input could result in huge change in the output. But, the change in
output is still within the upper bound defined by the Lebesgue constant s.t. Λn(X) ≈ 2n+1

enlog(n)
. And

the value outside of the bound might come from the instability of the algorithm which have been
showed earlier. Bartcentric form 2 with uniform mesh is also not ideal as the difference in result
is about 100 time bigger than the error of other methods. Also is is in the upper bound for equally
spaced mesh.

For Bernstein polynomial and Bartcentric form 2 with Chebyshev points, which has stable
condition number across different degree, about 10−7 perturbation in the input could have 10−7

change in the output, and similarly, 10−6 perturbation in the input result in 10−6 change in the
output. So the actual condition number for these three interpolation form is close to 1, which is
also in within the bound for Chebyshev points defined by Λn(X) ≈ 2

π
log(n).

The conditioning for Newton divided difference form and Bartcentric form 2 with uniform mesh
have similar behaviour in conditioning when degree is not too high. Moreover, for function 2, the
condition number deteriorate earlier in degree that function 1 for this two methods.

6 Conclusions
In terms of number of operations, Barycentric form 2 need O(n) operations for pre-processing and
O(n) operations to evaluate,the Newton divided difference form require O(n2) for pre-processing
andO(n) operations to evaluate, and finally the Bernstein polynomial takeO(n) for pre-processing
and O(n) operations to evaluate.

For stability, Barycentric form 2 with Chebyshev points is stable even when the degree is large.
Barycentric form 2 with uniform mesh is stable for most of the points, but a small number of
unstable values when degree is large. Bernstein polynomial is stable in general, but is become
unstable at the end points when degree is large. Newton divided difference is very unstable when
degree is large.

For convergence, Barycentric form 2 with Chebyshev points and Bernstein polynomial will
converge when degree goes up, but when degree is too big (above 55)the Bernstein polynomial

20

will begin to diverge. Newton divided difference and Barycentric form 2 with uniform points begin
to diverge when the degree is above 10 in function 1 and 25 in function 2, and Newton divided
difference diverge faster while the divergence of Barycentric form 2 with uniform points does not
grow significantly.

For the convergence rate in degree such that all the algorithms converge, if the target function
is smooth, Bernstein polynomial is the slowest and if the target function is not smooth they have
similar rate of convergence i.e. all other algorithm are slowed down due to the break points.

For conditioning, Barycentric form 2 with Chebyshev points and Bernstein polynomial are
nearly perfectly conditioned for this 2 target functions. Barycentric form 2 with uniform points is
well conditioned when degree is small, and the condition number deteriorate when degree increase
but the worse case is about 1000. The condition number for Newton divided difference is good
when degree is small, when degree goes up, the condition number grow exponentially.

7 Program Files
Compile c++ code first to generate all the .csv files for analysis, and then use the Matlab code the
do the plot.

References
[1] H. R. Schwarz, Numerische Mathematik, 4th ed., Teubner, Stuttgart, 1997; English translation

of the 2nd edition, Numerical Analysis: A Comprehensive Introduction, Wiley, New York,
1989.

[2] P. Henrici, Essentials of Numerical Analysis, Wiley, New York, 1982.

[3] H. E. Salzer, Lagrangian interpolation at the Chebyshev points xn,,= cos(/n), = 0(1)n; some
unnoted advantages, Comput. J., 15 (1972), pp. 156159.

[4] Quarteroni, A., Sacco, R., & Saleri, F. (2010). Numerical mathematics (Vol. 37). Springer
Science Business Media.

[5] Smoktunowicz, A., Wrbel, I., Kosowski, P. (2007). A new efficient algorithm for polynomial
interpolation. Computing, 79(1), 33-52.

[6] Bartle, Robert Gardner, and Robert G. Bartle. The elements of real analysis. Vol. 2. New York:
Wiley, 1964.

21

