Study Questions Homework 4 Foundations of Computational Math 2 Spring 2022

Problem 4.1

4.1.a

Recall Simpson's second rule approximates the integral

$$
I(f)=\int_{a}^{b} f(x) d x
$$

by

$$
I_{s 2 r}(f)=h_{3} \frac{3}{8}\left[f_{0}+3 f_{1}+3 f_{2}+f_{3}\right]
$$

with error

$$
I(f)-I_{s 2 r}(f)=-\frac{3}{80} h_{3}^{5} f^{(4)}+O\left(h_{3}^{6}\right), \quad h_{3}=(b-a) / 3
$$

This method can be used to define a composite method, $I_{c s 2}$, by using rule $I_{s 2 r}$ on a set of intervals $\left[a_{i}, b_{i}\right]$ for $i=1, \ldots, m$ and summing the values.
(4.1.a.i) Suppose m intervals are used each of width $H=(b-a) / m$. Determine the expression for the composite Simpson's second rule to approximate

$$
I(f)=\int_{a}^{b} f(x) d x
$$

Be careful with the difference between H and h_{3} in your solution.
(4.1.a.ii) Suppose m intervals are used each of width $H=(b-a) / m$. Determine the expression for the error for the composite Simpson's second rule

$$
E_{c s 2}=I(f)-I_{c s 2}
$$

Be careful with the difference between H and h_{3} in your solution.

4.1.b

Recall that

- The Legendre polynomials are given by the recurrence:

$$
\begin{gathered}
P_{0}(x)=1, P_{1}(x)=x, P_{n+1}(x)=\frac{2 n+1}{n+1} x P_{n}(x)-\frac{n}{n+1} P_{n-1}(x) \\
\text { the next two are: } P_{2}(x)=\frac{1}{2}\left(3 x^{2}-1\right), P_{3}(x)=\frac{1}{2}\left(5 x^{3}-3 x\right)
\end{gathered}
$$

- Gauss-Legendre quadrature methods are polynomial interpolation-based quadrature methods that set the mesh points $x_{i}, 0 \leq i \leq n$ to the roots of $P_{n+1}(x)$, the Legendre polynomial of degree $n+1$.
- The Chebyshev polynomials are given by the recurrence:

$$
\begin{aligned}
& T_{0}(x)=1, \quad T_{1}(x)=x, T_{n+1}(x)=2 x T_{n}(x)-T_{n-1}(x) \\
& \text { the next two are: } T_{2}(x)=2 x^{2}-1, T_{3}(x)=4 x^{3}-3 x
\end{aligned}
$$

- Classical Clenshaw-Curtis (Fejér) quadrature methods are polynomial interpolationbased quadrature methods that set the mesh points $x_{i}, 0 \leq i \leq n$ to the roots of $T_{n+1}(x)$, the Chebyshev polynomial of degree $n+1$.
(4.1.b.i) Determine the degrees of exactness for the two-point $(n=1)$ methods in each of these two families of polynomial interpolation-based quadrature methods applied to the definite integral

$$
I(f)=\int_{-1}^{1} f(x) d x
$$

(4.1.b.ii) Comment, briefly, on the main similarity and difference between Gauss-

Chebyshev quadrature methods and the Classical Clenshaw-Curtis (Fejér) quadrature methods.

Problem 4.2

If $A \in \mathbb{C}^{n_{1} \times n_{2}}$ and $B \in \mathbb{C}^{n_{3} \times n_{4}}$ then the Kronecker product

$$
M=A \otimes B \in \mathbb{C}^{n_{1} n_{3} \times n_{2} n_{4}}
$$

is defined in terms of blocks $M_{i j} \in \mathbb{C}^{n_{3} \times n_{4}}$ for $1 \leq i \leq n_{1}$ and $1 \leq j \leq n_{2}$ where

$$
M_{i j}=\alpha_{i j} B
$$

The Kronecker product is useful for expressing many structured matrix expressions, e.g., the Cooley-Tukey FFT/IFFT.

Let $A \in \mathbb{C}^{m \times m}, B \in \mathbb{C}^{n \times n}, x \in \mathbb{C}^{m n}$, and $y \in \mathbb{C}^{m n}$.
4.2.a. Describe an algorithm to evaluate the matrix vector product

$$
y=(A \otimes B) x
$$

i.e., given A, B, x determine y.
4.2.b. What is the complexity of the algorithm?
4.2.c. How does the complexity of the algorithm compare to the standard matrixvector product computation, $y=M x$, that ignores the structure of M.

Problem 4.3

The factored form of the Cooley-Tukey FFT

$$
\begin{equation*}
F_{n}=\left(A_{1} A_{2} \cdots A_{k-1}\right) D_{n} P_{n}=\left(\prod_{i=1}^{k-1} A_{i}\right) D_{n} P_{n} \tag{1}
\end{equation*}
$$

where each A_{i} is scaled by $1 / \sqrt{2}$ and has the block structure using I and Ω of the appropriate dimensions, P_{n} is the bit-reversal permutation matrix and $D_{n}=\operatorname{diag}\left(F_{2}, \cdots, F_{2}\right)$ is a block diagonal matrix with $n / 2,2 \times 2$ DFT matrices, was derived in the class notes by using the basic properties of the n roots of unity and writing a polynomial in the monomial basis in terms of the sum of the polynomials involving the even and odd power terms.

Given the relationship between $\omega_{n}=e^{i \theta_{n}}$ and $\mu_{n}=\bar{\omega}_{n}$, with $\theta_{n}=2 \pi / n$, the same proof can be repeated with μ_{n} replaced by ω_{n} to derive the IFFT as the factorization

$$
\begin{equation*}
F_{n}^{H}=\left(\bar{A}_{1} \bar{A}_{2} \cdots \bar{A}_{k-1}\right) \bar{D}_{n} P_{n}=\left(\prod_{i=1}^{k-1} \bar{A}_{i}\right) \bar{D}_{n} P_{n} \tag{2}
\end{equation*}
$$

where \bar{M} replaces elements with their complex conjugates. This is equivalent to the factored form of the FFT with μ replaced by ω.

Recall the basic properties of the matrices F and F^{H} :

$$
\begin{gathered}
F=(F)^{T}, \quad F^{H}=\left(F^{H}\right)^{T} \\
F^{H} F=I=F F^{H} \rightarrow F^{H}=F^{-1} .
\end{gathered}
$$

Show that these properties can be used to derive (2) directly from (1).

Problem 4.4

Definitions

Let $F_{n} \in \mathbb{C}^{n \times n}$ be the unitary matrix representing the discrete Fourier transform of length n and so $F_{n}^{H} \in \mathbb{C}^{n \times n}$ is the inverse DFT of length n. For example, for $n=4$

$$
F_{4}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \mu & \mu^{2} & \mu^{3} \\
1 & \mu^{2} & \mu^{4} & \mu^{6} \\
1 & \mu^{3} & \mu^{6} & \mu^{9}
\end{array}\right) \text { and } F_{4}^{H}=\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & \omega & \omega^{2} & \omega^{3} \\
1 & \omega^{2} & \omega^{4} & \omega^{6} \\
1 & \omega^{3} & \omega^{6} & \omega^{9}
\end{array}\right)
$$

where $\theta=2 \pi / n, \omega=e^{i \theta}$ and $\mu=e^{-i \theta}$.

Let $Z_{n} \in \mathbb{C}^{n \times n}$ be the permutation matrix of order n such that $Z v$ represents the circulant "upshift" of the elements of the vector v, i.e.,

$$
Z_{n}=\left(\begin{array}{lllll}
e_{n} & e_{1} & e_{2} & \ldots & e_{n-1}
\end{array}\right)
$$

For example, for $n=4$

$$
Z_{4}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
$$

Let $C_{n} \in \mathbb{C}^{n \times n}$ be a circulant matrix of order n. The circulant matrix C_{n} has n parameters (either the first row or first column can be viewed as these parameters). It is a Toeplitz matrix (all diagonals are constant) with the additional constraint that each row (column) is a circulant shift of the previous row (column).

For example, for $n=4$ and using the first row as the parameters we have

$$
C_{4}=\left(\begin{array}{llll}
\alpha_{0} & \alpha_{1} & \alpha_{2} & \alpha_{3} \\
\alpha_{3} & \alpha_{0} & \alpha_{1} & \alpha_{2} \\
\alpha_{2} & \alpha_{3} & \alpha_{0} & \alpha_{1} \\
\alpha_{1} & \alpha_{2} & \alpha_{3} & \alpha_{0}
\end{array}\right)
$$

Given a polynomial of degree d, a matrix polynomial is defined as follows

$$
\begin{gathered}
P_{d}(\xi)=\delta_{0}+\delta_{1} \xi+\delta_{2} \xi^{2}+\cdots+\delta_{d} \xi^{d} \\
P_{d}(A)=\delta_{0} I+\delta_{1} A+\delta_{2} A^{2}+\cdots+\delta_{d} A^{d} \\
\xi, \in \mathbb{C}, \quad \delta_{i} \in \mathbb{C}, \quad P_{d}(A), A \in \mathbb{C}^{n \times n} .
\end{gathered}
$$

Hint: For the problems below it might be useful to consider a small dimension, e.g., $n=4$ and then generalize the proofs and results to any n.
(4.4.a) Determine a diagonal matrix $\Lambda_{n} \in \mathbb{C}^{n \times n}$ i.e., nonzero elements may only appear on the main diagonal, that satisfies $Z_{n}=F_{n}^{H} \Lambda_{n} F_{n}$. This says that the columns of F_{n}^{H} are the eigenvectors of Z_{n} and the associated eigenvalues are the elements on the diagonal of Λ_{n}.
(4.4.b) Recall, that the set of $n \times n$ matrices is a vector space with dimension n^{2}. Show that the set of $n \times n$ circulant matrices, C_{n}, is a subspace of that vector space with dimension n. Hint: find a basis for the subspace using the results and definitions above.
(4.4.c) Show that any circulant matrix can be written

$$
C_{n}=F_{n}^{H} \Gamma_{n} F_{n}
$$

where $\Gamma_{n} \in \mathbb{C}^{n \times n}$ is a diagonal matrix. This says that the columns of F_{n}^{H} are the eigenvectors of C_{n} and the associated eigenvalues are the elements on the diagonal of Γ_{n}. Your proof should develop a formula for Γ_{n} that allows its diagonal elements to be easily evaluated and understood.
(4.4.d) Describe how you determine if C_{n} is a nonsingular matrix.
(4.4.e) How does this factorization of C_{n} result in a fast method of solving a linear system $C_{n} x=b$, where $x, b \in \mathbb{C}^{n}$. (Here a fast method is one that has complexity less than the $O\left(n^{3}\right)$ computations associated with standard factorization methods.)

Problem 4.5

4.5.a

Let $F_{n} \in \mathbb{C}^{n \times n}$ be the unitary matrix representing the discrete Fourier transform of length n. Justify your answers to the following. Simply giving values will receive no credit.
(i) Determine $\left\|F_{n}\right\|_{F}$.
(ii) Determine $\left\|F_{n}\right\|_{2}$.

4.5.b

Let $Z_{n} \in \mathbb{R}^{n \times n}$ be

$$
\begin{gathered}
Z_{n}=\left(\begin{array}{lllll}
e_{n} & e_{1} & e_{2} & \ldots & e_{n-1}
\end{array}\right)=\left(\begin{array}{c}
e_{2}^{T} \\
e_{3}^{T} \\
e_{4}^{T} \\
\vdots \\
e_{n}^{T} \\
e_{1}^{T}
\end{array}\right) \\
\text { for example, } Z_{4}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

(i) What is the computational complexity of computing the matrix vector product $w=Z_{n} v$, i.e., given Z_{n} and v compute w, where $w, v \in \mathbb{R}^{n}$?
(ii) Describe how you would solve the linear system $Z_{n} x=b$ for x with $x, b \in \mathbb{R}^{n}$? What is the computational complexity of your algorithm?
(iii) Describe how you would solve the linear system

$$
\left(2 Z_{n}+3 Z_{n}^{2}\right) x=b
$$

for x with $x, b \in \mathbb{R}^{n}$? What is the computational complexity of your algorithm?

4.5.c

Recall that a function a function $f(x) \in \mathcal{L}^{2}[0,2 \pi]$ can be written in terms of its Generalized Fourier Series

$$
f(x)=\sum_{m=-\infty}^{\infty} \alpha_{m} e^{i m x}
$$

Given $n>0$ and $\theta=2 \pi / n, f(x)$ has a discrete Fourier reconstruction, $q_{n}(x)$, that uses numerical quadrature and uniform samples of $f(x)$ defined by multiples of θ to compute the coefficients $\hat{\alpha}_{m}$ for $-n / 2 \leq m \leq n / 2-1$ defining

$$
q_{n}(x)=\sum_{m=-n / 2}^{n / 2-1} \hat{\alpha}_{m} e^{i m x} .
$$

Let $g(x)=1+e^{i x}$ and determine a function $f(x) \neq g(x)$ such that the discrete Fourier reconstruction of $f(x)$ satisfies

$$
q_{n}(x)=\sum_{m=-n / 2}^{n / 2-1} \hat{\alpha}_{m} e^{i m x}=g(x)
$$

Problem 4.6

Let x and y be two infinite sequences, i.e.,

$$
\begin{aligned}
& x=\left\{\ldots \xi_{-4}, \xi_{-3}, \xi_{-2}, \xi_{-1}, \xi_{0}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}, \ldots\right\} \\
& y=\left\{\ldots \eta_{-4}, \eta_{-3}, \eta_{-2}, \eta_{-1}, \eta_{0}, \eta_{1}, \eta_{2}, \eta_{3}, \eta_{4}, \ldots\right\}
\end{aligned}
$$

The convolution $z=x * y$ is an infinite sequence with elements

$$
\zeta_{k}=\sum_{i=-\infty}^{\infty} \eta_{i} \xi_{i+k}
$$

Note ζ_{k} lines up η_{0} with ξ_{k} and then takes the sum of pairwise products.
Now consider the structured sequences x and y where x is periodic with period n defined by the values $\mu_{0}, \mu_{1}, \ldots, \mu_{n-1}$ and y is nonzero only in n elements starting at $i=0$ defined by the values $\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}$. That is

$$
\begin{gathered}
\ldots, \xi_{-n}=\mu_{0}, \xi_{-n+1}=\mu_{1}, \ldots, \xi_{-1}=\mu_{n-1}, \xi_{0}=\mu_{0}, \xi_{1}=\mu_{1}, \ldots, \xi_{n-1}=\mu_{n-1}, \xi_{n}=\mu_{0}, \ldots \\
\ldots, \eta_{-n}=0, \ldots, \eta_{-1}=0, \eta_{0}=\alpha_{0}, \eta_{1}=\alpha_{1}, \ldots, \eta_{n-1}=\alpha_{n-1}, \eta_{n}=0, \ldots
\end{gathered}
$$

For example, for $n=4$ we have

$$
\begin{aligned}
& x=\left\{\ldots \xi_{-4}, \quad \xi_{-3}, \quad \xi_{-2}, \quad \xi_{-1}, \quad \xi_{0}, \quad \xi_{1}, \quad \xi_{2}, \quad \xi_{3}, \quad \xi_{4}, \ldots\right\} \\
& =\left\{\begin{array}{lllllllll}
\cdots & \mu_{0}, & \mu_{1}, & \mu_{2}, & \mu_{3}, & \mu_{0}, & \mu_{1}, & \mu_{2}, & \mu_{3},
\end{array} \mu_{0}, \ldots\right\} \\
& y=\left\{\ldots \eta_{-4}, \quad \eta_{-3}, \quad \eta_{-2}, \quad \eta_{-1}, \quad \eta_{0}, \quad \eta_{1}, \quad \eta_{2}, \quad \eta_{3}, \quad \eta_{4}, \ldots\right\} \\
& =\left\{\ldots 0, \quad 0, \quad 0, \quad 0, \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}, 0, \ldots\right\}
\end{aligned}
$$

(4.6.a) Show that given the values that specify the structured x and y sequences the convolution $z=x * y$ is also specificed by only n values and identify the structure of the sequence z.
(4.6.b) Determine the complexity in terms of n required to compute the n values that specify the convolution z from the values that specify the structured x and y sequences and describe an algorithm that achieves this complexity. Hint: Relate the values that specify the structured x, y to the values that specify z with a structured matrix operation.

In your solution you may discuss the specific case $n=4$ to simplify the presentation but make sure to indicate how the conclusions generalize to $n \neq 4$.

Problem 4.7

Consider the roots of unity needed for a radix-2 Cooley-Tukey version of the FFT of length $n=2^{t}$

$$
\hat{f}=F_{n} f=\frac{1}{\sqrt{n}} A_{0} A_{1} \ldots A_{t-1} P_{n} f
$$

where P_{n} is the bit reversal permutation, $A_{k}=I_{2^{k}} \otimes B_{2^{t-k}}, k=0,1, \ldots, t-1$, and

$$
\begin{gathered}
B_{r}=\left(\begin{array}{cc}
I_{s} & \Omega_{s} \\
I_{s} & -\Omega_{s}
\end{array}\right) \\
\Omega_{s}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \mu_{r} & 0 & \ldots & 0 \\
0 & 0 & \mu_{r}^{2} & \ldots & 0 \\
& & & \ddots & \\
0 & 0 & \ldots & 0 & \mu_{r}^{s-1}
\end{array}\right), \quad B_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & \mu_{2}
\end{array}\right), \quad \mu_{r}=e^{-2 \pi i / r}, ; r=2 s
\end{gathered}
$$

(4.7.a) Identify the relationships between the roots of unity needed to define each of the A_{k}.
(4.7.b) Describe an algorithm to compute the required roots of unity. Try to make the critical path of the computation as short as possible as a function of n since its length is the coefficient of unit roundoff in the order bound on numerical error.

Problem 4.8

Consider a Cooley-Tukey version of the FFT of length $n=16$ that uses radix- 4 rather than radix-2, i.e., at each level of the FFT, all of the DFT's of length k are split into 4 each of length $k / 4$. For $n=16$ this implies

$$
\hat{f}=F_{16} f=\frac{1}{\sqrt{16}} A_{0} A_{1} P_{16} f
$$

where P_{16} is a permutation, $A_{k}=I_{4^{k}} \otimes B_{4^{t-k}}, k=0,1, \ldots, t-1$, and B_{r} is appropriately modified from the radix- 2 version.
(4.8.a) Derive the factorization and define the A_{k} 's and P_{16}.
(4.8.b) Discuss the scatter form of P_{16} and its inverse permutation.
(4.8.c) Give the "wiring diagram" or compuational graph for F_{16} based on a radix-4 generalization of the radix-2 butterfly node we have described in class.

