Homework 3 Foundations of Computational Math 2 Spring 2021

These study questions relate to the material optimization-based iterative methods for linear systems defined by symmetric positive definite matrices.

Problem 3.1

Let x and y be two vectors in \mathbb{R}^{n}.
3.1.a. Show that given x and y the value of $\|x-\alpha y\|_{2}$ is minimized when

$$
\alpha_{\min }=\frac{x^{T} y}{y^{T} y}
$$

3.1.b. Show that $x=y \alpha_{\text {min }}+z$ where $y^{T} z=0$, i.e., x is easily written as the sum of two orthogonal vectors with specifed minimization properties.

Problem 3.2

Recall that an elementary reflector has the form $Q=I+\alpha z z^{T} \in \mathbb{R}^{n \times n}$ with $\|z\|_{2} \neq 0$.
3.2.a. Show that Q is orthogonal if and only if

$$
\alpha=\frac{-2}{z^{T} z} \text { or } \alpha=0
$$

3.2.b. Given $v \in \mathbb{R}^{n}$, let $\gamma= \pm\|v\|$ and $z=v+\gamma e_{1}$. Assuming that $z \neq v$ show that

$$
\frac{z^{T} z}{z^{T} v}=2
$$

3.2.c. Using the definitions and results above show that $Q v=-\gamma e_{1}$

Problem 3.3

Let $x \in \mathbb{R}^{n}$ be a known vector with components $\xi_{i}=e_{i}^{T} x, 1 \leq i \leq n$ and consider the computation of

$$
\nu=\xi_{1}-\|x\|_{2}
$$

where $\|x\|_{2}^{2}=\sum_{i=1}^{n} \xi_{i}^{2}$. (Recall this is a key computation in the production of a Householder reflector in least squares problems.) When $\xi_{1}>0$ and $\xi_{1} \approx\|x\|_{2}$ the cancellation in the subtraction may result in a significant loss of accuracy.

Find an alternate expression for ν that does not suffer from cancellation when $\xi_{1}>0$ and $\xi_{1} \approx\|x\|_{2}$. (Hint: Consider a difference of squares.)

Problem 3.4

Consider a Householder reflector, H, in \mathbb{R}^{2}. Show that

$$
H=\left(\begin{array}{cc}
-\cos (\phi) & -\sin (\phi) \\
-\sin (\phi) & \cos (\phi)
\end{array}\right)
$$

where ϕ is some angle.

Problem 3.5

Let $A \in \mathbb{R}^{n \times n}$ be a symmetric positive definite matrix, $C \in \mathbb{R}^{n \times n}$ be a symmetric nonsingular matrix, and $b \in \mathbb{R}^{n}$ be a vector. The matrix $M=C^{2}$ is therefore symmetric positive definite. Also, let $\tilde{A}=C^{-1} A C^{-1}$ and $\tilde{b}=C^{-1} b$.

The preconditioned Steepest Descent algorithm to solve $A x=b$ is:
A, M are symmetric positive definite
x_{0} arbitrary; $r_{0}=b-A x_{0}$; solve $M z_{0}=r_{0}$
do $k=0,1, \ldots$ until convergence

$$
\begin{aligned}
& w_{k}=A z_{k} \\
& \alpha_{k}=\frac{z_{k}^{T} r_{k}}{z_{k}^{T} w_{k}} \\
& x_{k+1} \leftarrow x_{k}+z_{k} \alpha_{k} \\
& r_{k+1} \leftarrow r_{k}-w_{k} \alpha_{k} \\
& \text { solve } M z_{k+1}=r_{k+1}
\end{aligned}
$$

end
The Steepest Descent algorithm to solve $\tilde{A} \tilde{x}=\tilde{b}$ is:
\tilde{A} is symmetric positive definite
\tilde{x}_{0} arbitrary; $\tilde{r}_{0}=\tilde{b}-\tilde{A} \tilde{x}_{0} ; \tilde{v}_{0}=\tilde{A} \tilde{r}_{0}$
do $k=0,1, \ldots$ until convergence

$$
\begin{aligned}
& \tilde{\alpha}_{k}=\frac{\tilde{r}_{k}^{T} \tilde{r}_{k}}{\tilde{r}_{k}^{T} \tilde{v}_{k}} \\
& \tilde{x}_{k+1} \leftarrow \tilde{x}_{k}+\tilde{r}_{k} \tilde{\alpha}_{k} \\
& \tilde{r}_{k+1} \leftarrow \tilde{r}_{k}-\tilde{v}_{k} \tilde{\alpha}_{k} \\
& \tilde{v}_{k+1} \leftarrow \tilde{A} \tilde{r}_{k+1}
\end{aligned}
$$

end

Show that given the appropriate consistency between initial guesses the preconditioned steepest descent recurrences to solve $A x=b$ can be derived from the steepest descent recurrences to solve $\tilde{A} \tilde{x}=\tilde{b}$.

Problem 3.6

Consider solving a linear system $A x=b$ where A is symmetric positive definite using steepest descent.

3.6.a

Suppose you use steepest descent without preconditioning. Show that the residuals, r_{k} and r_{k+1} are orthogonal for all k.

3.6.b

Suppose you use steepest descent with preconditioning. Are the residuals, r_{k} and r_{k+1} orthogonal for all k ? If not is there any vector from step k that is guaranteed to be orthogonal to r_{k+1} ?

Problem 3.7

Suppose $A \in \mathbb{R}^{n \times n}$ is a symmetric positive semidefinite matrix and $f(x)=0.5 x^{T} A x-$ $x^{T} b$ with $b \in \mathbb{R}^{n}$ and $b \in \mathcal{R}(A)$. Show that Steepest Descent will converge to an unconstrained minimizer of $f(x)$ for any x_{0} such that $A x_{0} \neq 0$.

Hint: Find a smaller, symmetric positive definite linear system and use the fact that steepest descent converges on a symmetric positive definite system.

Problem 3.8

Let $A=Q \Lambda Q^{T}$ be a symmetric positive definite matrix where Q is an orthogonal matrix and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues of A. Define

$$
\begin{array}{rll}
\tilde{x}=Q^{T} x & \text { and } & \tilde{b}=Q^{T} b \\
A x=b & \text { and } & \Lambda \tilde{x}=\tilde{b}
\end{array}
$$

Given x_{0} and \tilde{x}_{0}, define the sequence x_{k} as the sequence of vectors produced by applying CG to solve $A x=b$ and the sequence \tilde{x}_{k} as the sequence of vectors produced by applying CG to solve $\Lambda \tilde{x}=\tilde{b}$.

Let $e_{k}=x_{k}-x$ and $\tilde{e}_{k}=\tilde{x}_{k}-\tilde{x}$. Show that if $\tilde{x}_{0}=Q^{T} x_{0}$ then

$$
\left\|e_{k}\right\|_{2}=\left\|\tilde{e}_{k}\right\|_{2}, \quad k>0
$$

