Homework 3 Foundations of Computational Math 2 Spring 2021

These study questions relate to the material optimization-based iterative methods for linear systems defined by symmetric positive definite matrices.

Problem 3.1

Let x and y be two vectors in \mathbb{R}^n .

3.1.a. Show that given x and y the value of $||x - \alpha y||_2$ is minimized when

$$\alpha_{min} = \frac{x^T y}{y^T y}$$

3.1.b. Show that $x = y\alpha_{min} + z$ where $y^T z = 0$, i.e., x is easily written as the sum of two orthogonal vectors with specified minimization properties.

Problem 3.2

Recall that an elementary reflector has the form $Q = I + \alpha z z^T \in \mathbb{R}^{n \times n}$ with $||z||_2 \neq 0$. **3.2.a.** Show that Q is orthogonal if and only if

$$\alpha = \frac{-2}{z^T z}$$
 or $\alpha = 0$

3.2.b. Given $v \in \mathbb{R}^n$, let $\gamma = \pm ||v||$ and $z = v + \gamma e_1$. Assuming that $z \neq v$ show that

$$\frac{z^T z}{z^T v} = 2$$

3.2.c. Using the definitions and results above show that $Qv = -\gamma e_1$

Problem 3.3

Let $x \in \mathbb{R}^n$ be a known vector with components $\xi_i = e_i^T x$, $1 \leq i \leq n$ and consider the computation of

$$\nu = \xi_1 - \|x\|_2$$

where $||x||_2^2 = \sum_{i=1}^n \xi_i^2$. (Recall this is a key computation in the production of a Householder reflector in least squares problems.) When $\xi_1 > 0$ and $\xi_1 \approx ||x||_2$ the cancellation in the subtraction may result in a significant loss of accuracy.

Find an alternate expression for ν that does not suffer from cancellation when $\xi_1 > 0$ and $\xi_1 \approx ||x||_2$. (**Hint:** Consider a difference of squares.)

Problem 3.4

Consider a Householder reflector, H, in \mathbb{R}^2 . Show that

$$H = \begin{pmatrix} -\cos(\phi) & -\sin(\phi) \\ -\sin(\phi) & \cos(\phi) \end{pmatrix}$$

where ϕ is some angle.

Problem 3.5

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix, $C \in \mathbb{R}^{n \times n}$ be a symmetric nonsingular matrix, and $b \in \mathbb{R}^n$ be a vector. The matrix $M = C^2$ is therefore symmetric positive definite. Also, let $\tilde{A} = C^{-1}AC^{-1}$ and $\tilde{b} = C^{-1}b$.

The preconditioned Steepest Descent algorithm to solve Ax = b is:

A, M are symmetric positive definite x_0 arbitrary; $r_0 = b - Ax_0$; solve $Mz_0 = r_0$

do $k = 0, 1, \ldots$ until convergence

$$w_{k} = Az_{k}$$

$$\alpha_{k} = \frac{z_{k}^{T}r_{k}}{z_{k}^{T}w_{k}}$$

$$x_{k+1} \leftarrow x_{k} + z_{k}\alpha_{k}$$

$$r_{k+1} \leftarrow r_{k} - w_{k}\alpha_{k}$$
solve $Mz_{k+1} = r_{k+1}$

end

The Steepest Descent algorithm to solve $\tilde{A}\tilde{x} = \tilde{b}$ is:

 \tilde{A} is symmetric positive definite \tilde{x}_0 arbitrary; $\tilde{r}_0 = \tilde{b} - \tilde{A}\tilde{x}_0$; $\tilde{v}_0 = \tilde{A}\tilde{r}_0$

do $k = 0, 1, \ldots$ until convergence

$$\begin{split} \tilde{\alpha}_k &= \frac{\tilde{r}_k^T \tilde{r}_k}{\tilde{r}_k^T \tilde{v}_k} \\ \tilde{x}_{k+1} &\leftarrow \tilde{x}_k + \tilde{r}_k \tilde{\alpha}_k \\ \tilde{r}_{k+1} &\leftarrow \tilde{r}_k - \tilde{v}_k \tilde{\alpha}_k \\ \tilde{v}_{k+1} &\leftarrow \tilde{A} \tilde{r}_{k+1} \end{split}$$

end

Show that given the appropriate consistency between initial guesses the preconditioned steepest descent recurrences to solve Ax = b can be derived from the steepest descent recurrences to solve $\tilde{A}\tilde{x} = \tilde{b}$.

Problem 3.6

Consider solving a linear system Ax = b where A is symmetric positive definite using steepest descent.

3.6.a

Suppose you use steepest descent without preconditioning. Show that the residuals, r_k and r_{k+1} are orthogonal for all k.

3.6.b

Suppose you use steepest descent with preconditioning. Are the residuals, r_k and r_{k+1} orthogonal for all k? If not is there any vector from step k that is guaranteed to be orthogonal to r_{k+1} ?

Problem 3.7

Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix and $f(x) = 0.5x^T A x - x^T b$ with $b \in \mathbb{R}^n$ and $b \in \mathcal{R}(A)$. Show that Steepest Descent will converge to an unconstrained minimizer of f(x) for any x_0 such that $Ax_0 \neq 0$.

Hint: Find a smaller, symmetric positive definite linear system and use the fact that steepest descent converges on a symmetric positive definite system.

Problem 3.8

Let $A = Q\Lambda Q^T$ be a symmetric positive definite matrix where Q is an orthogonal matrix and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues of A. Define

$$\tilde{x} = Q^T x$$
 and $\tilde{b} = Q^T b$
 $Ax = b$ and $\Lambda \tilde{x} = \tilde{b}$

Given x_0 and \tilde{x}_0 , define the sequence x_k as the sequence of vectors produced by applying CG to solve Ax = b and the sequence \tilde{x}_k as the sequence of vectors produced by applying CG to solve $\Lambda \tilde{x} = \tilde{b}$.

Let $e_k = x_k - x$ and $\tilde{e}_k = \tilde{x}_k - \tilde{x}$. Show that if $\tilde{x}_0 = Q^T x_0$ then $\|e_k\|_2 = \|\tilde{e}_k\|_2, \quad k > 0$