Homework 1 Foundations of Computational Math 2 Spring 2025

The solutions are due on Canvas by 11:59 PM on February 7, 2025

Problem 1.1 (20 points)

Consider the floating point system

$$\mathcal{F}(\beta, t, L, U) = \mathcal{F}(12, 10, -15, 16).$$

- **1.1.a.** How many bits does it take to store a floating point number in this floating point system?
- **1.1.b.** What is the minimum positive normalized floating point number in the system?
- **1.1.c.** What is the maximum positive normalized floating point number in the system?
- **1.1.d**. Encode the decimal number 157 in the system. Use the bias (excess) encoding for the exponent.
- **1.1.e.** Give and example of a subnormal (denormalized) number in the system.

Problem 1.2 (20 points)

Define the function f(x) = x + 1 on the domain x < -1. Let $x_0 \in \mathbb{R}$, $x_0 < -1$, and $x_1 = x_0(1+\delta)$ where $\delta \in \mathbb{R}$ with $|\delta| < 1$.

- (1.2.a) Determine the relative error between $f(x_1)$ and $f(x_0)$, and the relative condition number $\kappa_{rel}(x_0)$.
- (1.2.b) Suppose $|\delta| < 10^{-7}$. Determine the region of values for x_0 for which the relative error between $f(x_1)$ and $f(x_0)$ is no more than 10^{-4} .

Problem 1.3 (35 points)

1.3.a

The backward error analysis of the sum of n floating point numbers presented in the notes can be generalized to yield the following result.

Lemma. Let $x \in \mathbb{R}^n$ and $y \in \mathbb{R}^n$ with components, ξ_i and η_i , $1 \leq i \leq n$, respectively, that are floating point numbers. Computing the inner product $x^T y$ on a standard floating point arithmetic machine yields

$$fl(x^{T}y) = (x + \Delta x)^{T}y = x^{T}(y + \Delta y)$$
$$\Delta x \in \mathbb{R}^{n} \text{ and } \Delta y \in \mathbb{R}^{n}$$
$$|\Delta x| \leq \omega_{n}|x| \text{ and } |\Delta y| \leq \omega_{n}|y|$$
$$\omega_{n} = \frac{nu}{1 - nu}$$

(Inequalities using absolute values of matrices and vectors should be interpreted componentwise.)

You need not prove this lemma but use it to show that the matrix vector product y = Axwith $A \in \mathbb{R}^{m \times n}$ can be computed on a standard floating point arithmetic machine in such a way so as to satisfy

$$\hat{y} = (A + \Delta A)x$$
$$|\Delta A| \le \omega_n |A|$$

1.3.b

Suppose $A \in \mathbb{R}^{n \times n}$ is a banded matrix, i.e., a matrix with all of its nonzero elements on the main diagonal, i.e., $\alpha_{i,i} \neq 0$, the first superdiagonal, i.e., $\alpha_{i,i+1} \neq 0$, through the kth superdiagonal, i.e., $\alpha_{i,i+k} \neq 0$, the first subdiagonal, i.e., $\alpha_{i-1,i} \neq 0$, through the k-th subdiagonal, i.e., $\alpha_{i,i+k} \neq 0$. All elements not on these diagonals are 0. For k = 4 and n = 15 the pattern is

Does the matrix-vector product y = Ax when A is banded have a backward error and backward stability result similar to that derived for dense A, i.e.,

$$\hat{y} = (A + \Delta A)x$$
$$|\Delta A| \le \omega_n |A|,$$

but in this case with ΔA being a banded matrix with the same nonzero/zero structure as A? If so derive it and comment on the differences with the result above. If not prove why it cannot.