Homework 2 Foundations of Computational Math 2 Spring 2021

These study questions relate to the material on the DFT/FFT, the structure of triangular matrices and solving associated linear systems, and the $L U$ factorization.

Problem 2.1

Definitions

Let $F_{n} \in \mathbb{C}^{n \times n}$ be the unitary matrix representing the discrete Fourier transform of length n and so $F_{n}^{H} \in \mathbb{C}^{n \times n}$ is the inverse DFT of length n. For example, for $n=4$

$$
F_{4}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \mu & \mu^{2} & \mu^{3} \\
1 & \mu^{2} & \mu^{4} & \mu^{6} \\
1 & \mu^{3} & \mu^{6} & \mu^{9}
\end{array}\right) \text { and } F_{4}^{H}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
$$

where $\theta=2 \pi / n, \omega=e^{i \theta}$ and $\mu=e^{-i \theta}$.
Let $Z_{n} \in \mathbb{C}^{n \times n}$ be the permutation matrix of order n such that $Z v$ represents the circulant "upshift" of the elements of the vector v, i.e.,

$$
Z_{n}=\left(\begin{array}{lllll}
e_{n} & e_{1} & e_{2} & \ldots & e_{n-1}
\end{array}\right) .
$$

For example, for $n=4$

$$
Z_{4}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Let $C_{n} \in \mathbb{C}^{n \times n}$ be a circulant matrix of order n. The circulant matrix C_{n} has n parameters (either the first row or first column can be viewed as these parameters). It is a Toeplitz matrix (all diagonals are constant) with the additional constraint that each row (column) is a circulant shift of the previous row (column).

For example, for $n=4$ and using the first row as the parameters we have

$$
C_{4}=\left(\begin{array}{llll}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{3} & \alpha_{0} & \alpha_{1} & \alpha_{2} \\
\alpha_{2} & \alpha_{3} & \alpha_{0} & \alpha_{1} \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{0}
\end{array}\right)
$$

Given a polynomial of degree d, a matrix polynomial is defined as follows

$$
\begin{gathered}
P_{d}(\xi)=\delta_{0}+\delta_{1} \xi+\delta_{2} \xi^{2}+\cdots+\delta_{d} \xi^{d} \\
P_{d}(A)=\delta_{0} I+\delta_{1} A+\delta_{2} A^{2}+\cdots+\delta_{d} A^{d} \\
\xi, \in \mathbb{C}, \quad \delta_{i} \in \mathbb{C}, \quad P_{d}(A), A \in \mathbb{C}^{n \times n} .
\end{gathered}
$$

Hint: For the problems below it might be useful to consider a small dimension, e.g., $n=4$ and then generalize the proofs and results to any n.
(2.1.a) Determine a diagonal matrix $\Lambda_{n} \in \mathbb{C}^{n \times n}$ i.e., nonzero elements may only appear on the main diagonal, that satisfies $Z_{n}=F_{n}^{H} \Lambda_{n} F_{n}$. This says that the columns of F_{n}^{H} are the eigenvectors of Z_{n} and the associated eigenvalues are the elements on the diagonal of Λ_{n}.
(2.1.b) Recall, that the set of $n \times n$ matrices is a vector space with dimension n^{2}. Show that the set of $n \times n$ circulant matrices, C_{n}, is a subspace of that vector space with dimension n. Hint: find a basis for the subspace using the results and definitions above.
(2.1.c) Show that any circulant matrix can be written

$$
C_{n}=F_{n}^{H} \Gamma_{n} F_{n}
$$

where $\Gamma_{n} \in \mathbb{C}^{n \times n}$ is a diagonal matrix. This says that the columns of F_{n}^{H} are the eigenvectors of C_{n} and the associated eigenvalues are the elements on the diagonal of Γ_{n}. Your proof should develop a formula for Γ_{n} that allows its diagonal elements to be easily evaluated and understood.
(2.1.d) Describe how you determine if C_{n} is a nonsingular matrix.
(2.1.e) How does this factorization of C_{n} result in a fast method of solving a linear system $C_{n} x=b$, where $x, b \in \mathbb{C}^{n}$. (Here a fast method is one that has complexity less than the $O\left(n^{3}\right)$ computations associated with standard factorization methods.)

Problem 2.2

Let x and y be two infinite sequences, i.e.,

$$
\begin{aligned}
& x=\left\{\ldots \xi_{-4}, \xi_{-3}, \xi_{-2}, \xi_{-1}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \ldots\right\} \\
& y=\left\{\ldots \eta_{-4}, \eta_{-3}, \eta_{-2}, \eta_{-1}, \eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \ldots\right\}
\end{aligned}
$$

The convolution $z=x * y$ is an infinite sequence with elements

$$
\zeta_{k}=\sum_{i=-\infty}^{\infty} \eta_{i} \xi_{i+k}
$$

Note ζ_{k} lines up η_{0} with ξ_{k} and then takes the sum of pairwise products.
Now consider the structured sequences x and y where x is periodic with period n and y is nonzero only in n elements starting at $i=0$. For example, for $n=4$ we have

$$
\begin{aligned}
x= & \left\{\ldots \xi_{-4}, \xi_{-3}, \xi_{-2}, \xi_{-1}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \ldots\right\} \\
= & \left\{\ldots \mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{0}, \mu_{1}, \mu_{2}, \mu_{3}, \mu_{0}, \ldots\right\} \\
y= & \left\{\ldots \eta_{-4}, \eta_{-3}, \eta_{-2}, \eta_{-1}, \eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \ldots\right\} \\
& =\left\{\ldots 0,0,0,0, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, 0, \ldots\right\}
\end{aligned}
$$

(2.2.a) Show that for the structured x and y sequences the convolution $z=x * y$ is also specificed by only n values and identify its struture.
(2.2.b) Determine the complexity in terms of n required to compute the parameters that specify z for the structured x and y sequences and describe an algorithm that achieves this complexity. Hint: Relate the structured x, y, z and the α_{i} 's with a structured matrix.

Problem 2.3

Recall that a unit lower triangular matrix $L \in \mathbb{R}^{n \times n}$ is a lower triangular matrix with diagonal elements $e_{i}^{T} L e_{i}=\lambda_{i i}=1$. An elementary unit lower triangular column form matrix, L_{i}, is an elementary unit lower triangular matrix in which all of the nonzero subdiagonal elements are contained in a single column. For example, for $n=4$

$$
L_{1}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
\lambda_{21} & 1 & 0 & 0 \\
\lambda_{31} & 0 & 1 & 0 \\
\lambda_{41} & 0 & 0 & 1
\end{array}\right) \quad L_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & \lambda_{32} & 1 & 0 \\
0 & \lambda_{42} & 0 & 1
\end{array}\right) \quad L_{3}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & \lambda_{43} & 1
\end{array}\right)
$$

2.3.a. Show that any elementary unit lower triangular column form matrix,$L_{i} \in$ $\mathbb{R}^{n \times n}$, can be written as the identity matrix plus an outer product of two vectors, i.e., $L_{i}=I+v_{i} w_{i}^{T}$ where $v_{i} \in \mathbb{R}^{n}$ and $w_{i} \in \mathbb{R}^{n}$. (This is often called a rank-1 update of a matrix.) Make sure the structure required in v_{i} and w_{i} is clearly stated.
2.3.b. Show that L_{i} has an inverse and it is an elementary unit lower triangular column form matrix.
2.3.c. Consider the matrix vector product $y=L_{i} x$ where $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}^{n}$, and $L_{i} \in \mathbb{R}^{n \times n}$ is an elementary unit lower triangular column form matrix. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.3.d. Suppose $L_{i} \in \mathbb{R}^{n \times n}$ and $L_{j} \in \mathbb{R}^{n \times n}$ are elementary unit lower triangular column form matrices with $1 \leq i<j \leq n-1$. Consider the matrix product $B=L_{i} L_{j}$. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.3.e. Suppose $L_{i} \in \mathbb{R}^{n \times n}$ and $L_{j} \in \mathbb{R}^{n \times n}$ are elementary unit lower triangular column form matrices with $1 \leq j \leq i \leq n-1$. Consider the matrix product $B=L_{i} L_{j}$. Determine an efficient algorithm to compute the product and its computational/storage complexity.
2.3.f. Let $L \in \mathbb{R}^{n \times n}$ be a unit lower triangular matrix. Show that $L=L_{1} L_{2} \cdots L_{n-1}$ where L_{i} is an elementary unit lower triangular column form matrix for $1 \leq i \leq$ $n-1$.
2.3.g. Express the column-oriented algorithm for solving $L x=b$ where L is a unit lower triangular matrix in terms of operations involving unit lower triangular column form matrices.

Problem 2.4

2.4.a

An elementary unit upper triangular column form matrix $U_{i} \in \mathbb{R}^{n \times n}$ is of the form

$$
I+u_{i} e_{i}^{T}
$$

where $u_{i}^{T} e_{j}=0$ for $i \leq j \leq n$. This matrix has 1 on the diagonal and the nonzero elements of u_{i} appear in the i-th column above the diagonal.

For example, if $n=3$ then

$$
\begin{aligned}
U_{3} & =\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)+\left(\begin{array}{c}
\mu_{13} \\
\mu_{23} \\
0
\end{array}\right)\left(\begin{array}{lll}
0 & 0 & 1
\end{array}\right) \\
& =\left(\begin{array}{lll}
1 & 0 & \mu_{13} \\
0 & 1 & \mu_{23} \\
0 & 0 & 1
\end{array}\right)
\end{aligned}
$$

Let $U \in \mathbb{R}^{n \times n}$ be a unit upper triangular matrix. Show that the factorization

$$
U=U_{n} U_{n-1} \cdots U_{2}
$$

where $U_{i}=I+u_{i} e_{i}^{T}$ and the nonzeros of u_{i} are the nonzeros in the i-th column of U above the diagonal, can be formed without any computations.

2.4.b

Now suppose that $U \in \mathbb{R}^{n \times n}$ is a upper triangular with diagonal elements $\mu_{i i}$. Let $S_{i} \in \mathbb{R}^{n \times n}$ be a diagonal matrix with its i-th diagonal element $e_{i}^{T} S_{i} e_{i}=\mu_{i i}$ and all of the other diagonal elements $e_{j}^{T} S_{i} e_{j}=1$ for $i \neq j$.

For example, if $n=3$ then

$$
\begin{aligned}
& S_{1}=\left(\begin{array}{ccc}
\mu_{11} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& S_{2}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \mu_{22} & 0 \\
0 & 0 & 1
\end{array}\right) \\
& S_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \mu_{33}
\end{array}\right)
\end{aligned}
$$

Let $U_{i}=I+u_{i} e_{i}^{T}$ and the nonzeros of u_{i} be the nonzeros in the i-th column of U above the diagonal. (This implies that $U_{1}=I$)

Show that

$$
U=\left(S_{n} U_{n}\right)\left(S_{n-1} U_{n-1}\right) \cdots\left(S_{2} U_{2}\right)\left(S_{1} U_{1}\right)
$$

Note that U may be singular so some $\mu_{i i}$ may be 0 . Therefore, a proof based on expressing the algorithm for the solution of $U x=b$ in terms of U_{i}^{-1} and S_{i}^{-1}, as is done in the next part of the question, is not applicable.

2.4.c

From the factorization of the previous part of the problem, derive an algorithm to solve $U x=b$ given U is an $n \times n$ nonsingular upper triangular matrix. Describe the basic computational primitives required.

Problem 2.5

Recall that any unit lower triangular matrix $L \in \mathbb{R}^{n \times n}$ can be written in factored form as

$$
\begin{equation*}
L=M_{1} M_{2} \cdots M_{n-1} \tag{1}
\end{equation*}
$$

where $M_{i}=I+l_{i} e_{i}^{T}$ is an elementary unit lower triangular matrix (column form). Given the ordering of the elementary matrices, this factorization did not require any computation.

Consider a simpler elementary unit lower triangular matrix (element form) that differs from the identity in one off-diagonal element in the strict lower triangular part, i.e.,

$$
E_{i j}=I+\lambda_{i j} e_{i} e_{j}^{T}
$$

where $i \neq j$.
2.5.a. Show that computing the product of two element form elementary matrices is simply superposition of the elements into the product given by

$$
E_{i j} E_{r s}=I+\lambda_{i j} e_{i} e_{j}^{T}+\lambda_{r s} e_{r} e_{s}^{T}
$$

whenever $j \neq r$.
2.5.b. Show that if $j \neq r$ and $i \neq s$ then computing $E_{i j} E_{r s}$ with requires no computation and

$$
E_{i j} E_{r s}=E_{r s} E_{i j}
$$

i.e., the matrices commute.
2.5.c. Write a column form elementary matrix M_{i} in terms of element form elementary matrices. Does the order of the $E_{j i}$ matter in this product?
2.5.d. Show how it follows that the factorization of (1) is easily expressed in terms of element form elementary matrices.
2.5.e. Show that the expression from part (2.5.d) can be rearranged to form $L=$ $R_{2} \ldots R_{n}$ where $R_{i}=I+e_{i} r_{i}^{T}$ is an elementary unit lower triangular matrix in row form.

Problem 2.6

Consider the matrix-vector product $x=L b$ where L is an $n \times n$ unit lower triangular matrix with all of its nonzero elements equal to 1 . For example, if $n=4$ then

$$
\begin{gathered}
x=L b \\
\left(\begin{array}{l}
\xi_{1} \\
\xi_{2} \\
\xi_{3} \\
\xi_{4}
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)\left(\begin{array}{l}
\beta_{1} \\
\beta_{2} \\
\beta_{3} \\
\beta_{4}
\end{array}\right)
\end{gathered}
$$

The vector x is called the scan of b. Show that, given the vector b, the vector x can be computed in $O(n)$ computations rather than the $O\left(n^{2}\right)$ typically required by a matrix vector product. Express your solution in terms of matrices and vectors.

Problem 2.7

Suppose that $A \in \mathbb{R}^{n \times n}$ is nonsingular and that $A=L U$ is its $L U$ factorization. Give an algorithm that can compute, $e_{i}^{T} A^{-1} e_{j}$, i.e., the (i, j) element of A^{-1} in approximately $(n-j)^{2}+(n-i)^{2}$ operations.

Problem 2.8

Consider an $n \times n$ real matrix where

- $\alpha_{i j}=e_{i}^{T} A e_{j}=-1$ when $i>j$, i.e., all elements strictly below the diagonal are -1 ;
- $\alpha_{i i}=e_{i}^{T} A e_{i}=1$, i.e., all elements on the diagonal are 1 ;
- $\alpha_{i n}=e_{i}^{T} A e_{n}=1$, i.e., all elements in the last column of the matrix are 1 ;
- all other elements are 0

For $n=4$ we have

$$
A=\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
-1 & 1 & 0 & 1 \\
-1 & -1 & 1 & 1 \\
-1 & -1 & -1 & 1
\end{array}\right)
$$

2.8.a. Compute the factorization $A=L U$ for $n=4$ where L is unit lower triangular and U is upper triangular.
2.8.b. What is the pattern of element values in L and U for any n ?

Problem 2.9

Let $A \in \mathbb{R}^{n \times n}$ and its inverse be partitioned

$$
\begin{gathered}
A=\left(\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right) \\
A^{-1}=\left(\begin{array}{ll}
\tilde{A}_{11} & \tilde{A}_{12} \\
\tilde{A}_{21} & \tilde{A}_{22}
\end{array}\right)
\end{gathered}
$$

where $A_{11} \in \mathbb{R}^{k \times k}$ and $\tilde{A}_{11} \in \mathbb{R}^{k \times k}$.
2.9.a. Show that if, $S=A_{22}-A_{21} A_{11}^{-1} A_{12}$, the Schur complement of A with respect to A_{11} exists then A is nonsingular if and only if S is nonsingular.
2.9.b. Show that $S^{-1}=\tilde{A}_{22}$.

Problem 2.10

Suppose you have the LU factorization of an $i \times i$ matrix $A_{i}=L_{i} U_{i}$ and suppose the matrix A_{i+1} is an $i+1 \times i+1$ matrix formed by adding a row and column to A_{i}, i.e.,

$$
A_{i+1}=\left(\begin{array}{cc}
A_{i} & a_{i+1} \\
b_{i+1}^{T} & \alpha_{i+1, i+1}
\end{array}\right)
$$

where a_{i+1} and b_{i+1} are vectors in \mathbb{R}^{i} and $\alpha_{i+1, i+1}$ is a scalar.
2.10.a. Derive an algorithm that, given L_{i}, U_{i} and the new row and column information, computes the LU factorization of A_{i+1} and identify the conditions under which the step will fail.
2.10.b. What computational primitives are involved?
2.10.c. Show how this basic step could be used to form an algorithm that computes the LU factorization of an $n \times n$ matrix A.

Problem 2.11

Suppose $A \in \mathbb{R}^{n \times n}$ is a nonsymmetric nonsingular diagonally dominant matrix with the following nonzero pattern (shown for $n=6$)

$$
\left(\begin{array}{llllll}
* & * & * & * & * & * \\
* & * & 0 & 0 & 0 & 0 \\
* & 0 & * & 0 & 0 & 0 \\
* & 0 & 0 & * & 0 & 0 \\
* & 0 & 0 & 0 & * & 0 \\
* & 0 & 0 & 0 & 0 & *
\end{array}\right)
$$

It is known that a diagonally dominant (row or column dominant) matrix has an $L U$ factorization and that pivoting is not required for numerical reliability.
2.11.a. Describe an algorithm that solves $A x=b$ as efficiently as possible.
2.11.b. Given that the number of operations in the algorithm is of the form $C n^{k}+$ $O\left(n^{k-1}\right)$, where C is a constant independent of n and $k>0$, what are C and k ?

Problem 2.12

Suppose you are computing a factorization of the $A \in \mathbb{C}^{n \times n}$ with partial pivoting and at the beginning of step i of the algorithm you encounter the the transformed matrix with the form

$$
T A=A^{(i-1)}=\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & A_{i-1}
\end{array}\right)
$$

where $U_{11} \in \mathbb{R}^{i-1 \times i-1}$ and nonsingular, and $U_{12} \in \mathbb{R}^{i-1 \times n-i+1}$ contain the first $i-1$ rows of U. Show that if the first column of A_{i-1} is all 0 then A must be a singular matrix.

