Study Questions Homework 2 Foundations of Computational Math 2 Spring 2022

Problem 2.1

Assuming that the nodes are uniformly spaced, we have derived the form of the cubic Bspline $B_{3, i}(t)$ and determined its values and the values of $B_{3, i}^{\prime}(t)$ and $B_{3, i}^{\prime \prime}(t)$ at the nodes $t_{i-2}, t_{i-1}, t_{i-1}, t_{i}, t_{i+1}$, and t_{i+2}. We also derived $B_{1, i}(t)$ and saw that it was the familiar hat function.
2.1.a. Derive the formula of the quadratic B -spline $B_{2, i}(t)$ and determine its values and the values of $B_{2, i}^{\prime}(t)$ and $B_{2, i}^{\prime \prime}(t)$ at the appropriate nodes.
2.1.b. Derive the formula of the quintic B-spline $B_{5, i}(t)$ and determine its values and the values of $B_{5, i}^{\prime}(t)$ and $B_{5, i}^{\prime \prime}(t)$ at the appropriate nodes.

Problem 2.2

Consider a set of equidistant mesh points, $x_{k}=x_{0}+k h, 0 \leq k \leq m$ and the following interpolating constraints to define a cubic spline based at the point x_{i}.

Basic Interpolation Conditions:

$$
\begin{gathered}
b_{i}\left(x_{i}\right)=1 \\
b_{i}\left(x_{j}\right)=0, \quad 0 \leq j \leq i-2 \\
b_{i}\left(x_{j}\right)=0, \quad i+2 \leq j \leq n
\end{gathered}
$$

Note we do not require $b_{i}\left(x_{j}\right)=0$ for $j=i-1$ and $j=i+1$. Therefore, we need four boundary conditions to complete the definition:

$$
\begin{aligned}
b_{i}^{\prime}\left(x_{i-2}\right) & =0 \\
b_{i}^{\prime \prime}\left(x_{i-2}\right) & =0 \\
b_{i}^{\prime}\left(x_{i+2}\right) & =0 \\
b_{i}^{\prime \prime}\left(x_{i+2}\right) & =0
\end{aligned}
$$

Derive a system of equations that shows that the cubic spline $b_{i}(x)$ is a scaled version of the cubic B-spline $B_{i}(x)$ defined in the notes and textbook.

Problem 2.3

Consider an interpolatory quadratic spline, $s(x)$, that satisfies the following interpolation conditions and single boundary condition:

$$
\begin{gathered}
s\left(x_{i}\right)=f\left(x_{i}\right)=f_{i}, \quad 0 \leq i \leq n \\
s^{\prime}\left(x_{0}\right)=f^{\prime}\left(x_{0}\right)=f_{0}^{\prime}
\end{gathered}
$$

where the x_{i} are distinct.
2.3.a. Derive a linear system of equations that yields the values

$$
s^{\prime}\left(x_{i}\right)=s_{i}^{\prime} \quad 0 \leq i \leq n
$$

that are used as parameters to define the quadratic spline $s(x)$.
2.3.b. Identify important structure in the linear system and show that it defines a unique quadratic spline.
2.3.c. Use the structure of the system to show that if $f(x)$ is a quadratic polynomial then $s(x)=f(x)$.

Problem 2.4

Recall when defining an interpolatory cubic spline $s(t)$ in terms of the parameters $s_{i}^{\prime \prime}$ for $0 \leq i \leq n$, we have the $(n-1) \times(n-1)$ linear system

$$
\left(\begin{array}{ccccc}
2 & \lambda_{1} & 0 & \cdots & 0 \\
\mu_{2} & 2 & \lambda_{2} & \ddots & \vdots \\
0 & \ddots & \ddots & \ddots & 0 \\
\vdots & \ddots & \mu_{n-2} & 2 & \lambda_{n-2} \\
0 & \cdots & 0 & \mu_{n-1} & 2
\end{array}\right)\left(\begin{array}{c}
s_{1}^{\prime \prime} \\
\vdots \\
s_{n-1}^{\prime \prime}
\end{array}\right)=\left(\begin{array}{c}
d_{1}-\mu_{1} s_{0}^{\prime \prime} \\
\vdots \\
d_{n-1}-\lambda_{n-1} s_{n}^{\prime \prime}
\end{array}\right)
$$

when the boundary conditions $s_{0}^{\prime \prime}=c_{0}$ and $s_{n}^{\prime \prime}=c_{n}$ are specified, where c_{0} and c_{n} are given constants and

$$
\begin{gathered}
h_{i}=x_{i}-x_{i-1}, \quad \mu_{i}=\frac{h_{i}}{h_{i}+h_{i+1}} \\
\lambda_{i}=\frac{h_{i+1}}{h_{i}+h_{i+1}}, \quad d_{i}=\frac{6}{h_{i}+h_{i+1}}(f[i, i+1]-f[i-1, i]) .
\end{gathered}
$$

Derive the additional equations, in terms of the $s_{i}^{\prime \prime}$ parameterization, defining a unique cubic spline when the boundary conditions

$$
s_{0}^{\prime}=c_{0} \quad \text { and } \quad s_{n}^{\prime}=c_{n}
$$

are specified.

Problem 2.5

2.5.a. Suppose you are given an arbitrary polynomial of degree 3 or less with the form

$$
p(x)=\alpha_{0}+\alpha_{1} x+\alpha_{2} x^{2}+\alpha_{3} x^{3} .
$$

Show that there are unique coefficients, $\gamma_{i}, 0 \leq i \leq 3$, for $p(x)$ in the representation of the form

$$
p(x)=\gamma_{0} T_{0}(x)+\gamma_{1} T_{1}(x)+\gamma_{2} T_{2}(x)+\gamma_{3} T_{3}(x)
$$

where $T_{i}(x), 0 \leq i \leq 3$, are the Chebyshev polynomials.
2.5.b. Is this true for any degree n ? Justify your answer.
2.5.c. Consider $T_{32}(x)$, the Chebyshev polynomial of degree 32 and $T_{51}(x)$, the Chebyshev polynomial of degree 51 . What is the coefficient of x^{13} in $T_{32}(x)$? What is the coefficient of x^{20} in $T_{51}(x)$?

Problem 2.6

For this problem, consider the space $\mathcal{L}^{2}[-1,1]$ with inner product and norm

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x \text { and }\|f\|^{2}=(f, f)
$$

Let $P_{i}(x)$, for $i=0,1, \ldots$ be the Legendre polynomials of degree i and let $n+1$-st have the form

$$
P_{n+1}(x)=\rho_{n}\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)
$$

i.e., x_{i} for $0 \leq i \leq n$ are the roots of $P_{n+1}(x)$.

Let the Lagrange interpolation functions that use the x_{i} be $\ell_{i}(x)$ for $0 \leq i \leq n$. So, for example,

$$
L_{n}(x)=\ell_{0}(x) f\left(x_{0}\right)+\cdots+\ell_{n}(x) f\left(x_{n}\right)
$$

is the Lagrange form of the interpolation polynomial of $f(x)$ defined by the roots.
Let \mathbb{P}_{n} be the space of polynomials of degree less than or equal to n. We can write the least squares approximation of $f(x)$ in terms of the $P_{i}(x)$ using the generalized Fourier series as

$$
f_{n}(x)=\alpha_{0} P_{0}(x)+\alpha_{1} P_{1}(x)+\cdots+\alpha_{n} P_{n}(x) \text { where } \alpha_{i}=\frac{\left(f, P_{i}\right)}{\left(P_{i}, P_{i}\right)}
$$

2.6.a

Clearly, $\left(\ell_{i}, \ell_{i}\right) \neq 0$. Show that $\left(\ell_{i}, \ell_{j}\right)=0$ when $i \neq j$. Therefore, the functions $\ell_{0}(x), \ldots, \ell_{n}(x)$ are an orthogonal basis for \mathbb{P}_{n}.

2.6.b

Suppose we evaluate $f_{n}(x)$ at the x_{i} to obtain the data $f_{n}\left(x_{0}\right), \ldots, f_{n}\left(x_{n}\right)$. We can then write $f_{n}(x)$ in its Lagrange form,

$$
f_{n}(x)=L_{n}(x)=f_{n}\left(x_{0}\right) \ell_{0}(x)+\ldots+f_{n}\left(x_{n}\right) \ell_{n}(x)
$$

Since the $\ell_{0}(x), \ldots, \ell_{n}(x)$ are an orthogonal basis for \mathbb{P}_{n}, they also can be used to compute, $f_{n}(x)$, the unique least squares approximation to $f(x)$. As with the Legendre polynomials, using the generalized Fourier series, yields

$$
f_{n}(x)=\sigma_{0} \ell_{0}(x)+\sigma_{1} \ell_{1}(x)+\cdots+\sigma_{n} \ell_{n}(x) \text { where } \sigma_{i}=\frac{\left(f, \ell_{i}\right)}{\left(\ell_{i}, \ell_{i}\right)}
$$

Show that these two forms of $f_{n}(x)$ give the same polynomial by showing that

$$
\sigma_{i}=\frac{\left(f, \ell_{i}\right)}{\left(\ell_{i}, \ell_{i}\right)}=f_{n}\left(x_{i}\right)
$$

Hint: Consider the relationship between $f(x)$ and $f_{n}(x)$.

Problem 2.7

Consider $f(x)=e^{x}$ on the interval $-1 \leq x \leq 1$. Suppose we want to approximate $f(x)$ with a polynomial. Generate the following polynomials:
(a) $F_{1}(x)$ and $F_{3}(x)$:the first and third order Taylor series approximations of $f(x)$ expanded about $x=0$.
(b) $N_{1}(x)$: the linear near-minimax approximation to $f(x)$ on the interval.
(c) $C_{1}(x)$ and $C_{2}(x)$ - the linear and quadratic polynomials that result from Chebyshev economization applied to $F_{3}(x)$, the third order Taylor series approximation of $f(x)$ expanded about $x=0$.
(d) $p_{1}(x)$ and $p_{2}(x)$ - the linear and quadratic polynomials that result from Legendre economization applied to $F_{3}(x)$, the third order Taylor series approximation of $f(x)$ expanded about $x=0$.
(2.7.a) Derive bounds on the ∞ norm of the error where possible.
(2.7.b) Evaluate the error for each polynomial approximation on a very fine grid on the interval $-1 \leq x \leq 1$ and compare to the bounds.

Problem 2.8

This is a study question not a programming assignment and you need not turn in any code. This problem considers the use of discrete least squares for approximation by a polynomial. Recall, the distinct points $x_{0}<x_{1}<\cdots<x_{m}$ are given and the discrete metric

$$
c\left(p_{n}\right)=\sum_{i=0}^{m} \omega_{i}\left(f\left(x_{i}\right)-p_{n}\left(x_{i}\right)\right)^{2}
$$

with $\omega_{i}>0$ is used to determine the polynomial, $p_{n}^{l s}(x)$, of degree n that achieves the minimal value.

Assume that $\omega_{i}=1$ for this exercise.
This means that

$$
c\left(p_{n}\right)=\sum_{i=0}^{m} \omega_{i}\left(f\left(x_{i}\right)-p_{n}\left(x_{i}\right)\right)^{2}=\left\|F-P_{n}\right\|_{2}^{2}
$$

where, $p_{n}(x) \in \mathbb{P}_{n}$,

$$
F=\left(\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right) \in \mathbb{R}^{m+1}, \quad \text { and } \quad P_{n}=\left(\begin{array}{c}
p_{n}\left(x_{0}\right) \\
p_{n}\left(x_{1}\right) \\
\vdots \\
p_{n}\left(x_{m}\right)
\end{array}\right) \in \mathbb{R}^{m+1}
$$

and the norm is the standard Euclidean norm, i.e., the 2-norm, $\forall v \in \mathbb{R}^{m+1},\|v\|_{2}^{2}=v^{T} v$.
Typically, $m \gg n$. If $m=n$ then the unique interpolating polynomial is the solution.
Since the optimization problem is over all $p_{n} \in \mathbb{P}_{n}$, if we parameterize \mathbb{P}_{n} as

$$
p_{n}(x)=\sum_{j=0}^{n} \phi_{j}(x) \gamma_{j}
$$

then the conditions are

$$
\begin{gathered}
\left(\begin{array}{c}
\rho_{0} \\
\rho_{1} \\
\vdots \\
\rho_{m}
\end{array}\right)=\left(\begin{array}{c}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
\vdots \\
f\left(x_{m}\right)
\end{array}\right)-\left(\begin{array}{ccc}
\phi_{0}\left(x_{0}\right) & \ldots & \phi_{n}\left(x_{0}\right) \\
\phi_{0}\left(x_{1}\right) & \ldots & \phi_{n}\left(x_{1}\right) \\
\vdots & & \vdots \\
\phi_{0}\left(x_{m}\right) & \ldots & \phi_{n}\left(x_{m}\right)
\end{array}\right)\left(\begin{array}{c}
\gamma_{0} \\
\gamma_{1} \\
\vdots \\
\gamma_{n}
\end{array}\right) \\
r=b-A g
\end{gathered}
$$

and the optimization problem becomes

$$
\min _{g \in \mathbb{R}^{n+1}}\|b-A g\|_{2}^{2}
$$

i.e., minimize the residual r as a function of $g \in \mathbb{R}^{n+1}$.

Use the Chebyshev polynomials to form an orthonormal basis, i.e.,

$$
\phi_{i}(x)=\alpha_{i} T_{i}(x)
$$

and the roots of $T_{m+1}(x)$ as the x_{i}.

1. Identify the important property that the matrix possesses that allows the system to be be solved in $O(n)$ comptuations.
2. Verify empirically that the matrix satisfies the property above to numerical precision.
3. Use your solution to implement a code that assembles the least squares problem and solves it to find the optimal solution $g_{*} \in \mathbb{R}^{n+1}$ Make sure to exploit the algebraic properties of the matrix A to have an efficient solution.
4. Apply your code to several $f(x)$ choices and use multiple n and m values to explore the accuracy of the approximation. Approximate $\left\|f-p_{n}^{l s}\right\|_{\infty}$ by sampling the difference between f and the polynomial at a large number of points in the interval and taking the maximum magnitude.
5. For each, problem you solve check the residual of the overdetermined system $r=$ ($b-A g_{*}$ where g_{*} is the optimal set of coefficients. Empirically evaluate how it relates to the subspace $\mathcal{R}(A)$.

Problem 2.9

For this problem, consider the space $\mathcal{L}^{2}[-1,1]$ with inner product and norm

$$
(f, g)=\int_{-1}^{1} f(x) g(x) d x \text { and }\|f\|^{2}=(f, f)
$$

Let $f(x)=x^{3}+x^{2}$. Determine, $p_{1}(x)$, the best linear least squares fit to $f(x)$ on $\mathcal{L}^{2}[-1,1]$ with the inner product (f, g), i.e., the linear polynomial that solves

$$
\min _{p \in \mathbb{P}_{1}}\|f(x)-p(x)\|^{2}
$$

where the norm is as defined above.

Problem 2.10

Consider a minimax approximation to a function $f(x)$ on $[a, b]$. Assume that $f(x)$ is continuous with continuous first and second order derivatives. Also, assume that $f^{\prime \prime}(x)<0$ on for $a \leq x \leq b$, i.e., f is concave on the interval.
2.10.a. Derive the equations you would solve to determine the linear minimax approximation, $p_{1}(x)=\alpha x+\beta$, to $f(x)$ on $[a, b]$ and describe their use to solve the problem.
2.10.b. Apply your approach to determine $p_{1}(x)=\alpha x+\beta$ for $f(x)=-x^{2}$ on $[-1,1]$.
2.10.c. How does $p_{1}(x)$ relate to the quadratic monic Chebyshev polynomial $t_{2}(x)$?
2.10.d. Apply your approach to determine $\tilde{p}_{1}(x)=\tilde{\alpha} x+\tilde{\beta}$ for $f(x)=-x^{2}$ on $[0,1]$.
2.10.e. How could the quadratic monic Chebyshev polynomial $t_{2}(y)$ on $-1 \leq y \leq 1$ be used to provide and alternative derivation of $\tilde{p}_{1}(x)$ on $0 \leq x \leq 1$?
2.10.f. Suppose you adapt your approach to derive a constant approximation, $p_{0}(x)$. What points will you use as the extrema of the error?

Problem 2.11

Suppose you are given the following analytical information about a function $f(x)$ on $[-1,1]$:

$$
\begin{aligned}
f(x) & =\frac{1}{x+3} \\
f^{\prime}(x) & =\frac{-1}{(x+3)^{2}} \\
f^{\prime \prime}(x) & =\frac{2}{(x+3)^{3}}
\end{aligned}
$$

2.11. a

Find, $p_{1}(x)$, the linear polynomial that is the near-minimax approximation to $f(x)$ on the interval $[-1,1]$.

2.11.b

Find, $q_{1}(x)$, the linear polynomial that is the minimax (best) approximation to $f(x)$ on the interval $[-1,1]$.

2.11.c

Give a bound for the error $\left|f(x)-p_{1}(x)\right|$ on the interval $[-1,1]$.

2.11.d

Give a bound for the error $\left|f(x)-q_{1}(x)\right|$ on the interval $[-1,1]$.

