
1	

Programming	assignment	#1

1.1	Error	analysis	of	Horner’s	rule	
1. Need	to	find	a	forward	error	bound	of	Horner’s	method	and	find	the	relative	error

Using	(2)	from	the	problem	description,	it	follows	that	

åå
=

-

=
-

-
--

£+=

=-----=-
n

i

i
in

n
nn

n

i
i

i
i

n
nn

n
nnn

xxx

xxxcxp

0
22

1

0
12

2
1

11213010 ...ˆ)(

agaqaq

aqaqaqaq
(1.1)	

Where	
ku
ku

kk -
=£
1

gq 	is	used.	Next	assume	that	

() å
=

=
n

i

i
in xxp

0

~ a (1.2)	

Then	(1.1a)	provides	a	forward	error	bound	

()xpcxp nnn
~ˆ)(20 g£- (1.3)	

The	relative	error	bound	is	

()
()
()xp
xp

xp
cxp n

n
n

n
~ˆ)(

2
0 g£

-
(1.4)	

2. Equation	(2)	is	a	backward	error	because	it	shows	that	the	computed	value	of	the
polynomial	is	the	exact	value	at	x	multiplied	by	coefficients	of	the	polynomial	with	a	small	
perturbation.	The	perturbed	parameter	is	 () iii aqa += 1ˆ ,	where	q	is	a	relative	error.	The	
size	of	this	perturbations	is	bounded	by	

ku
ku

kk -
=£
1

gq .	 (1.5)	

3. A	perfectly	conditioned	problem	is	when	krel	=	1.	The	relative	condition	number	is
()
() n

n

n
n

n

n
rel xx

xx

xp
xp

aaa

aaa
k

+++

+++
==

...

...~

10

10 (1.6)	

To	make	krel	=	1,	the	sign	of	ai	should	match	the	sign	of	xi	to	produce	positive	products	(ai×xi	
>	0).	For	example,	if	all	coefficients	ai	>	0	and	x	>0	krel	=	1.	

	 2	

4.	The	value	of	pn(x)	can	be	sensitive	with	respect	to	perturbations	to	the	coefficients	when	
x	is	a	close	proximity	to	the	roots	because	the	denominator	approaches	zero	as	x®r.	
	
	
1.2		
Executive	summary	
Horner’s	rule	was	employed	to	evaluate	p9(x)	at	381	points	in	the	interval	[1.91,	2.1]	in	
single	precision.	The	result	is	compared	against	“exact”	solution	obtained	using	the	product	
form	in	double	precision.	A	priori	forward	error	bounds	were	analytically	estimated.	The	
values	of	p9(x)	computed	with	Horner’s	rule	have	a	notably	poor	agreement	with	the	exact	
solution.	The	relative	error	at	some	points	is	in	O(1e8).	Nevertheless,	computed	results	
stay	within	the	error	bound.		
	
	
1.2	-	1.		
Statement	of	the	problem	

• Estimate	the	9th	degree	polynomial	using	Horner’s	rule	and	a	priori	error	bounds	in	
single	precision.		

• Compare	results	with	the	exact	solution	(double	precision,	using	the	product	form).		
• Verify	the	correctness	of	the	bounding	curves.	

	
Description	of	the	algorithms	

• Horner’s	Rule	was	coded	(plnm_horner.F90)	
() ()()()()nnn xxxxxp aaaaa ++++= -1210 ... 	

Calculation	is	performed	in	single	precision.		
• The	a	priori	error	bound	was	evaluated	using	(1.2,	1.3,	1.5)	(plnm_horner.F90)	in	

single	and	double	precisions.	
	
Results	
Results	of	the	experiments	are	presented	in	Figure1.1.	The	exact	solution	is	shown	
separately	to	see	the	shape	of	the	polynomial	function.	The	bottom	panel	demonstrates	the	
exact	solution,	the	estimate	derived	via	Horner’s	rule,	and	a	priori	upper/lower	error	
bounds.	Histograms	of	the	absolute	errors	between	the	exact	solution	in	double	and	single	
precisions	and	the	estimate	obtained	using	Horner’s	rule	are	presented	in	Figure	1.2.		
	
Conclusions	
Computed	p9(x)	using	Horner’s	Rule	in	single	precision	(Ph_sp)	has	a	very	poor	match	with	
the	exact	solution	(Pex_dp).	Absolute	errors	|Ph_sp	–	Pex_dp|	are	in	O(10-3)	(Figure	1.2,	
top).	Nevertheless,	the	estimates	derived	via	Horner’s	rule	stay	within	the	a	prior	error	
bounds	(Figure	1.1,	bottom).	The	bound	is	very	broad	and	not	even	closely	bounds	
Horner’s	estimate	(Ph_sp).	On	average,	the	bound	is	O(103)	times	bigger	than	Ph_sp.	This	is	
due	to	the	fact	that	the	bound	gives	the	most	extreme	estimates	of	the	errors.	The	value	of	
()xpn~ 	is	proportional	to	(|x|n)	(Eq.	1.6),	which	can	be	very	high	for	n=9	and	|x|>1.	Note	that	

the	bounds	are	wider	towards	the	right	boundary	of	the	domain,	due	to	larger	|x|	values.		

	 3	

	
Figure	1.1.	Top:	p9(x)	estimated	using	the	product	form	in	double	precision	(exact	solution).	
Bottom:	The	exact	solution	(red),	the	estimate	derived	via	Horner’s	rule	(green),	and	a	priori	
upper/lower	error	bounds.	
	

	 4	

	
	
Figure	1.2.	Histograms	of	the	absolute	error	of	the	p9(x)	estimates	via	Horner’s	rule	
compared	to	the	exact	solution	in	double	precision	(top)	and	in	single	precision	(middle).	In	
the	bottom	panel,	absolute	error	between	the	exact	solution	in	double	precision	and	Horner’s	
rule	estimate	in	double	precision.		
	
	
1.2	-	2.		
Statement	of	the	problem	

	 5	

• Repeat	the	previous	procedure	with	p9(x)	evaluated	using	the	product	form	in	single	
precision	as	the	exact	value.		

• Evaluate	how	this	has	changed	results.		
	
Description	of	the	algorithms	

• Exact	value	of	p9(x)	was	evaluated	using	the	product	form	in	single	precision.		
• Same	analysis	was	repeated	as	in	1.2-1.		
• For	verification,	the	estimate	of	p9(x)	using	Horner’s	rule	calculation	was	completed	

in	double	precision	(Figure	1.2,	bottom).		
	
Results	
Results	of	the	experiments	are	presented	in	Figure1.3.	Absolute	errors	between	the	exact	
solution	in	single	precisions	and	the	estimate	obtained	using	Horner’s	rule	are	shown	in	
Figure	1.2	(middle).		
	
Conclusions	
Changing	precision	of	the	exact	solution	has	not	impacted	notably	the	results.	The	error	
bounds	stay	very	broad.	The	magnitude	of	the	absolute	error	between	the	Ph_sp	and	the	
error	bounds	has	not	noticeably	changed	(Figure	1.3,	bottom	and	Figure	1.2,	middle).	The	
reason	is	that	switching	from	double	to	single	precision	has	only	lightly	impacted	the	
accuracy	of	the	floating	operation	of	(x-2)	(Figure	1.3,	top)	because	the	values	of	the	mesh	
points	are	within	the	single	precision	accuracy.	The	absolute	error	between	the	exact	
solutions	in	single	and	double	precisions	is	<10-14.	Note	an	amplification	of	the	error	at	the	
edges	of	the	interval	related	to	Runge’s	phenomenon.			
It	is	interesting	to	mention	that	switching	the	calculation	of	the	exact	solution	from	double	
to	single	precision	has	not	resulted	in	any	obvious	reduction	of	error	between	the	exact	
solution	and	Horner’s	rule	(Figure	1.2	middle).	However	switching	to	double	precision	in	
the	Horner’s	rule	calculation	significantly	reduces	the	error	(by	~10-8	times)	(Figure	1.2	
bottom).	This	demonstrates	that	the	computational	error	accumulates	and	get	amplified	
(by	the	factor	of	n)	in	the	Horner’s	rule.		
	
	
1.2	-3.		
The	fact	that	the	a	priori	error	bound	is	evaluated	in	single	precision	is	significant	because		

()xpcxp nnn
~ˆ)(20 g£- 	

	
And	g2n	~	O(u)	(u	is	the	unit	roundoff	error	of	the	floating	point	system),	which	is	O(10-8)	
for	single	precision	and	O(10-16)	for	double	precision.	The	error	bounds	would	be	much	
tighter	(by	~108	times)	if	double	precision	is	used.	It	would	be	better	to	use	a	double	
precision	for	the	a	priori	bound	evaluation.		
	
	

	 6	

	
Figure	1.3.	Absolute	error	of	the	exact	solution	for	p9(x)	estimates	in	double	precision	and	
single	precision	(top).	Note	an	amplification	of	the	error	at	the	edges	of	the	interval	(Runge’s	
phenomenon).		In	the	bottom	panel,	the	absolute	error	between	the	exact	solution	in	single	
precision	and	Horner’s	rule	estimate	(in	single	precision)	is	shown.		
	
	
1.3		
Derive	a	running	error	bound	formula.	The	method	provides	a	posteriori	error	
bound.	
	
	
The	computed	value	of	Horner’s	rule	is	
	
() () iiiii cxc ade ++=+ + 1ˆˆ1 1 ,	 	 	 	 	 	 	 (3.1)	
	

	 7	

where	ci		is	the	exact	value	of	the	polynomial	in	Horner’s	rule	evaluated	in	exact	arithmetic.	
uu ii ££ ed , ,	where	u	is	the	unit	roundoff	of	the	floating	point	system.	

	
Define	 iii ecc +=ˆ ,	with	en	=	0		 	 	 	 	 	 (3.2)	
	
From	(3.1)	and	using	the	definition	(3.2)	
	

() iiiiiiiiiiiii xcecxxccxcec adade +++=++=++ +++++ 11111 ˆˆˆˆ 	 	 (3.3)	
	
After	rearranging	terms	in	(3.3)	and	noticing	that	according	to	Horner’s	rule	 11 a+= +ii xcc ,	
we	get	
	

iiiiii cxcxee ˆˆ 11 ed -+= ++ .	 	 	 	 	 	 	 (3.4)	
	
From	Cauchy-Schwartz	inequality	
	

iiiiii cxcexe ˆˆ 11 ed ++£ ++ .		 	 	 	 	 	 (3.5)	
	
Since	 uu ii ££ ed , ,	(3.5)	becomes	
	

()iiii cxcuexe ˆˆ 11 ++£ ++ .			 	 	 	 	 	 (3.6)	
	

0, =£ nii ue bb 	
	
Where	 iiii cxcx ˆˆ 11 ++= ++bb .	 	 	 	 	 	 (3.7).	
	
	
1.3-1	and	1.3-2	
	
Statement	of	the	problem	

• Compute	a	posteriori	error	bound	estimate.		
• Compare	results	with	the	a	priori	bound	prediction	obtained	in	1.2	when	Horner’s	

rule	and	the	error	bound	are	obtained	in	single	precision	and	the	exact	is	evaluated	
in	double	precision	(Pex_dp).	

	
Description	of	the	algorithms	

• The	a	posteriori	(running)	error	bound	was	evaluated	using	(3.6,	3.7).	
• The	code	was	added	to	the	Horner’s	rule	loop	(plnm_horner.F90)	in	single	precision.	

	
Results	
A	priori	error	bounds,	a	posteriori	(running)	error	bounds	and	the	absolute	difference	
|Pex_dp-Ph_sp|	are	plotted	in	Figure	3.1.		

	 8	

	
Conclusions	
The	running	error	bound	is	much	tighter	(about	18	times)	and	gives	a	more	accurate	
estimate	of	the	error	than	the	a	priori	error	bound	estimate	(Fig.	1.4).	The	running	error	
bound	is	only	~2.5	to	20	times	bigger	than	the	actual	absolute	error	|Pex_dp-Ph_sp|.	The	
absolute	error	stays	within	the	running	error	bound.		
	

	
Figure	1.4.	A	priori	error	bound	(red),	a	posteriori	(running)	error	bound	(green),	and	the	
absolute	error	of	the	Horner’s	rule	estimate	vs	exact	solutions	for	p9(x)	(blue).		
	
	
1.3-3.		
Statement	of	the	problem	

• Repeat	the	procedure	and	analysis	for	two	other	polynomials	
	
Description	of	the	algorithms	

• Two	polynomials	are	proposed	of	order	3	and	4	
• The	intervals	are	chosen	within	the	proximity	of	the	roots	
• Polynomial	#2:	

P3(x)	=	(x-3)3	=	x3-9x2+27x-27	
Considered	interval	is	[2.9,	3.1].	

• Polynomial	#4:	
P4(x)	=	(x-4)4	=	x4-16x3+96x2-256x+256	
Considered	interval	is	[3.9,	4.1].	

	
Results	
Results	for	two	other	polynomials	are	presented	in	Figures	1.5	(p3(x))	and	1.6	(p4(x)).		
	
	

	 9	

	

	

	
Figure	1.5.	Experiments	with	p3(x).	Top:	p3(x)	exact	solution	evaluated	in	double	precision.	
The	exact	solution	(red),	the	estimate	derived	via	Horner’s	rule	(green),	and	a	priori	
upper/lower	error	bounds	(red	dashed).	Middle:	same	as	the	top	panel	but	the	exact	solution	
evaluated	in	single	precision.	Bottom:	A	priori	error	bound	(red),	a	posteriori	(running)	error	
bound	(green),	and	the	absolute	error	of	the	Horner’s	rule	estimate	vs	exact	solutions	for	p3(x)	
(blue).	
	

	 10	

	

	

	
	
Figure	1.6.	Experiments	with	p4(x).	Top:	p4(x)	exact	solution	evaluated	in	double	precision.	
The	exact	solution	(red),	the	estimate	derived	via	Horner’s	rule	(green),	and	a	priori	
upper/lower	error	bounds	(red	dashed).	Middle:	same	as	the	top	panel	but	the	exact	solution	
evaluated	in	single	precision.	Bottom:	A	priori	error	bound	(red),	a	posteriori	(running)	error	
bound	(green),	and	the	absolute	error	of	the	Horner’s	rule	estimate	vs	exact	solutions	for	p4(x)	
(blue).	
	
Conclusions	
Experiments	with	the	two	proposed	polynomials	demonstrate	same	results,	in	general.	
That	is:	

	 11	

• The	a	priori	error	bounds	are	too	broad	and	provide	a	very	rough	error	bound	
estimates	(Figs.	1.5	top,	1.6	top).		

• Switching	to	a	single	precision	in	pn(x)	evaluation	does	not	impact	the	results	
• The	running	error	provides	~O(10)	times	narrower	bound	than	the	a	priori	

estimate.		
	
Nevertheless,	there	are	substantial	differences	in	the	experiments	with	the	lower	order	
polynomials.		

(1) The	Horner’s	rule	evaluated	in	single	precision	is	closer	to	the	exact	solution.	The	
absolute	error	is	O(10-6)	for	p3(x)	and	O(10-4)	for	p4(x).	This	demonstrates	the	
tendency	of	the	Horner’s	rule	to	have	higher	error	for	higher	degree	polynomials.		

(2) The	error	bounds	are	tighter	in	agreement	with	Eq.	(1.2)	and	(1.3).		
	
	
	
Instructions	for	running	the	code	and	plotting	the	results	
	
The	tar	bundle	program1_Dukhovskoy.tar	includes	Fortran	codes	where	all	calculations	are	
conducted.	It	also	includes	Makefile	for	compiling	and	matlab	codes	for	plotting	results.	
1)	Untar	file	
2)	Change	library	directory	pathnames	in	the	Makefile		
3)	Compile	the	codes,		
	
ddmitry@mars: /FCM1> make
/opt/intel/12/bin/ifort -c -convert big_endian -O3 -I/opt/hpc/intel13/include
utils.F90
/opt/intel/12/bin/ifort -c -convert big_endian -O3 -I/opt/hpc/intel13/include
plnm_horner.F90
/opt/intel/12/bin/ifort utils.o plnm_horner.o -L/opt/hpc/intel13/lib64 -limf -lm -o
hrn.x
	
it	should	produce	an	executable	hrn.x	
ddmitry@mars: /FCM1> ls -rlt
total 976
-rwxr-xr-x 1 ddmitry coaps 682 Oct 5 14:06 Makefile
-rw-r--r-- 1 ddmitry coaps 482 Oct 6 00:57 PARAM2.dat
-rw-r--r-- 1 ddmitry coaps 421 Oct 6 00:58 PARAM1.dat
lrwxrwxrwx 1 ddmitry coaps 10 Oct 6 08:42 PARAM.dat -> PARAM3.dat
-rw-r--r-- 1 ddmitry coaps 4458 Oct 6 11:45 utils.F90
-rw-r--r-- 1 ddmitry coaps 2557 Oct 6 11:47 plnm_horner.F90
-rw-r--r-- 1 ddmitry coaps 4864 Oct 6 12:11 plot_polynom_fort.m
-rw-r--r-- 1 ddmitry coaps 501 Oct 6 13:58 PARAM3.dat
drwxr-xr-x 2 ddmitry coaps 4096 Oct 6 14:32 bkp
-rw-r--r-- 1 ddmitry coaps 20480 Oct 6 14:33 program1_Dukhovskoy.tar
-rw-r--r-- 1 ddmitry coaps 26888 Oct 6 14:36 utils.o
-rw-r--r-- 1 ddmitry coaps 5886 Oct 6 14:36 utils.mod
-rw-r--r-- 1 ddmitry coaps 18608 Oct 6 14:36 plnm_horner.o
-rwxr-xr-x 1 ddmitry coaps 874548 Oct 6 14:36 hrn.x
	
	
Edit	PARAM?.dat	files	–	change	output	directory	name	

	 12	

PARAM?.dat	files	include	all	necessary	information	for	the	experiments	
PARAM1.dat	–	polynomial	p9(x)	
PARAM2.dat	polynomial	p3(x)	
PARAM3.dat	polynomial	p4(x)	
	
The	code	can	be	run	two	ways:	
hrn.x	PARAM1.dat	
	
Or	make	a	soft	link	to	the	PARAM?.dat	that	needs	to	be	run	
And	type	
hrn.x	
	
	
Plot	output:	
In	plot_polynom_fort.m	
Change	plnm	=	1	(2	or	3)	corresponding	to	PARAM1(2	or	3).dat	
Change	output	directory	name		
Run	the	code	in	Matlab.	
	
	
	
	
	
	
	
	
	

