
Study Questions Homework 4 Foundations of Computa-

tional Math 2 Spring 2025

Linear Multistep Methods

Problem 4.1

Consider the following linear multistep method:

yn = −4yn−1 + 5yn−2 + h(4fn−1 + 2fn−2)

4.1.a. Determine, p, the order of consistency of the method.

4.1.b. Determine the coefficient, Cp+1, in the discretization error dn.

4.1.c. Consider the application of the method to y′ = 0 with y0 = 0 and y1 = ε, i.e., a
perturbed initial condition. Show that |yn| → ∞ as n → ∞, i.e., the numerical
method is unstable.

Problem 4.2

Consider the following linear multistep method:

yn = yn−2 +
h

3
(fn + 4fn−1 + fn−2)

The method is 0-stable but it is weakly stable.

4.2.a. Determine the discretization error dn.

4.2.b. Consider the application of the method to y′ = λy. Write the recurrence that
yields yn.

4.2.c. Let yn, n = 0, 1, . . . be the numerical solution of y′ = λy from the previous part
of the problem. Show that |yn| → ∞ as n → ∞, i.e., the numerical method is
unstable.

Problem 4.3

Recall, our model problem

f = λ(y − F (t)) + F ′(t) y(0) = y0

y(t) = (y0 − F (0))eλt + F (t)

Take F (t) = sin t and y(0) = 1 and consider y(t) on 0 ≤ t ≤ 1.
Consider the methods
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• Method 1
yn = −4yn−1 + 5yn−2 + h(4fn−1 + 2fn−2)

• Method 2 – explicit midpoint

yn = yn−2 + 2hfn−1

• Method 3 – Adams Bashforth two-step

yn = yn−1 +
h

2
(3fn−1 − fn−2)

• Method 4 – Adams Moulton one-step (Trapezoidal Rule)

yn = yn−1 +
h

2
(fn + fn−1)

• Method 5 – BDF one-step (Backward Euler)

yn = yn−1 + hfn

• Method 6 – BDF two-step

yn =
4

3
yn−1 −

1

3
yn−2 +

2

3
hfn

Apply the methods to the model problem using exact initial conditions, e.g., y0 = y(0)
and y1 = y(h) for a two-step LMS method. Consider λ = 10, λ = −10, and λ = −500.

1. Use various fixed stepsizes, e.g., h = 0.01 and smaller is a good place to start, and
apply the methods. Organize your observations on the accuracy and error damping in
the transient and quiescent regions for each method and fixed stepsize.

2. Explain your observations based on the local error (h time the local discretization
error), the absolute stability properties, and stiff decay (or lack of it).

3. Consider using multiple stepsizes to improve the accuracy and efficiency for some of
the methods. You should use at least two stepsizes: one for the transient region and
one for the quiescent region. You should also consider using more than one in the
quiescent region, i.e., a series of stepsizes that increase from the stepsize used in the
transient region to the larger stepsize expected based on the local error of the slowly
changing solution to the IVP.

4. Check other values of λ and see if you can predict the behavior of the methods.
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Comment on implicit methods: Note that some of these methods are implicit. Due to
its simple form, for this model problem you can derive a closed form of the solution of the
implicit method’s equation defining yn, i.e., there is no need to use functional iteration or
Newton’s method to solve a “corrector” equation or to choose a predictor method to get the
initial guess of yn. To see this note that any of the implicit LMS methods can be written as

yn − hβ0f(yn, tn) = S

where S is a known value that depends upon the method, stepsizes and past points. Substi-
tuting f into the expression and solving yields

yn = [S + hβ0(F
′ − λF )] (1− hλβ0)−1

which can be used to advance the implicit methods to yn, tn. (You should verify this solution
analytically and by checking that it has a small residual for the implicit method’s formula
as it is applied during integration.)

Problem 4.4

Recall that to derive the second order BDF with fixed stepsize the interpolating polynomial
p(t) was used with uniform separation between tn, tn−1, and tn−2. Consider the nonconstant
stepsize second order BDF where

hn = tn − tn−1
hn−1 = tn−1 − tn−2

Starting with the Newton divided difference form of the appropriate interpolating polynomial
φ(t), derive the nonconstant stepsize second order BDF with the form

α0(hn, hn−1)yn + α1(hn, hn−1)yn−1 + α2(hn, hn−1)yn−2 = hnfn

where the real coefficients αi(hn, hn−1) are functions of the two stepsizes hn and hn−1.

Problem 4.5

Adapt the techniques used to derive the Adams Moulton 2-step method with constant step

yn = yn−1 + h

(
5

12
fn +

8

12
fn−1 −

1

12
fn−2

)
.

to find the expression for a nonconstant stepsize 2-step Adams Moulton method with step-
sizes hn = tn − tn−1 and hn−1 = tn−1 − tn−2. Give the result in the form:

yn = yn−1 + h (β0(hn, hn−1)fn + β1(hn, hn−1)fn−1 − β2(hn, hn−1)fn−2) .
where the real coefficients βi(hn, hn−1) are functions of the two stepsizes hn and hn−1.

Runge Kutta Methods
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Problem 4.6

Consider the Runge Kutta method called the explicit trapezoidal rule given by:

ŷ1 = yn−1 + hf(tn−1, yn−1)

yn = yn−1 +
h

2

(
f(tn−1, yn−1) + f(tn, ŷ1)

)
Show that the method has truncation error O(h2).

Problem 4.7

Consider the Runge Kutta method called the implicit midpoint rule given by:

ŷ1 = yn−1 +
h

2
f1

f1 = f(tn−1 +
h

2
, ŷ1)

yn = yn−1 + hf1

An alternate form of the the method is given by:

yn = yn−1 + hf
(tn + tn−1

2
,
yn + yn−1

2

)
Show that the two forms are identical.

Problem 4.8

Consider the Runge Kutta method called the implicit midpoint rule given by:

ŷ1 = yn−1 +
h

2
f1

f1 = f(tn−1 +
h

2
, ŷ1)

yn = yn−1 + hf1(
γ1 α11

β1

)
=

(
1
2

1
2

1

)
Show that the method has truncation error O(h2).
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Problem 4.9

Consider the general form of a 2-stage Explicit RK method:

ŷ1 = yn−1, f1 = f(tn−1, ŷ1)

ŷ2 = yn−1 + α21f1, f2 = f(tn−1 + γ2h, ŷ2)

yn = yn−1 + h (β1f1 + β2f2)

c A
bT

=
0 0 0
γ2 α21 0

β1 β2

γ2 = α21

4.9.a. Determine the set of equations that the free parameters must satisfy in order
to achieve method with order 2.

4.9.b. Is there a single such method? If so prove it. If not discuss the number of free
parameters and give examples of methods and potential parameterized tables
that define families of methods.

Problem 4.10

Consider the 4 stage classical RK4 method with order 4. Derive the function R(z) that
determines the region of absolute stability region of the method by the equation

yn = R(z)yn−1

where z = hλ.

Advanced Problems

Problem 4.11

Recall, we have examined the polynomials ρ(ξ) and σ(ξ) associated with a linear multistep
method. ρ(ξ) is related to the analysis of strong, weak and 0-stability of the method and
µ(ξ) = ρ(ξ) − hλσ(ξ) is used to determine the absolute stabililty properties and region of
the method. All three parts of this question relate in some way to these three polynomials.
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4.11.a

i. What stability properties of the method can be examined by looking at the roots
of σ(ξ)? (Take care when σ(ξ) has lower degree than ρ(ξ).)

ii. Explain the statement “The Adams methods are as strongly stable as any linear
multistep method can possibly be.”

iii. The motivation for the design of the BDF methods is stiff decay. Explain how
the form of the BDFs is linked to this motivation.

4.11.b

Consider the linear multistep method:

yn − yn−2 = 2hfn−1

Discuss the absolute stability properties of the method. You may do this by determining
the boundary of the absolute stability region or by other means.

4.11.c

Consider the linear multistep method:

yn = yn−1 + h

(
9

16
fn +

6

16
fn−1 +

1

16
fn−2

)
(i) Is the method convergent?

(ii) The method is not an Adams Moulton method. Examine the absolute stability
properties of this method and identify the main advantage or disadvantages this
method compared to the 2-step Adams Moulton method. You do not have to
determine the entire boundary to solve this problem.

Problem 4.12

Assume you have an implicit k step linear multistep method of the form

yn = hβ0fn +
k∑
i=1

(hβifn−i − αiyn−i) = hβ0fn + S∗

that has order p, i.e.,

y(tn) = hβ0f(y(tn)) +
k∑
i=1

(hβif(y(tn−i))− αiy(tn−i)) +O(hp+1)
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where the t argument to f has been suppressed for convenience.
Suppose you apply a P (EC)mE method to solve approximately this implicit equation to

determine yn and the predictor is assumed to have order ` < p accuracy, i.e.,

y(tn) = y[0]n +O(h`+1)

y[j]n = hβ0f(y[j−1]n ) + S∗

(4.12.a) Assume that yn−i = y(tn−i) for i = 1, . . . , k and show that each iteration of

the EC step increases the order of accuracy of y
[j]
n by 1, i.e.,

y(tn) = y[j]n +O(hl+1+j) +O(hp+1)

(4.12.b) What order ` for the predictor would you recommend be used in practice and
why?

Problem 4.13

4.13.a

Solutions to ODE initial value problems often satisfy invariants, i.e., a condition on y(t) that
is true for all t in the interval defined by the problem. For example, the solution y(t) ∈ Rm

to
y′ = f(y, t), y(t0) = y0

where f(y, t) : Rm×R→ Rm is Lipchitz in y could have a constant size as measured by the
vector 2-norm in Rm, i.e.,

‖y0‖22 = yT0 y0 = ‖y(t)‖22 = y(t)Ty(t)

for all t in the interval of the problem.
What condition must hold for y(t) and f(y, t) to give a solution that is invariant in the

vector 2-norm in Rm? Justify your answer.

4.13.b

If a solution to an IVP satisfies an invariant it is of interest to know which numerical meth-
ods preserve that invariant in the numerical solution (assuming exact arithmetic, i.e., no
roundoff).

The system of two ODEs

Y ′(t) = MY (t), Y (0) = Y0

(
y′1
y′2

)
=

(
0 ω
−ω 0

)(
y1
y2

)
,

(
y1(0)
y2(0)

)
=

(
1
0

)
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where ω > 0 has a solution for which ‖Y (t)‖22 = ‖Y0‖22 where Y (t) ∈ R2 contains y1(t) and
y2(t) as its components and M ∈ R2×2. In fact, for any Y0 ∈ R2 the solution stays on the
circle with radius ‖Y0‖22.

Derive expressions for the numerical solution Yn and ‖Yn‖22 that results from applying the
Trapezoidal Rule to the problem in part above and use them to determine if the Trapezoidal
Rule preserves ‖Yn‖22 = ‖Y0‖22?
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