
Graded Homework 4 Foundations of Computational

Math 2 Spring 2025

Due date: 11:59PM on Monday, April 14, 2025

Written Exercises

There are no written exercises in this assignment.

Programming Exercise

In this assignment you will implement numerical quadrature methods and compare
their observed behavior to theoretical predicitons.

The Codes: Consider the composite quadrature methods based on the fol-
lowing basic methods:

• The closed Newton-Cotes method that uses one point (the left endpoint), i.e.,
the Left Rectangle Rule.

• The closed Newton-Cotes method that uses two points (the two endpoints),
i.e., the Trapezoidal Rule.

• The closed Newton-Cotes method that uses three points (the two endpoints
and the midpoint), i.e., Simpson’s First Rule.

• The open Newton-Cotes method that uses one point (the midpoint), i.e., the
Midpoint Rule.

• The open Newton-Cotes method that uses two points (the points at 1/3 and
2/3 across the interval of integration).

• The two-point Gauss-Legendre method.

All of these basic methods are defined and discussed to various levels of detail. The
composite forms of the Midpoint Rule, Trapezoidal Rule and Simpson’s First Rule
are derived along with the composite error in the notes. Error expressions for the
basic version (not composite) of all are in the notes.

1



1.i. For each of these basic methods implement a composite quadrature method
that uses a set of uniform subintervals of the interval of integration [a, b].
Your code should be as efficient as possible in terms of computational
complexity, i.e., the number of evaluations of the function f(x), and stor-
age.

1.ii. For the Composite Midpoint Rule and the Composite Trapezoidal Rule
implement an efficient adaptive step refinement code that uses a set of
uniform subintervals of the interval of integration [a, b] and global uniform
subinterval size refinement with a factor α = 1/k. For the Composite
Trapezoidal Rule use α = 1/2. For the Composite Midpoint Rule use
α = 1/3. Your implementations should be as efficient as possible
in terms of function evaluations. If possible, implement these
two methods and choices of α with complete reuse.

Some Integrals: The integrals used to empirically evaluate your codes should
include

∫ 3

0

exdx = e3 − 1 (1)

∫ π
3

0

esin(2x) cos(2x)dx =
1

2

(
−1 + e

√
3

2

)
(2)

∫ 1

−2

tanh(x)dx = ln

(
cosh(1)

cosh(2)

)
(3)

∫ 3.5

0

x cos(2πx)dx = − 1

2π2
(4)

∫ 2.5

0.1

(
x+

1

x

)
dx =

2.52 − 0.12

2
+ ln(2.5/0.1) (5)

Note all of these have symbolic solutions that may be used to assess true error,
predict expected behavior and analyze observed behavior. You are encouraged to

2



use additional functions for validation and to demonstrate any trends you consider
important.

The Tasks:

2.i. Derive the error expression for the Composite Left Rectangle Rule, the
Composite Open Newton-Cotes two-point Method, and the Composite
Gauss-Legendre two-point Method.

2.ii. Provide systematic evidence of the correct execution of your codes. This
should use more problems than those listed above.

2.iii. Describe the implmentation and efficiency considerations of all of your
imoplementations. Make sure that you include in the description of your
codes sufficient information how your code is designed to exploit the
efficient reuse of function evaluations to avoid redundant work given the
α values required above. For example, how did it change the organization
of the computation or data structure when efficient interval refinement is
used or not used.

2.iv. For each integral in the problems list, estimate the subinterval size needed
to satisfy various error demands using the error expressions for the com-
posite quadrature methods. The relative error requires knowledge of the
size of the integral. You may use your knowledge of the exact answer for
each to make these predictions.

2.v. Run the codes for various error requirements, summarize appropriately
and concisely your observations, compare the observed performance to
predictions and explain them based on knowledge of the methods and
the particular problems. Comment on any behavioral differences ob-
served between the problems and explain them based on differences in
the functions being integrated. Discuss and compare the number of func-
tion evaluations. Your discussions should include comparing for all of
the composite methods, i.e., without adaptive refinement, the accuracy
actually achieved using the true error computed from your analytical so-
lutions to the integrals versus the computational complexity. Identify any
trends observed.

2.vi. You should include the use the composite error expressions to select a
subinterval size, Hm, that is expected to achieve a specified error. Are the

3



subinterval sizes used based on your a priori analysis for the composite
methods conservative, i.e., do you get greater accuracy than you expect?

2.vii. Repeat the experiments and explanations for the composite codes with
adaptive refinement using the α value given above for each. Compare
the results with the methods above that used a subinterval size chosen
by a priori error analysis. Specifically, how did the accuracy per function
evaluation ratio behave for the two sets of methods.

Other Test Problems and Intermediate Solutions

As with earlier assignments, you are encouraged to submit intermediate partial re-
sults or early versions of your results. You may discuss those with Yue if you wish.
Independently of early or partial submissions, after you have submitted you solutions
you should make an appointment with the Yue. She will ask you to demonstrate
your code on some test problems as a final evaluation of your codes correctness. You
should also be prepared to explain the design and operation of your code to her.

4


