
Graded Homework 3 Foundations of Computational Math

2 Spring 2021

The solutions are due by 11:59PM on March 12, 2021

Written Exercises

There are no written problems in this assignment.

Programming Exercise

General Task

Consider the case where A ∈ Rn×n is nonsingular and the system Ax = b This assignment is
to empirically evaluate the predictions you make about the structure of the factors and the
general performance of the method across a large set of randomly generated problems when
using LU factorization to solve the problems.

The Codes

1. Implement a code that computes the LU factorization of a matrix A without pivoting,
using partial pivoting or using complete pivoting. The code that is capable of perform-
ing these three tasks, based on a user selection. Your code should also detect situations
where the factorization may not proceed and exit gracefully. Clearly, this is the case
when the candidate pivot set contains no acceptable value. In exact arithmetic this
means they are all 0. Your code should also allow the detection of a set of candidate
pivots that are all “too small” and warn the user. Your factorization routine, which
must be a separate routine from the driver/tester routine, should accept the matrix A
stored in a simple 2-dimensional array-like data structure and other relevant parame-
ters such as n and a flag indicating what form of the factorization should be attempted,
e.g., no pivoting, partial pivoting, or complete pivoting. The routine should return the
matrices L and U stored within the array that contained A on input, i.e., you should
implement the in-place algorithm strategy described in the class notes and lectures.
You should also keep a copy of A in an additional data structure for correctness check-
ing. The 1 values on the diagonal of L, the 0 values in the upper triangular portion
of L and the 0 values in the lower triangular portion of U should not be stored at any
point in the code. The routine should also return the permutation matrices P and/or
Q appropriate to the pivoting strategy used. These permutation matrices should not
be stored as full matrices within any array. The matrices, or equivalently the set of el-

1

ementary permutations that are their factors, can be represented by at most n integers
each.

2. Implement a routine that accepts as input the 1-dimensional arrays specifying P and
Q and applies them to vectors and matrices stored in 1 dimensional and 2 dimensional
arrays.

3. Implement a solution routine that accepts as input a vector b stored in a simple 1-
dimensional array. The routine should also accept as input the 2-dimensional array
containing the information specifying the L and U matrices and the 1 dimensional
arrays specifying P and Q if appropriate. Any application of these permutations should
used the permutation routine listed earlier. The forward and backward solves Ly = b
and Ux = y must also work only with the information specificed in the 2-dimensional
array and not expanded version of L and U . The routine should return the solution x
Ax = b.

4. Implement a matrix multiplicaiton routine that accepts as input the 2-dimensional
array containing the information specifying the L and U matrices and return in a
separate 2-dimensional array the product M = LU or the product M = |L||U | based
on user selection indicated by an input flag. Note that these matrix multiplications
must use the information specifying L and U within the data structure. It must not
expand them into separate arrays that include the 1 and 0 values that are not stored
in the input array.

5. You will also need various test routines designed to evaluate and validate the correctness
of the code and accomplish the tasks described below. You may code in any compiled
and typed language you wish although C, C++, Julia, and Fortran are preferred. In
all cases, however, you may not use standard libraries such as LAPACK or built-in
matrix routines for pieces of your routines implementing the computations described
above.

6. The test routines should include the computation of ‖W‖ where W is a matrix. The
norms used should be finite in computation, i.e., ‖W‖1, ‖W‖∞, or ‖W‖F . You may use
library routines to compute ‖W‖2 if you wish but you are definitely not expected to
generate the code for the 2-norm. The matrix norm code can also be used to compute
the associated vector norms if W ∈ Rn since the formulas can handle a n× 1 matrix.
The vector 2-norm of course is easily implemented using a simple inner product.

Library Codes

You may use libaries and exterrnal routines in your test routines to generate solutions for
comparisons, to generate historgrams, graphs and any other useful summary display mecha-
nisms. Make sure when using library routines as part of your empirical analysis, you carefully
check, e.g., the P , Q, L and U generated by your routines and the library, e.g., MATLAB.

2

These factors are not unique given that pivoting choices are not unique in general. Note that
the textbook has relevant MATLAB coding examples. Programs 1, 2, and 3 in Chapter 3
implement triangular system solving when L and U are given in a 2-dimensional array. Note
that some thought must be given when adapting these to the current assignment since L
and U will be stored together in a single 2-dimensional array resulting from the factorization
algorithm.

Programs 4, 5, and 6 give in-place versions of LU without pivoting. This style is the
form expected for the solution to the assignment, i.e., no matrix operations are implemented
directly in terms of full dense matrices. These routines do not solve the assignment, however,
since they lack the required pivoting capabilities.

Program 9 implements complete pivoting and therefore performs one of the assigned
tasks. However, its style is one that yields clarity and ease of implementation. It is not
acceptable for the solution to the assignment since it is wasteful of computations and
space. Notice how an entire matrix is used to represent the accumulated row and column
permutations. The accumulation of Gauss transforms and permutations is accomplished by
full matrix multiplication, each requiring 2n3 + O(n2) operations despite the fact that the
matrices have structure that we have seen to reduced complexity substantially. A solution
program using this style will not receive credit.

Metrics

There are several important metrics to use when assessing the code’s correctness. These
metrics should be computed in double precision espeicially if you have run your routines in
single precision. Some suggestions follow:

1. When comparing matrices use more than one matrix norm, e.g., the finitely computable
ones, ‖M‖1, ‖M‖∞ and ‖M‖F .

2. When comparing vectors use more than one norm, e.g., ‖v‖1, ‖v‖∞ and ‖v‖2.

3. Check the factorization accuracy

‖PAQ− LU‖
‖A‖

where ‖A‖ ≥ 1, i.e., relative error for large A.

4. If the solution is known by design of the problem check

‖x− x̃‖
‖x‖

where x̃ is the computed solution and ‖x‖ ≥ 1.

3

5. You should check the accuracy via the residual b− Ax̃ and

‖b− Ax̃‖
‖b‖

assuming ‖b‖ ≥ 1 for all attempts to solve a system, i.e., whether or not you know the
true solution.

6. You should compute the growth factor

γε =
‖ |Lε||Uε| ‖
‖A‖

where LεUε = PAQ is the computed factorization of PAQ using the selected pivoting
strategy.

7. If you have access to a standard library you may also use the results of its LU fac-
torization algorithms. However, as noted above care must be taken since details of
pivoting strategies may yield differences in the factors and permutations. The library
routines are very useful when you generate a system by choosing A and b and need a
reliable way of generating x to compare with your computed solution.

Generation of Test Problems

A key consideration in this assignment is the generation of test problems. Some suggestions
follow:

1. Generate L and U so they are nonsingular unit lower triangular and upper triangular
matrices respectively. Evaluate their product as A. This is useful for both small and
large values of n. For small values you can also constrain L and U to have integer
values so A will have integer values. Take care with the magnitude of the elements of
L and U . Nicely conditioned problems tend to be specified by off-diagonal elements
in L smaller than 1 in magnitude and diagonal elements in U that are not too small
compared to off-diagonal elements in U .

2. Remember even if A is generated from L and U when you run your routine with partial
or complete pivoting nontrivial permutation matrices P and/or Q may result and you
may return L̃ and Ũ such that PAQ = L̃Ũ .

3. Randomly generated matrices tend to be nonsingular and reasonably conditioned. You
can make sure any matrix is nonsingular by adding to the diagonal elements until the
matrix is diagonally dominant by rows, columns or both.1 This guarantees success of

1A matrix is strictly diagonally dominant by rows (columns) if the magnitude of each diagonal element
is strictly larger than the sum of the magnitudes of all off-diagonal elements in the same row (column). A
matrix may of course be diagonally dominant by rows and columns simultaneously, e.g., the identity.

4

the factorization if run without pivoting. As noted above, if you allow pivoting the
routine may so do even for a diagonally dominant matrix depending on the form of
dominance and the pivoting strategy used. It is also useful to note that after generating
such a matrix, Ã, you can apply random permutations PL andQR to generate a new test
matrix A = PLÃQR that will not be diagonally dominant but will still be nonsingular.
Of course, PL and QR are not necessarily the permuations that will be generated by
applying partial or complete pivoting to A.

4. You can generate a symmetric positive definite A from a lower triangular L̃ with
positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular by
definition and factorization will succeed without pivoting. Note that your code will
still produce an LU factorization since your factorization routine is not designed to
exploit symmetry. However, there is a relationship between L, U and L̃. This is
probed in the first set of structured factorization tasks.

5. Matrices with known structures that influence the structure or magnitude pattern of
their factorizations are also useful. This is especially true if the patterns scale in a
known way with n. Recall the example in the notes/homework Probelm 2.8. Consider
what should happen when no pivoting is used, partial pivoting and complete pivoting
for various n values. Also, nonzero patterns such as banded matrices for A should
produce specific nonzero patterns in L and U . Structure is the subject of the first set
of empirical tasks discussed below.

6. Given a matrix one can also generate a vector b based on a chosen solution x. That is
given A choose x and generate b via the matrix vector product Ax.

7. Make sure that the matrices you use to check pivoting actually require some piv-
oting when factored.

8. You should run a range of problem sizes for each algorithm and problem type you
evaluate.

9. Do not simply report the computed solution and/or the factors for a small number of
small systems. Think about how you would report the results of testing each of the
routines with many matrices including those of sizes too large to display for any useful
effect.

5

Empirical Tasks Set 1 : Structure

You are strongly encouraged to think about this set of experiments before Exam 1.
Consider the following structured matrices, predict the structure of their factors and

factorization, and verify them empirically. Your solutions must include an explanation of
your observations and justification for the conclusion that your predictions are correct.

1. Consider a matrix A ∈ Rn×n that is is diagonal with positive elements, i.e., αij =
eTi Aej = 0 for all i 6= j and αii > 0 for 1 ≤ i, j ≤ n. For example, let αii = i or
αii = n− i+ 1

n = 5→ A =

1 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 4 0
0 0 0 0 5

 and A =

5 0 0 0 0
0 4 0 0 0
0 0 3 0 0
0 0 0 2 0
0 0 0 0 1

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , P and Q factors as a function of your choice of structure
in the positive diagonal elements? What is the growth factor for your chosen problems
and the pivoting choices?

2. Consider a matrix A ∈ Rn×n that is is antidiagonal with positive elements, i.e., α1,n >
0, α2,n−1 > 0, . . . , αn−1,2 > 0, αn,1 > 0. For example,

n = 5→ A =

0 0 0 0 1
0 0 0 2 0
0 0 3 0 0
0 4 0 0 0
5 0 0 0 0

 and A =

0 0 0 0 5
0 0 0 4 0
0 0 3 0 0
0 2 0 0 0
1 0 0 0 0

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , P and Q factors as a function of your choice of structure in
the positive antidiagonal elements? What is the growth factor for your chosen problems
and pivoting choices?

3. Consider a matrix A ∈ Rn×n that is is the sum of a diagonal matrix and an antidiagonal
matrix with positive elements, i.e., and X nonzero pattern. Consider factoring with
no pivoting, partial row pivoting and complete pivoting. What can be said about
the L, U , P and Q factors as a function of your choice of structure in the positive
antidiagonal elements? If complete pivoting is there any structure that follows for a
particular choice of pivot elements?

4. Consider a matrix A ∈ Rn×n that is unit lower triangular and the elements in the strict
lower part all have magnitude less than 1, i.e., |λij| < 1 for i > j, λij = 0 for i < j,

6

and λii = 1. Consider factoring with no pivoting, partial row pivoting and complete
pivoting. What can be said about the L, U , P and Q factors? (Note that your code
does not know that A is unit lower triangular and will eliminate the elements below
the diagonal by applying Gause transforms.)

5. Consider a lower triangular matrix A again but this time let the diagonal elements be
positive and not 1 and the elements in the strictly lower triangular part be larger than
1, e.g.,

A =

2 0 0 0 0
3 2 0 0 0
4 3 2 0 0
5 4 0 2 0
6 5 4 3 2

 .

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , P and Q factors?

6. Consider a matrix A ∈ Rn×n that is tridiagonal with all elements on the main diagonal
and the first super and subdiagonals nonzero, i.e., αii 6= 0, αi+1,i 6= 0, and αi,i+1 6= 0.
Of course, these must be such that the matrix is nonsingular.

Suppose A is, additionally, strictly diagonally dominant by rows and columns. Consider
factoring with no pivoting, partial row pivoting and complete pivoting. What can be
said about the L, U , P and Q factors? Suppose A is such that when using partial
pivoting by rows it requires a row interchange on every elimination step. What is
the structure of the factors of L, U and P?

7. Consider a matrix A ∈ Rn×n with

• αij = eTi Aej = −1 when i > j, i.e., all elements strictly below the diagonal are
−1;

• αii = eTi Aei = 1, i.e., all elements on the diagonal are 1;

• αin = eTi Aen = 1, i.e., all elements in the last column of the matrix are 1;

• all other elements are 0

e.g., for n = 4 we have

A =

1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

Consider factoring with no pivoting, partial row pivoting and complete pivoting. What
can be said about the L, U , P and Q factors? What is the growth factor for the different
pivoting choices?

7

8. Suppose A ∈ Rn×n is a symmetric positive definite generated from a lower triangular
L̃ with positive diagonal elements (not necessarily 1) via A = L̃L̃T . A is nonsingular
by definition and factorization will succeed without pivoting. Note that your code will
still produce an LU factorization since your factorization routine is not designed to
exploit symmetry. What is the relationship between L, U and L̃?

Empirical Tasks Set 2 : General Trends

This set requries the generation of a large set of problems grouped and empifically analyzed
by problem size n and, if appropriate the class of matrix problem considered.

For each problem size and class of problem, generate many example problems and evaluate
the various metrics discussed earlier but in particular the relative size of the residuals, the
relative error in the factorization, the growth factor, and, if the true solution is known,
the relative error in the computed solution x̃. You should present your results in a form
appropriate to characterize these metrics over a large data set, i.e., too large to look at each
problem individually. This can be done, for example, by graphs and histograms. The latter
is particularly useful for detecting outliers in the performancesuch as large error or residuals.
These outliers can be discussed in more detail and explained if you wish.

You should also include empirical evidence of the O(n3) complexity giving the appropriate
trend in time required to factor a matrix. It is recommended that this is done with a matrix
that does not require pivoting such as a matrix that is strictly diagonally dominant by row
and column.

8

