
Interpolation methods

September 3, 2019

1 Executive Summary
In this report, several interpolation methods are implemented, tested and analyzed. These
methods are based on Barycentric Form 2 for first and second kind of Chebyshev points,
Newton divided difference form, Bernstein polynomial and piecewise polynomial. The specific
functions used to interpolate are f1(x) = ‖x‖ + x/2 − x2 and f2(x) = (1 + x2)−1. In task
6, we use Md(x) =

∑d+1
k=0md,k(x) where md,k(x) are computed using the recursive algorithm

show in Algorithm 1.
Algorithm 1: md,k(x)

if d = 0 then
Return (−1)ksign(x− k)/2;

else if d > 0 and k < d+ 1 then
Return (x−k)(d+1)

d(d+1−k) md−1,k(x);
else

Return −md,d(x−1)
d+1 ;

2 Statement of the Problem

This report considers the methods that take N sample points x =
(
x1, · · · , xn

)T
and their

values y = f(x) =
(
f(x1), · · · , f(xn)

)
as inputs and return an interpolation function h of f .

The following table shows some notations used frequently.

Notation
d Degree of the method.
N + 1 Number of the sample points.
C1,d(x) Interpolation with barycentric Form with Chebyshev points of the first kind.
C2,d(x) Interpolation with barycentric Form with Chebyshev points of the second kind.
Nd(x) Interpolation with Newton Form.
Bd(x) Bernstein interpolation.
gs(x) Piecewise interpolation with degree s.
ĥ Numerical result of the interpolation h.
(xi, yi) Sample points.
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3 Description of Mathematics

3.1 Preprocessing and Evaluation(Task 1)

The summary of this part is given in the following table.

Method Complexity of evaluation Complexity of preprocessing Storage
C1,d O(d) O(d) O(d)
C2,d O(d) O(1) O(d)
Nd O(d) O(d2) O(d)
Bd O(d) O(d2) O(d)
gs O(log2(d/s) + 3s) O(ds) O(d)

3.1.1 C1,d and C2,d

The evaluation formula of barycentric form 2 is given by

ĥ(x) =
∑d
i=0

yici
x−xi∑d

i=0
ci

x−xi

(3.1)

where ci are coefficients that are determined by the sample xi.
The evaluation involves 5d+ 6 = O(d) operations.
For C1,d, the sample points are

xi = cos (2i+ 1)π
2d+ 2 , i = 0, 1, · · · , d (3.2)

with

ci =


− sin (2i+ 1)π

2d+ 2 , i is odd

sin (2i+ 1)π
2d+ 2 , i is even

, i = 0, 1, · · · d.

Every ci needs 7 operation which makes the total of preprocessing 7(d+ 1) = O(d).
For C2,d, the sample points are given by

xi = cos iπ
d
, i = 0, 1, · · · , d (3.3)

with
ci =

{
− 1, i is odd
1, i is even

, i = 1, · · · d− 1, c0 = 1
2 , cd = (−1)d

2 .

In this case, the preprocessing is trivially O(1).
Note that in my implementation, to reuse the code structure of C1,d, the complexity of

preprocessing is still O(d).
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3.1.2 Nd

The evaluation of Newton form is given by

ĥ(x) =
d∑
i=0

ci

 i∏
j=0

(x− xj)

 . (3.4)

Use Horner rule from Program 1 to compute this polynomial, which gives us 3d = O(d)
of evaluation.

To compute the coefficient ci, the following routine is iterated d+ 1 times.
Algorithm 2: i-th iterative step of computing coefficients for Nd

c0 ← yi;
j ← 1;
while j ≤ i do

cj ← cj−1−tempj−1
xi−xi−j

;
tempj−1 ← cj−1;

tempi ← ci;
The i-th iteration requires 2i + 2 storages and 3i + 3 operations. After d + 1 iterations,

by reusing the temperate vector temp, the total storage is O(d) while the complexity is
3(d+ 2)(d+ 3)/2 = O(d2).

3.1.3 Bd

The evaluation of Bernstein interpolation is given by

ĥ(x) =
d∑
i=0

yi

(
d
i

)
xi(1− x)d−i (3.5)

The complexity is O(d) if the power function is counted as 1 operation. The preprocessing

of generating binomial coefficient
(
d
i

)
is done inO(d2) complexity and stored in anO(d) array.

3.1.4 gs

The evaluating process of piecewise polynomial is different from the algorithms before.
To get a piecewise polynomial gs(x) generated from d + 1 samples, the algorithm will

partition d intervals into d/s subintervals, each one has s samples, and perform Newton
method on each subinterval. Note that this implies d must be a multiple of s.

While evaluating gs, find out the subinterval x lays in first, then perform d/s times Newton
interpolation. The searching requires log2(d/s) complexity while the complexity of evaluating
Newton form is 3s, the overall complexity if O(log2(d/s) + 3s).

The preprocessing is done in O(s2) with d/s times, i.e. O(ds) in total.

3.2 Conditioning and Stability

In this part, we summarize the stability and conditioning of interpolation with barycentric
form 2, which subsumes C1,d, C2,d and Nd. Due to numerical difficulty of evaluating Bd
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when d is large, the analysis of Bd is omitted. Since gs is the composition of Nd in my
implementation, the analysis is therefore the same.

For arbitrary sample points xi, i = 0, · · · , d, it defines the Lagrange basis functions
li(x), i = 0, · · · , d

li(x) = ωd+1(x)
(x− xi)ω′d+1(x) (3.6)

The basis induces two quantities, the Lebesgue constant Λd and the relative conditioning
number κ(x, d, y) as follow.

Λn =
∥∥∥∥∥
d∑
i=0
|li(x)|

∥∥∥∥∥
∞

, (3.7)

κ(x, d, y) =
∑d
i=0 |li(x)yi|
|h(x)| , (3.8)

where exact arithmetic is assumed in both generating and evaluating the interpolant h. Note
that Λn depends only on the sample mesh xi while κ also depend on the interpolation method,
the sample values yi and evaluation x.

For conditioning analysis, we are interested in the difference between two exact inter-
polants h and h̃ from samples (xi, yi) and (x, ỹ), which should be bounded by the Lebesgue
constant.

‖h− h̃‖∞ ≤ Λd‖y − ỹ‖∞ (3.9)

where ‖ · ‖∞ is the infinity norm of continuous functions and vectors respectively.
The Lebesgue constant of 3 different sample meshes are given below.

Mesh Lebesgue constant
Chebyshev points of the first kind ΛC1

d ≈
2
π log d

Chebyshev points of the second kind ΛC2
d ≤ ΛC1

d−1 ≈
2
π log(d− 1)

Equally spaced points ΛEd ≈ 2d+1

ed log d

For stability analysis, we are interested in the difference between the exact interpolants
h and the numerically computed ĥ at point x from the samples (xi, yi), where the samples
are floating point numbers. In this case, the error comes from the finite precision operations
used during the forming and evaluating process of the exact interpolants h.

Notice that these errors generated from the operation are closely related to the unit round-
off of the floating point system we are using. Therefore, the final error bound for stability
below is in terms of the unit round-off u and the associating µk = ku

1−ku ,

|h(x)− ĥ(x)|
|h(x)| ≤ (3d+ 4)κ(x, n, y)u+ (3d+ 2)Λdu+O(u2) (3.10)

or

|h(x)− ĥ(x)| ≤
[
(3d+ 4)

d∑
i=0
|li(x)yi|+ (3d+ 2)Λd|h(x)|

]
u+O(u2). (3.11)
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3.3 Error Bounds of Piecewise Polynomial Interpolation(Task 4)

In this part, the error bounds of piecewise polynomial interpolations in term of particular
functions f1 and f2 is founded explicitly. They are used to find the minimal numbers of
sample points d+ 1 so that the interpolation error ‖h− f‖∞ is bounded under the threshold
10−4. The test results are straight-forward and therefore also included in this section.

3.3.1 Piecewise linear interpolation of f1

Under equally spaced mesh x where xi+1 − xi = h,∀i = 0, · · · , d− 1, ∀f ∈ C2, we have

|f(x)− g1(x)| ≤ h2‖f ′′‖∞
8 (3.12)

derived from the Lagrange residue.
Notice that f ′1 has one and only one discontinuity at x = 0. To use the error bound 3.12,

we can include x = 0 into our sample mesh so that with in each subinterval [xi, xi+1], the
restriction f1|(xi,xi+1) is secondly differentiable. To include x = 0 in the sample mesh, we need
d to be even number.

Let d be even number, then max
{∥∥∥∥(f1|(xi,xi+1)

)′′∥∥∥∥} = 2 can be easily found. Therefore,
we have

|f1(x)− g1(x)| ≤
h2 max

{∥∥∥∥(f1|(xi,xi+1)
)′′∥∥∥∥}

8

= (2/d)2 × 2
8 = 1

d2 .

(3.13)

Bound the error bound by 1
d2 ≤ 10−4 and we have d ≥ 100. The Figure 1 shows the error

bound and the actual error achieved in g1, which reaches up to 9.99996×10−5, i.e. the bound
we derived is very tight in this case.
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Figure 1: Interpolation Error |f1(x)− g1,d(x)| with d = 10
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N=28
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Figure 2: |f2(x)− g2,d(x)| with d = 28

N=30
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Figure 3: |f2(x)− g2,d(x)| with d = 30

3.3.2 Piecewise quadratic interpolation of f2

Similar error bound can be derived from the Lagrange residue. Under equally spaced mesh x
where xi+1 − xi = h,∀i = 0, · · · , d− 1, ∀f ∈ C3, we have

|f(x)− g2(x)| ≤
√

3h3‖f (3)‖∞
27 (3.14)

Recall that d has to be a multiple of s = 2, therefore, d is again an even number but with
different reason. After the algebra, we have

|f1(x)− g1(x)| ≤
√

3h3‖f (3)‖∞
27 ≤ 2.9948 · · · ×

(2
d

)3
≤ 2.4

d3 . (3.15)

Bound the error bound by 2.4
d3 ≤ 10−4, we can solve d ≥ 28.85, i.e. d = 30. Figure 2 and 3

show the error bound and the actual error achieved under d = 28, 30. When d = 28, the error
is unbounded by 3.14, i.e. the bound we derived is very tight in this case.

4 Description of the Algorithm and Implementation
Table 1 is the argument list of the main routines.

Chebyshev(T *x, T *y, int degree, T* xx, T* value, int pnum, int ctrl)
Newton(T* x, T* y, int degree, T* xx, T* value, int pnum)
Bernstein(T* y, int degree, T* xx, T* value, int pnum)
Piecewise(T* x, T *y, int n, int degree, T* xx, T* value, int pnum)

Table 1: Routine List

These routines use similar argument list. x and y are the arrays of sample points. They
have integrated two parts together, forming the interpolant and evaluate the interpolant at
xx and store in value. It is also possible to return the coefficients of the interpolant, which is
essentially the interpolant itself.

As mentioned before, the preprocessing of barycentric form 2 of Chebyshev points of the
second kind is O(d) instead of O(1), the searching algorithm for piecewise interpolation is
O(d/s) instead of O(log d/s).
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Note that the pointer argument allow us to call Newton easily inside Piecewise, without
creating a new sample vector and workspace.

Also note that for computing the binomial coefficient
(
i
d

)
, the recursive function structure

is used but the workspace, O(d), is created beforehand and it stays fix.

5 Description of Experimental Design and Result

5.1 Interpolants with n = 6, n = 12 and n = 20
The following figures display different interpolants that are done in double precision with
small n. The Runge’s phenomenon of Newton interpolation and convergence pattern for
other interpolation is observed, which agrees with the analysis in class note.

Note that f1 is a quadratic polynomial in (−1, 0) and (0, 1). Therefore, with proper d,
g2 should capture the exact f1. When d = 12, 20, x = 0 happens to be the endpoint of the
sub-interval where we apply N2 within so that g2 can capture f2 in the whole domain. When
d = 6, x = 0 is a inside the subinterval in the middle, (−1/3, 1/3), and therefore blue line fails
to capture f1 in the middle. Since f1 restricted on (−1/3, 1/3) is not a quadratic function.
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Figure 4: Interpolants of C1,d with Certain d
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Figure 5: Interpolants of C2,d with Certain d
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Figure 6: Interpolants of Nd with Certain d
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Figure 7: Interpolants of Bd with Certain d
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Figure 8: Interpolants of g1,d with Certain d
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Figure 9: Interpolants of g2,d with Certain d
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5.2 Conditioning Test(Task 2)

As discussed in previous section, we would like to verify the error bound 3.9, which says that
the difference between the exact interpolants are bounded by the difference of the sampling
point.

In this case, the error brought by numerical operation must be neglected, i.e. the difference
brought by ‖y − ỹ‖ should dominant the error brought by numerical operation.

Therefore, we perform our algorithms in double precision with data (xi, yi) so that the
numerical error is of udouble = 1.11×10−16 level. Then we perturb the sample data, (xi, yi+pi),
where pi is random noise of usingle = 5.96× 10−8. Therefore, ‖h− h̃‖ � ‖ĥ− h‖ ≈ ‖ˆ̃h− h̃‖,
i.e. ‖h− h̃‖ ≈ ‖ĥ− ˆ̃h‖.

Under this setup, the bound we want to test is

‖h− h̃‖∞ ≤ Λd‖p‖∞,

where p is the noise we introduce. This bound is computed in Julia during the plotting.
Figure 10 agrees with our expectations.

Generally speaking, the relative error stays bounded moderate increasing bounds, or even
some constant, except for Newton method. In specific, the relative errors of barycentric form
2, upper 2 subplots, are bounded by 3.9. Newton form Nd, due to Runge’s phenomenon,
is ill-conditioned as expected. Bernstein interpolation is well-conditioned as stated in class
notes. By restricting the degree of Newton interpolation, the piecewise interpolation methods
trade smoothness of interpolant for well-conditioning.
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Figure 10: Relative Error under Perturbation at 5usingle Level

11



5.3 Stability Test(Task 3)

In this part, we would like to verify the error bound 3.11 with respect to the unit round-
off u, i.e. ‖ĥ − h‖ is of interest. However, we do not have access to the exact interpolant
h. Therefore, similar to what was done in Conditioning Test, we will treat the computed
interpolant ĥdouble as our exact interpolant. This strategy is based on the assumption that the
methods we implement are well posted, so that ‖ĥsingle−h‖ � ‖ĥdouble−h‖, i.e. ‖ĥsingle−h‖ ≈
‖ĥsingle − ĥdouble‖.

Note that to make sure we are working on the same problem, the sample (xi, yi) feed to
the double precision routine are single precision floating numbers, i.e.

ĥsingle = Routine(xsinglei , ysinglei )

and
ĥdouble = Rountin(double(xsinglei ), double(ysinglei ))

where double(·) cast the single precision floating point number to double precision.
Under this set up, we want to verify the bounds for C1,d and C2,d derived Equation 3.11

|ĥdouble(x)− ĥsingle(x)| ≤
[
(3d+ 4)

d∑
i=0
|li(x)yi|+ (3d+ 2)Λd|h(x)|

]
usingle.

and numerically verify the stability of Newton interpolation, Bernstein interpolation and
piecewise polynomial interpolation. The bound for the former two are computed in Julia
during the plotting. d = 20 is used here.

For Newton and Bernstein interpolation, we expected them to be numerically stable since
the main operations involving repeatedly polynomial evaluations are done using Horner’s rule,
which has concluded to be stable in Program 1. For piecewise polynomial interpolation, it is
trivial to see stability due to the low degree interpolant in each sub-interval. Figure 11 agrees
with our expectation, where all methods has numerical error under around 5usingle, 50usingle
for Newton interpolation.

5.4 Convergence Rate of Piecewise Polynomial Interpolation(Task 5)

In this part, we verify the error bounds 3.12 and 3.14 we derived in Section 3.3. The log-log
plot 12 shows that our error bounds for even d are very tight in terms of quantity and order
to d. Interestingly, the odd d branch on the left is empirically bounded by d−1, indicating
the extra error brought by including the non-smooth x = 0 within the interpolant is of
O(d−1) = O(h), where h = 2/d is the length of each sub-intervals. This result can be proven
using the fact that f1 is Lipschitz continuous around x = 0, which is not the main concern in
the report and therefore omitted.

6 Conclusion
In this report, several interpolation methods are implemented in efficient ways and tested
in terms of conditioning, stability and convergence. We have shown that barycentric form
2 with two kinds of Chebyshev points are well-conditioned and stable with respect to finite
precision operation under all circumstances. The disadvantage is that we have no freedom in
choosing sample mesh (xi).
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Figure 11: Absolute Error between Double and Single Precision Interpolants.

Newton interpolation diverges due to Runge’s phenomenon but it is still stable under
numerical operation.

Bernstein interpolation is convergent, well-conditioned and stable but it has numerical
difficulty in evaluation. The complexity is O(d2) and there is potential overflow problem in
evaluating binomial coefficient and xi(1− x)d−i for large d.

Piecewise interpolation gs is a good option if the smoothness of interpolant is not im-
portant. In this case, gs works with any sample mesh and captures function nicely with a
very tight error bound. By restricting the degree of Newton method, gs is well-conditioned
and numerically stable and the preprocessing is essentially O(d) when s is fixed and small.
Adaptive strategies can be used in choosing sample mesh in order to optimize efficiency.
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Figure 12: Absolute Error between Piecewise Interpolants and fi in Double Precision.
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