
Study Questions Homework 2 Foundations of Computa-

tional Math 2 Spring 2025

Problem 2.1

Consider the data points
(x, y) = {(0, 2), (0.5, 5), (1, 8)}

2.1.a. Write the interpolating polynomial in Lagrange form for the given data.

2.1.b. Write the interpolating polynomial in Newtong form for the given data.

2.1.c. Verify the relationship between the divided differences and the coefficients in
the Lagrange form given in Set 7 of the class notes (Theorem 7.1).

Problem 2.2

Assume you are given distinct points x0, . . . , xn and, pn(x), the interpolating polynomial
defined by those points for a function f .

2.2.a. If pn(x) =
∑n

i=0 f(xi)`i(x) is the Lagrange form show that

n∑
i=0

`i(x) = 1

2.2.b. Assume x 6= xi for 0 ≤ i ≤ n and show that the divided difference f [x0, . . . , xn, x]
satisfies

f [x0, . . . , xn, x] =
n∑
i=0

f [x, xi]∏n
j=0,j 6=i(xi − xj)

Problem 2.3

Use this divided difference table for this problem.

i 0 1 2 3 4 5
xi −1 0 2 4 5 6
fi 13 2 −14 18 67 91

f [−,−] −11 −8 16 49 24
f [−,−,−] 1 6 11 −25/2
f [−,−,−,−] 1 1 −47/8
f [−,−,−,−,−] 0 −55/48
f [−,−,−,−,−,−] −55/336
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2.3.a

Use the divided difference information about the unknown function f(x) and consider the
unique polynomial, denoted p1,5(x), that interpolates the data given by pairs (x1, f1), (x2, f2),
(x3, f3), (x4, f4) , and (x5, f5). Use two different sets of divided differences to express p1,5(x)
in two distinct forms.

2.3.b

What is the significance of the value of 0 for f [x0, x1, x2, x3, x4]?

2.3.c

Denote by p0,4(x), the unique polynomial, that interpolates the data given by pairs (x0, f0),
(x1, f1), (x2, f2), (x3, f3), and (x4, f4) and recall the definition of p1,5(x) from part (a). Use
the divided difference information about the unknown function f(x) to derive error estimates
for f(x)− p1,5(x) and f(x)− p0,4(x) for any x0 ≤ x ≤ x5.

Problem 2.4

(Quarteroni et al. text exercise 8.10.1 on page 375)
Given n distinct points x0, . . . , xn, show that the associated Lagrange form functions

`i(x), i = 0, . . . , n form a basis for the vector space, Pn, of polynomials with degree less than
or equal to n.

Problem 2.5

(Quarteroni et al. text exercise 8.10.8 on page 376)
Consider the Hermite-Birkhoff interpolating polynomial defined by interpolation condi-

tions:
p(k)n (x0) = f (k)(x0), 0 ≤ k ≤ n

where the superscript denotes the order of the derivative. Show that pn(x) is equal to the
order n Taylor expansion of f(x) around x0

qn(x) = f(x0) + f ′(x0)(x− x0) + · · ·+ f (k)(x0)

k!
(x− x0)k.

Problem 2.6

(Quarteroni et al. text exercise 8.10.4 on page 376)
Suppose x0 < x1 < . . . < xn are equally space points with xi+1 − xi = h. Recall that

ωn+1 = (x− x0)(x− x1) · · · (x− xn) and ‖f(x)‖∞ = max[a,b]|f(x)| for a given interval [a, b].
Derive an estimate or bound of ‖ωn+1(x)‖∞ on the interval [x0, xn] for n = 1, and n = 2.
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Problem 2.7

Consider a polynomial
pn(x) = α0 + α1x+ · · ·+ αnx

n

pn(γ) can be evaluated using Horner’s rule (written here with the dependence on the
formal argument x more explicitly shown)

cn(x) = αn
for i = n− 1 : −1 : 0

ci(x) = xci+1(x) + αi
end

pn(x) = c0(x)

Note that when evaluating x = γ the algorithm produces n+ 1 constants c0(γ), . . . , cn(γ)
one of which is equal to pn(γ).

2.7.a

Suppose that Horner’s rule is applied to evaluate pn(γ) and that the constants c0(γ), . . . , cn(γ)
are saved. Show that

pn(x) = (x− γ)q(x) + pn(γ)

q(x) = c1(γ) + c2(γ)x+ · · ·+ cn(γ)xn−1

2.7.b

Suppose that Horner’s rule, with labeling modified appropriately, is applied to evaluate pn(γ)

and that the constants c
(1)
0 (γ), . . . , c

(1)
n (γ) are saved to define pn(γ) − c(1)0 (γ) and q(1)(x) =

c
(1)
1 (γ)+c

(1)
2 (γ)x+ · · ·+c

(1)
n (γ)xn−1. Suppose further that Horner’s rule is applied to evaluate

q(1)(γ) and that the constants c
(2)
1 (γ), . . . , c

(2)
n (γ) are saved to define q(1)(γ) = c

(2)
1 (γ) and

q(2)(x) = c
(2)
2 (γ) + c

(2)
3 (γ)x + · · · + c

(2)
n (γ)xn−2. This can continue until Horner’s rule is

applied to evaluate q(n)(γ) = c
(n)
n (γ) and q(n+1)(x) = 0, i.e., there are no constants other

than c
(n)
n (γ) produced.

Show that

q(1)(γ) = p′n(γ)

q(2)(γ) = p′′n(γ)/2

q(3)(γ) = p′′′n (γ)/3!

...

q(n−1)(γ) = p(n−1)n (γ)/(n− 1)!

q(n)(γ) = p(n)n (γ)/n!
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and therefore form the coefficients of the Taylor form of pn(x)

pn(x) = pn(γ)+(x−γ)p′n(γ)+
(x− γ)2

2
p′′n(γ)+

(x− γ)3

3!
p′′′n (γ) · · ·+(x− γ)n−1

(n− 1)!
p(n−1)n (γ)+

(x− γ)n

n!
p(n)n (γ)

Problem 2.8

The set of square integrable functions

L2[−1, 1] = {f(x), −1 ≤ x ≤ 1 |
∫ 1

−1
f 2(x)dx <∞}

is a Hilbert space with the inner product

〈f, g〉 =

∫ 1

−1
f(x) g(x)dx

and the associated induced norm. The space of polynomials with degree n or less, Pn, is a
finite dimensional subspace of L2[−1, 1] with basis {bk} = {xk} with 0 ≤ k ≤ n.

A basis can be problematic if there is wide variation in the norm of the vectors, ‖bk‖ or
if the angles between bk and bj become small for various pairs of vectors.

2.8.a. Analyze the magnitudes of the monomial basis vectors.

2.8.b. Analyze the angles between the monomial basis vectors.

2.8.c. Discuss the results in terms of the robustness of the basis for representing poly-
nomials.

Problem 2.9

Show that given a set of points
x0, x1, . . . , xn

a Leja ordering can be computed in O(n2) operations.

Problem 2.10

Let f(x) be a smooth function and let pn(x) be a polynomial of degree n that satisfies the
Hermite-Brikhoff interpolation conditions for the point x0

pn(x0) = f(x0)

p′n(x0) = f ′(x0)

p′′n(x0) = f ′′(x0)

...

p(n)n (x0) = f (n)(x0).
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2.10.a. Construct the Newton form of pn(x) using the Newton divided difference table.
Identify and explain any structure in the divided difference table.

2.10.b. Using the basis that arises from the Newton form of pn(x), derive linear equa-
tions that impose the Hermite-Birkhoff interpolation conditions and therefore
define the divided differences.

2.10.c. Show that pn(x) is unique and that the coefficients determined by solving the
linear system are the same as those determined by using the divided difference
table.

Problem 2.11

(2.11.a) Determine the polynomial of minimal degree that matches the following con-
ditions on f or show that it does not exist:

f(0) = 0, f ′(0) = 1

f(1) = 3, f ′(1) = 6

(2.11.b) Determine the polynomial of minimal degree that matches the following con-
ditions on f or show that it does not exist:

f(0) = 0, f ′(0) = 0

f(1) = 3, f ′(1) = 6

f(2) = 1

(2.11.c) Determine the polynomial of minimal degree that matches the following con-
ditions on f or show that it does not exist. (Note that this is not an Hermite-
Birkhoff form of interpolation problem.)

f(0) = 3

f ′(0) = 5, f ′(1) = 10, f ′(2) = 10

Problem 2.12

Let f(x) = cos 8x on 0 ≤ x ≤ π. Suppose f(x) is to be approximated by a piecewise linear
interpolating function, g1(x). The accuracy required is

∀0 ≤ x ≤ π, |f(x)− g1(x)| ≤ 10−6

Determine a bound on h = xi−xi−1 for uniformly spaced points that satisfies the required
accuracy.
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Problem 2.13

Suppose we want to approximate a functionf(x) on the interval [a, b] with a piecewise
quadratic interpolating polynomial, g2(x), with a constant spacing, h, of the interpolation
points a = x0 < x1 . . . < xn = b. That is, for any a ≤ x ≤ b, the value of f(x) is approxi-
mated by evaluating the quadratic polynomial that interpolates f at xi−1, xi, and xi+1 for
some i with x = xi+sh, xi−1 = xi−h, xi+1 = xi+h and −1 ≤ s ≤ 1. (How i is chosen given
a particular value of x is not important for this problem. All that is needed is the condition
xi−1 ≤ x ≤ xi+1.)

Suppose we want to guarantee that the relative error of the approximation is less than
10−d, i.e., d digits of accuracy. Specifically,

|f(x)− g2(x)|
|f(x)|

≤ 10−d.

(It is assumed that |f(x)| is sufficiently far from 0 on the interval [a, b] for relative accuracy
to be a useful value.) Derive a bound on h that guarantees the desired accuracy and apply
it to interpolating f(x) = ex sinx on the interval π

4
≤ x ≤ 3π

4
with relative accuracy of 10−4.

(The sin is bounded away from 0 on this interval.)
Compare your predicted accuracy to the accuracy you achieve by forming g2(x) for h’s

that satisfy your bound and h’s that do not.

Problem 2.14

Consider the following data

(x0, f0) = (1, 0), (x1, f1) = (2, 2),

(x2, f2) = (4, 12), (x3, f3) = (5, 21)

2.14.a. Determine the quadratic interpolating polynomial, p2(x), for points (x0, f0), (x1, f1), (x2, f2).
Estimate f(3) using p2(x).

2.14.b. Determine the quadratic interpolating polynomial, p̃2(x), for points (x1, f1), (x2, f2), (x3, f3).
Estimate f(3) using p̃2(x).

2.14.c. Estimate f(3) using a cubic interpolating polynomial p3(x).

2.14.d. Estimate the errors |f(3) − p2(x)| and |f(3) − p̃2(x)| an use the estimates to
determine a range of values in which you expect f(3) to reside. How does the
value of p3(3) relate to this interval?

2.14.e. Write the piecewise linear interpolant g1(x) that uses all of the data points
in the form that specifies the set of intervals and the linear polynomial on each
interval. Estimate f(3) using g1(x).

2.14.f. Determine the cardinal basis form of g1(x). Verify that your cardinal basis
form satisfies the interpolation constraints.
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