
Graded Homework 2 Foundations of Computational Math

2 Spring 2021

The solutions are due by 11:59PM on Monday 22 February 2021

Programming Exercise

Objectives

• To review the basic primitive ideas of the Discrete Fourier Transformation.

• To understand and implement basic data structure for the Discrete Fourier Transfor-
mation and Fast Fourier Transformation.

• To empirically explore the basic properties of the DFT and reconstruction error.

• To empirically demonstrate the computational time advantage of the FFT.

Review of Basic Forms

The discrete Fourier transform, denoted DFT, is a complex linear transformation on a vector
in Cn and can be defined in terms of a matrix Fn ∈ Cn×n given by

Fn =
1√
n

Φ̄,

where θ = 2π/n, ω = eiθ,

Φ =


1 1 1 · · · 1
1 ω ω2 · · · ωn−1

1 ω2 ω4 · · · ω2(n−1)

...
...

...
. . .

...
1 ωn−1 ω2(n−1) · · · ω(n−1)(n−1)

 . (1)

and Φ denotes the matrix formed by taking the elementwise complex conjugate. (Other
versions with different scaling and permuted columns corresponding to alternate orderings
of the basis functions used are possible, as we have discussed.)

Recall that the matrix, F−1n , defining the inverse DFT, denoted IDFT, can be found from
the fact that F is a unitary matrix, i.e., 1

n
ΦHΦ = I ∈ Cn×n and by noticing ΦH = Φ̄ and

therefore

F−1n =
1√
n

Φ = FH
n . (2)

Additionally, since Fn and FH
n are unitary matrices, they preserve the vector that preserves

vector 2-norm, ‖Fnx‖2 = ‖x‖2 and ‖FH
n x‖2 = ‖x‖2.

1

When n = 2k, k ∈ N is power of 2, one version of fast Fourier transformation, FFT, can
be derived by the factorization of Fn. Let n = 8, for example, we have For n = 8

F8f
(8) =

1√
2

[
I4 Ω4

I4 −Ω4

]
1√
2


I2 Ω2 0 0
I2 −Ω2 0 0
0 0 I2 Ω2

0 0 I2 −Ω2



F2 0 0 0
0 F2 0 0
0 0 F2 0
0 0 0 F2

P8f
(8)

where θn = 2π/n, ωn = eiθn , µn = ω̄n, F2 ∈ C2×2 is the DFT of vectors of length 2,
Ω2 = diag(1, µ4), Ω4 = diag(1, µ8, µ

2
8, µ

3
8) and P8 is a permutation matrix defining the bit-

reversal permutation.
In general, when n = 2k, we can write down the factorization as

Fn = (A1A2 · · ·Ak−1)DnPn =

(
k−1∏
i=1

Ai

)
DnPn (3)

where each Ai is scaled by 1/
√

2 and has the block structure using I and Ω of the appropriate
dimensions, Pn is the bit-reversal permutation matrix and Dn = diag(F2, · · · , F2) is a block
diagonal matrix with n/2, 2× 2 DFT matrices.

Codes

Implement the following algorithms:

• Discrete Fourier Transformation (DFT).

• Inverse Discrete Fourier Transformation (IDFT).

• Fast Fourier Transformation (FFT).

• Inverse Fast Fourier Transformation (IFFT).

Comments

• Each algorithm should have an input/output structure that allows for the use of com-
plex numbers. Therefore, you are free to use a complex library or implement your
own.

• Storage and computational complexity for DFT should beO(n) andO(n2) respectively,
i.e. you should not explicitly form Fn, Φ̄ or Φ in (1) as matrices.

• The DFT and IDFT code should be implemented in the same routine such that a
simple change to a single parameter can define which transform is performed and there
should be no restriction on n, i.e., do not assume n = 2k.

2

• Storage and computational FFT should be O(n) and O(n log n) respectively. You may
use either the factored form or the recusive form.

• The FFT and IFFT code should be implemented in the same routine such that a simple
change to a single parameter can define which transform is performed and you should
assume n = 2k for some k.

DFT/FFT Tasks

1. Describe how you achieved the storage and computational complexity required. Make
sure to include the efficient production of the elements of the sequence of the matrices
Ωj. Indicate any dynamic storage that is used, e.g., stack and heap storage allocated
(and possibly deallocated) during runtime. (This can be especially important if you
use recursive subroutine calls.)

2. Given Fn = 1√
n
Φ̄ and FH

n = 1√
n
Φ, empirically validate the listed properties for both the

DFT/IDFT and FFT/IFFT pairs. Note that since you do not form the matrices
explicitly this empirical validation must be done based on output vectors
observed given particular input vectors plus in some cases additional com-
putation. You should used appropriate deterministic and random choices of
input vectors; means, variances and histograms to summarize your evidence
and to support your arguments. The properties are:

• (isometry) Preservation of norms e.g. ||Fnx||2 = ||x||2.
• (unitary) FH

n Fn = FnF
H
n = I.

• (reconstruction) Given a randomly generated x ∈ Cn show IDFT (DFT (x)) = x
and investigate aliasing with the IDFT/DFT pair or the IFFT/FFT pair.

3. Write a routine that allows for an efficient comparison of the computational time and
complexity of the DFT versus the FFT. You can consider the ratio of the times in
your presentation and the ratio of the computational rates, i.e., operations per unit
time. You should use a range of n values that make the clear case of the computational
benefits of the FFT.

4. Let Cn ∈ Cn×n be a circulant matrix of order n = 2k defined by its first row a ∈ Cn,
a =

(
α0 α1 α2 α3

)
. For example, for n = 4 and using the first row as the parameters

we have

C4 =


α0 α1 α2 α3

α3 α0 α1 α2

α2 α3 α0 α1

α1 α2 α3 α0


Use the DFT/IDFT or FFT/IFFT pair to implement a routine that:

3

(a) finds all n eigenvalues, λj, 0 ≤ j ≤ n− 1, of Cn;

(b) computes the matrix 2-norm ‖Cn‖2; (The matrix 2-norm of any matrix, M , is
equal to

√
γ where γ is the eigenvalue of MHM with the largest magnitude.);

(c) solves the linear system Cnx = b. (Note that you must be able to generate non-
singular circulant matrices or have your routine check if the matrix is sufficiently
nonsingular.)

Other Test Problems

After you have submitted your solutions make an appointment with the TA Tejas Natu. He
will ask you to demonstrate your code on some test problems as a final evaluation of your
codes correctness.

You will be asked to perform DFT/FFT on samples generated from complex-valued
functions on [0, 2π], with different sampling sizes. He will provide subroutines implementing
the function. The template zip file posted on the class website contains more information on
how to evaluate those functions and some example code. (Read ”README.txt” first). The
questions you are asked will include such things as reconstruction error and the distribution
of frequency components.

Some Additional Instructions

Time a routine

To time a routine in c++, include the header
#include <time.h>
Create 2 timestamps (clock t type) and record the clock before and after the routine you

want to time. Then the difference over clocks per second gives you the time. Use wall-clock
time for your analysis.

Note that in order to make sure the routine lasts long enough to amortize the overhead
of timing, you may generate the data for the DFT/FFT routines, then time a loop that
executes the routine multiple times. Also note you should execute the routine once outside
and just before the timed loop to reduce the misleading effects of virtual memory. See the
example in the posted template.

Remote connection to department machines

All are expected to time your DFT/FFT routine on the same department machine, compute2.
Here are the instructions on how to connect to the machine via ssh. You are assumed to
know basic command-line operation on terminal on Mac and Linux or CMD on Windows.

1. Open terminal/CMD.

4

2. Connect to department’s main server.

ssh your-math-account@henri.math.fsu.edu

Your password to math account will be asked here. (You may be able to connect
directly compute2.)

3. Connect to particular machine, e.g., connect2 below.

ssh compute2

Your math password will be asked again and once you are on compute2, you can use
command-line operations to compile and exectute code.

5

Written Exercises

Problem 2.2

If A ∈ Cn1×n2 and B ∈ Cn3×n4 then the Kronecker product

M = A⊗B ∈ Cn1n3×n2n4

is defined in terms of blocks Mij ∈ Cn3×n4 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 where

Mij = αijB.

The Kronecker product is useful for expressing many structured matrix expressions, e.g.,
the Cooley-Tukey FFT/IFFT.

Let A ∈ Cm×m, B ∈ Cn×n, x ∈ Cmn, and y ∈ Cmn.

2.2.a. Describe an algorithm to evaluate the matrix vector product

y = (A⊗B)x

i.e., given A,B, x determine y.

2.2.b. What is the complexity of the algorithm?

2.2.c. How does the complexity of the algorithm compare to the standard matrix-
vector product computation, y = Mx, that ignores the structure of M .

Problem 2.3

The factored form of the Cooley-Tukey FFT

Fn = (A1A2 · · ·Ak−1)DnPn =

(
k−1∏
i=1

Ai

)
DnPn, (4)

where each Ai is scaled by 1/
√

2 and has the block structure using I and Ω of the appropriate
dimensions, Pn is the bit-reversal permutation matrix and Dn = diag(F2, · · · , F2) is a block
diagonal matrix with n/2, 2× 2 DFT matrices, was derived in the class notes by using the
basic properties of the n roots of unity and writing a polynomial in the monomial basis in
terms of the sum of the polynomials involving the even and odd power terms.

Given the relationship between ωn = eiθn and µn = ω̄n, with θn = 2π/n, the same proof
can be repeated with µn replaced by ωn to derive the IFFT as the factorization

FH
n =

(
A1A2 · · ·Ak−1

)
DnPn =

(
k−1∏
i=1

Ai

)
DnPn, (5)

6

where M replaces elements with their complex conjugates. This is equivalent to the factored
form of the FFT with µ replaced by ω.

Recall the basic properties of the matrices F and FH :

F = (F)T , FH =
(
FH
)T

FHF = I = FFH → FH = F−1.

Show that these properties can be used to derive (5) directly from (4).

Problem 2.4

Consider an n× n nonsingular upper triangular matrix where all nonzero elements in row i
are equal to αi, e.g., for n = 4

U4 =


α1 α1 α1 α1

α2 α2 α2

α3 α3

α4


Assume that αi 6= 0 and show that the system Unx = b can be solved in significantly

fewer than n2 +O(n) computations. Give your complexity result in the form Cnk +O(nk−1)
where C is a constant independent of n and k > 0.

Problem 2.5

Define the elementary matrix N(y, k) = I − yeTk ∈ Rn×n, where 1 ≤ k ≤ n is an integer,
y ∈ Rn and ek ∈ Rn is the k-th standard basis vector. N(y, k) is a Gauss-Jordan transform
if it is defined by requiring N(y, k)v = ek for a given vector v ∈ Rn.

Perform all of the basic analyses on the Gauss-Jordan transform that were performed on
the Gauss transform and elementary unit lower triangular matrices, i.e., existence, inverse,
etc., and use the results to show that the Gauss-Jordan algorithm that computes A−1 and
x from a nonsingular matrix A ∈ Rn×n and vector b ∈ Rn can be expressed in terms of
Gauss-Jordan transforms. Identify the condition for each Gauss-Jordan transformation to
exist on each step of the elimination, i.e., determine when the algorithm fails in terms of the
transformation’s construction.

7

