
Graded Homework 3 Foundations of Computational Math

2 Spring 2025

The solutions are due by 11:59PM on Friday March 21, 2025
The due date is 1 week after Spring Break and therefore includes 2 weeks of course in

session. You are encouraged, but not required, to get the written questions and a portion of
the coding done before Spring Break. For example getting the piecewise polynomial code and
the first spline code debugged and compared to each other and the global polynomial based
on Chebyshev points that you have from the previous programming assignment completed
before Spring Break is recommended.

Written Exercises

Problem 3.1

Assuming that the nodes are uniformly spaced, we have derived the form of the cubic B-
spline B3,i(t) and determined its values and the values of B′3,i(t) and B′′3,i(t) at the nodes
ti−2, ti−1, ti−1, ti, ti+1, and ti+2. We also derived B1,i(t) and saw that it was the familiar hat
function.

3.1.a. Derive the formula of the quadratic B-spline B2,i(t) and determine its values
and the values of B′2,i(t) and B′′2,i(t) at the appropriate nodes.

3.1.b. Derive the formula of the quintic B-spline B5,i(t) and determine its values and
the values of B′5,i(t) and B′′5,i(t) at the appropriate nodes.

Problem 3.2

Consider an interpolatory quadratic spline, s(x), that satisfies the following interpolation
conditions and single boundary condition:

s(xi) = f(xi) = fi, 0 ≤ i ≤ n

s′(x0) = f ′(x0) = f ′0

where the xi are distinct.

3.2.a. Derive a linear system of equations that yields the values

s′(xi) = s′i 0 ≤ i ≤ n

that are used as parameters to define the quadratic spline s(x).
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3.2.b. Identify important structure in the linear system and show that it defines a
unique quadratic spline.

3.2.c. Use the structure of the system to show that if f(x) is a quadratic polynomial
then s(x) = f(x).

Problem 3.3

For this problem, consider f(x) = 2− x2 on [−1, 1].

3.3.a. Determine the constant minimax approximation, p0(x).

3.3.b. Determine the linear minimax approximation, p1(x).

3.3.c. Derive the linear near-minimax polynomial approximation, c1(x).

3.3.d. Explain the results.
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Programming Exercise

Codes

1. Interpolating polynomial: The routine is for a single interpolating polynomial,
pn(x), on [a, b] that uses the Barycentric form 1 and Chebyshev points of the first
or second kind and therefore converges. Note you must map the Chebyshev points
fromthere values in [−1.1] to [a, b] to get the mesh points xj with which the interpolating
polynomial is generated. You should have this code from the previous programming
assignment.

2. Piecewise interpolating polynomial: The routine for the piecewise interpolating
polynomial gd(x), on [a, b] where the degree s should support chosing d to be 1 or 2
or 3 and and interpolating the function values on each subinterval [ai, bi] at the end
points and the appropriate number and placement of additional interpolating points in
(ai, bi). You should also support the option of a piecewise cubic Hermite interpolating
polynomial where on each subinterval [ai, bi] the local cubic Hermite polynomial inter-
polates f(ai), f(bi), f

′(ai), f ′(bi). Your code should support a uniform mesh and the
use of Chebyshev points of the second kind within each subinterval [ai, bi]. It is sug-
gested that using a local Newton divided difference form is the way to support these
requirements since it easily incorporates the Hermite cubic with the other standard
interpolants on [ai, bi].

3. Interpolatory cubic spline: In addition to the mesh points and the function f(x)
this code must accept as input the specification of two boundary conditions to be
applied in the formation of s(x). You must implement two spline codes. Spline Code
1 may use either the s′i parameterization or the s′′i parameterization. Spline Code 2
must the parameterization in terms of the cubic B-spline basis.

4. Implement a code that evaluates the spline s(x) and piecewise polynomial gd(x) pro-
duced by your codes. You should already have a code that evaluates the interpolating
polynoial pn(x).

5. Implement the supporting code required to empirically validate the correct functioning
of your codes and the tasks below.

Code Comments:

1. Your codes should be able to run double precision (assumed to be IEEE standard FP).

2. Your codes must be efficient in time and space and make sure you discuss these aspects
of your implementations. Include a discussion of how you represent and evaluate the
local polynomials defining gd(x) in your piecewise polynomial code.

3. You may use the parameterization of s(x) in terms of the s′′i or s′i for Spline Code 1.
This code must must accept data on a nonuniform mesh.
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4. Spline Code 2 based on the B-spline basis may be restricted to a uniform mesh if you
wish but you may implement the nonuniform mesh at your discretion.

5. Both spline codes should support both of the basic Hermite boundary conditions.
That is, either the pair of values (s′′(x0), s

′′(xn)) or the pair of values (s′(x0), s
′(xn))

are specified. Depending on your choice of parameterization one of these cases may
require the addition of two extra equations needed to specify boundary conditions
in terms of the appropriate s′′i or s′i parameters. Your solution should include the
derivation of these equations. For the Spline Code 2 based on the B-spline basis you
should also explain how you handle the two types of boundary conditions.

Tasks

Task 1

Empirically validate the correct functioning of your code.

• You must design experiments and describe the outcomes that provide evidence that
your code is working. Evidence must also be given that you code works correctly for
each of the required boundary conditions.

• This should include running your code to approximate carefully selected functions g(x)
for which the results are known. For example, if g(x) is any polynomial of degree d ≤ 3,
the spline, s(x), should reproduce its value at any x. Similarly, if g(x) is a piecewise
cubic with intervals defined by the same mesh as s(x) then s(x) should match g(x) for
any x between x0 and xn.

• Compare the functioning of the two spline codes to each other and, when appropriate
for the test function, to the piecewise polynomial code. Be careful when comparing the
different functions. For example make sure the subintervals [ai, bi] are the same for any
piecewise polynomial and spline. The rest of the interpolating points can be defined in-
side those subintervals depending on the degree of the piecewise polynomial. Compare
accuracy for the global interpolating polynomial, the splines and piecewise polynomial
and compare the different levels of complexity (operations and space) required to reach
a particular level of error.

• Once this has been done for specific functions, randomly generating similar functions
and summarizing the results can produce good evidence of correct functioning.

• You can, but are not required to so do, also check you spline results against other
libraries. Make sure however that you know exactly what the other library
is choosing for boundary conditions etc. You must compare splines that
are known to be the same in exact arithmetic. Care should also be taken with
respect to what you consider the “answer” for the other library’s results. If you print

4



them and then copy to your code you have modified the results so that they print in
ASCII format. This is not the answer’s full single or double precision representation.
The most reliable way is to output to a file raw binary IEEE single or double precision
results and read them into your code using the appropriate format in the high-level
language of your code. This is a technique of input/output that you should develop
skill in using. You are not required to use it here but make sure you compare an
appropriately precise output value if you use file output to compare your results to a
library code.

Task 2

Suppose you have functions y(t), f(t), and D(t) related as follows:

D(t) = e−ty(t) = e−
∫ t
0 f(τ)dτ

∴ f(t) = y(t) + ty′(t)

As a result, given any of one of the functions, D(t), f(t) or y(t) we can recover the other
two. Suppose, in practice y(t) is available as data in the form of discrete values of (ti, yi),
for 0 ≤ i ≤ n rather than as a continuous function. Specifically, consider the following data
(ti, yi):

ti 0.5 1.0 2.0 4.0 5.0 10.0 15.0 20.0
y(ti) 0.04 0.05 0.0682 0.0801 0.0940 0.0981 0.0912 0.0857

Note the mesh in t is nonuniform.
Use a natural boundary condition interpolatory cubic spline, s(t), based on the data

(ti, yi) to estimate y(t), f(t) and D(t). Tabulate your estimates from t1 = 0.5 to t40 with
increment ∆t = 0.5.

The piecewise polynomial gd(x) from your code is not continuously differentiable in gen-
eral. Investigate the use of gd(x) rather than a cubic spline for this Task. If it is possible,
what must you do differently to generate estimates for y(t), f(t) and D(t) and how does the
choice of degree affect your results compared to a cubic spline?
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