
Graded Homework 3 Numerical Linear Algebra 2024

The solutions are due by 11:59PM on Friday March 29, 2024

Programming Exercise

Problem 3.1

3.1.a Overview

Your general task is to implement two basic approaches to solving the linear least squares
problem

min
x∈Rk
‖b− Ax‖2

given b ∈ Rn and the matrix A ∈ Rn×k with linearly independent columns.
The two algorithms are:

1. the approach based on the problem transformation

HkHk−1 · · ·H1A =

(
R
0

)
, HkHk−1 · · ·H1b =

(
c
d

)
,

where Hi, 1 ≤ i ≤ k are Householder reflectors, R ∈ Rk×k is a nonsingular upper
triangular matrix with positive elements on the diagonal, c ∈ Rk, and d ∈ Rn−k.

2. The incremental algorithm for updating the solution

x
(n)
min = argmin

x∈Rk

‖bn − Anx‖2

to
x
(n+1)
min = argmin

x∈Rk

‖bn+1 − An+1x‖2

where all of the matrices are as defined in the class notes. You may implement the
weighted version if you wish.

All routines should be implemented to be as efficient as possible in space and operations.
Your solutions must be clear and concise about justifying your design.

3.1.b Tasks

Task 1

Design, execute and summarize tests to demonstrate that your codes are correct. This should
use specific problems with particular properties to make a point, sets of problems to show

1



overall statistical behavior of the accuracy for particular classes of problem, problems with a
range of dimensions. You should also show that your incremental code produces consistent
results with your “full problem” code.

You may use state-of-the-art libraries and problem solving environments, e.g., Matlab, to
assist in designing, testing, and organizing your results. For example, you may use Matlab
to check the solutions by comparing it to yours or to generate test problems. As noted in the
syllabus, you may also use Matlab or related languages to implement your codes. However,
your codes must be written in such a way that the data structures and control structures
are clear and easily translated into a compiled and typed language.

Task 2

Consider regularized linear least squares of the form

min
x∈Rn
‖b− x‖22 + λ‖Lx‖22

x, b ∈ Rn, L ∈ Rn−1×n

eTi Lei = 1, eTi Lei+1 = −1, and all other elements of L are 0.

For example, if n = 10, we have L ∈ R9×10

L =



1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 0 1 −1


.

This is a simple way to mitigate noise in the observations of some value. In this case
b = xtrue +w where xtrue contains ξtrue1 , . . . , ξtruen that are n samples of the signal xtrue(ti) at
time values t1 = 0, t2, . . . , tn−1, tn = 4, and w contains ωGauss

1 , . . . , ωGauss
n that are n samples

of a standard Gaussian distribution representing noise on the observed signals, i.e., eTi b = βi
is what is received as the i-sample rather than ξtruei . To improve the quality of the sample βi
the regularized least squares problem is solved to obtain xRLS ∈ Rn which should be a better
approximation of xtrue than b if λ > 0 is chosen correctly and assuming the simple smoothing
penalty term is sufficient for the noise properties. The idea behind L is that it assumes that
the two successive elements of xtrue are close in value. Of course, that is increasingly false if
the samples of xtrue grow in separation in t, i.e., fewer samples.

Consider the values λ = 1, 10, 100, 1000 and n = 100, 200, 300, 400, 500. For each pair
(λ, n) run several instances of generating xtrue, contaminating it with a randomly generated w

2



to get b from which you recover xRLS. Organize and discuss the quality of the reconstruction
xRLS vs xtrue in terms of n and λ.

Use the following sinusoid as the underlying signal

xtrue(t) = sin(t) + t cos2(t), 0 ≤ t ≤ 4

and use t1 = 0, tn = 4 for n evenly separated time values.
You can use either of your linear least squares codes for this task but you are encouraged

to use the incremental version since this is a particularly important approach for real-time
signal processing.

You may, of course, explore the problem further with other xtrue(t), noise variances,
magnitudes and distributions.

3.1.c Organization of Results

One of the main goals of this assignment is for you to learn how to organize and present
your design, execution and analysis of observations. As noted above, you may use graphics,
statistical, and algorithmic support from established libraries and environments such as
Matlab. The algorithmic support, of course, may not be used as a substitute for your codes
but it can be used for problem generation, i.e., random number generation, computation of
sums for comparison, and computation of various values useful for presentation of results.
Make use of specific tests, i.e., particular sums of a particular length, and its results to make
points, e.g., verifying very well or very ill conditioned examples as well as large groups of
sums that are some how related to make a point, e.g., mean and variance of accuracy of the
computed sum. Histograms, graphs and appropriate tables should be used to compress data
and support conclusions. Your description of your codes and results must also be clear as to
how you used any environment or library you did not write as part of your solutions.

Simply running a few examples and comparing the answers to the exact sums is not
acceptable and will not prepare you for more complicated algorithm evaluation later in your
use of optimization for research or other classes.

3.1.d Comments on Test Problems

For the linear least squares codes and experiments in Task 1, you should include for various
values of n, k, and b problems for at least the three situations:

1. n = k, i.e., a square nonsingular matrix A where xmin = A−1b.

2. n > k and Ax = b for b ∈ Rn and b ∈ R(A) i.e., a rectangular matrix A with full
column rank and a vector b that define a consistent set of overdetermined equations.

3. n > k and b ∈ Rn and b 6∈ R(A) i.e., a rectangular matrix A with full column rank and
a vector b = b1 + b2, b1 ∈ R(A), b2 6∈ R(A), b2 6= 0, that define a linear least squares
problem with a nonzero residual rmin = b2 = b− Axmin

3



This requires careful construction of the test problems. See the discussion below.
When generating test problems, you may use library routines available in whatever lan-

guage environment you are using. You may also use its factorizations, e.g., to compute the
QR factors of a given matrix A = QR where A,Q ∈ Rn×k, QTQ = Ik and R ∈ Rk×k is
nonsingular, upper triangular and has positive diagonal elements. Also note R(A) = R(Q)
as we have discussed in class.

Note you can also generate the matrices of the types required for this assignment, e.g.,
nonsingular matrices, full rank rectangular matrices, i.e., A ∈ Rn×k for n ≥ k with linearly
independent columns, and isometries, i.e., Q ∈ Rn×k for n ≥ k such that QTQ = Ik. The
techniques are reviewed below. If there is confusion on how to generate these matrices ask
in class or set up an appointment to discuss them.

A nonsingular n × n matrix, A, can easily be generated from a random n × n matrix
G by adding an n × n diagonal matrix, D. (The nonzero diagonal elements of D can be
positive or negative.) The magnitude of the nonzero elements of D are taken so that the
matrix G+D is strictly diagonally dominant. Since you may want the test matrix not to be
strictly diagonally dominant for some tests, you can postprocess G+D by applying random
row and column permutations A = Prows(G + D)Pcols. This preserves nonsingularity while
generically destroying diagonal dominance.

An n × k matrix, A, with linearly independent columns can be generated using the
technique described above to form an n× n nonsingular matrix. Selecting k columns of an
n×n nonsingular matrix yields an n×k matrix, A, with linearly independent columns. You
may also select k rows to get a k × n matrix and then take A to be the transpose.

A technique that avoids producing an n × n matrix in an effort to avoid forming large
dense matrices, starts by forming a set of k linearly independent vectors by defining a
lower trapezoidal matrix, L ∈ Rn×k with nonzero diagonals. The columns must be linearly
independent due to the locations of the 0’s and the nonzeros on the diagonal. To create the
matrix A that does not have the upper triangular part 0 simply postmultiply by a k × k
nonsingular matrix. This can be created as above or more simply by generating a random
k × k upper triangular matrix with nonzeros on the diagonal. Note that this technique also
generates an n × n nonsingular matrix when k = n. As before random permutations can
also be applied to scramble the matrices.

Routines in Matlab or any state-of-the-art library can be used to verify that the columns
of the matrix A generated are sufficiently linearly independent, i.e., not close to being de-
pendent.

In addition to using built-in primitives of MATLAB or similar environments to generate
orthogonal matrices it is possible to generate them via simple techniques. For example, an
n × n rotation matrix can be easily defined by considering a random index pair (i, j) and
random angle θ. The matrix, Z, that is the identity everywhere except positions (i, i), (j, j),
(i, j), (j, i), where it is taken to be

cos θ = eTi Zei, cos θ = eTj Zej, sin θ = eTi Zej, − sin θ = eTi Zej

is a plane rotation and orthogonal, as we have discussed in class. Selecting many, say s,
random index pairs (i, j) and random angles θ and multiplying all of the rotations they

4



define together yields an orthogonal matrix

Q = Z1Z2 · · ·Zs.

Of course, you need to select enough pairs and angles, s, so that the matrix is dense.
Similarly, one can use reflectors to generate an orthogonal matrix Q. Simply choose

several random vectors, vi, i = 1, . . . , s for a large s. Then for each vi form an elementary
reflector

Qi = I − 2uiu
T
i , ui =

1

‖vi‖2
vi

and Q = Q1Q2 · · ·Qs. Taking s >> n is a good way of scrambling the directions defining Q.
Once an n×n orthogonal Q is computed selecting randomly k of the n columns yields an

n×k matrix Q̃ that has orthonormal columns, i.e., Q̃T Q̃ = Ik. Of course, it is not necessary
to form the n×n orthogonal Q to take k selected columns. After selecting the indices of the
columns of Q you plan to use, then rather than computing all of Q by taking the products
of the s rotations or reflectors you can simply apply each one in turn to a set of k vectors
that are initialized to the standard basis elements defined by the randomly selected column
indices.

For example, suppose you want columns 2, 10 and 50 of Q and Q is defined as the product
of s some set of reflectors. The isometry Q̃ ∈ Rn×3 is efficiently computed using

Q̃ =
(
e2 e10 e50

)
for i = 1, . . . , s Q̃← QiQ̃ end

Of course, there is no reason to use only reflectors or rotations. A mix of reflectors and
rotations can also be used.

When using either rotations, reflectors or a combination, it is necessary to compute
the the matrix-matrix product or matrix-vector products efficiently so as not to take huge
amounts of time when creating test problems since you must run many of them. Make sure
you exploit all of the structure available to gain computational and storage efficiency. You
should of course point out anything you do along these lines in your solution.

You should verify that the matrix computed has orthonormal columns to at least single
precision accuracy. This computation of QTQ or Q̃T Q̃ and comparison to In or Ik should be
performed in double precision.

A final simple way to generate a problem, a basis and an orthonormal basis is to generate
a random matrix A ∈ Rn×k and then use a robust state-of-the-art library algorithm, e.g.,
in Matlab, to compute the QR factors of a given matrix A = QR where A,Q ∈ Rn×k,
QTQ = Ik and R ∈ Rk×k is nonsingular, upper triangular and has positive diagonal elements.
We have that R(A) = R(Q). The matrix Q can be ysed as discussed below along with A
to generate particular problems. Once again your should check the matrix R to make sure
it is sufficiently nonsingular by examining its diagonal elements or computing its condition
number using a state-of-the-art library algorithm.

5



For the three situations mentioned earlier, you should run problems where you have
created the problem with a known solution and those for which you do not know the solution.
You must consider each of these classes of problems in your report.

To form a consistent overdetermined set of equations given A with a known solution,
z, simply set b to b = Az. These computations should also be done in double precision
especially if your code is in single precision.

A linear least squares problem with known solution, xmin, and nonzero residual rmin =
b−Axmin 6= 0 can be created by modifying a consistent overdetermined system with known
solution as follows:

1. Choose your desired solution xmin

2. Compute b1 ∈ Rn with b1 ∈ R(A) by b1 = Axmin.

3. Set b to b = b1 + b2 where b2 is any vector that is chosen to be orthogonal to R(A).

The linear least squares problem
min
x∈Rk
‖b− Ax‖2

therefore has solution xmin and residual rmin = b2. Generating b2 ∈ R⊥(A) requires some
more effort.

To generate b1 and b2 in their appropriate spaces, it is convenient therefore to generate an
orthonormal basis, Q ∈ Rn×k, and then generate A ∈ Rn×k so that R(A) = R(Q). Given Q,
A can be generated by computing A = QM where M ∈ Rk×k is a random nonsingular matrix
possbily with convenient structure, e.g., upper triangular with positive diagonal elements so
systems involving Mw = v are easily solved. As noted above you can also generate a random
A ∈ Rn×k and recover a Q and R from a state-of-the-art library.

Generating b1 and b2 is a bit more complicated. Given any vector v ∈ Rn we have

v = v1 + v2, v1 ∈ R(Q) v2 ∈ R⊥(Q)

v1 = Q(QTv) v2 = v − v1

So one way of generating these vectors is to take a random vector v and compute v1 and v2
as above. Of course, a priori you will not know the relative magnitudes of v1 and v2. It is
possible that the random vector v will be almost entirely in R(Q) or almost orthogonal to
it. So you may have to try several random v until you get two reliable directions v1 and v2.
In any case, you should check that cos θ1,2 = vT1 v2/(‖v1‖2‖v1‖2) is suitably small to verify
that finite precision has not caused difficulties. You should, in fact, try several such pairs
of various dimensions to test your code. Additionally, to analyze your code’s performance,
given any such pair, you can create multiple b vectors by taking various combinations of v1
and v2 in a controlled manner, i.e., set

b = b1 + b2 = α1v1 + α2v2

keeping ‖b‖2 constant. When α1 is large relative to α2 the system is closer to consistent than
when α2 dominates.

6



Note that this technique can also be used when you have already selected b1 as mentioned
above when designing a problem with a known solution. Taking a random vector v and
computing v2 = v −Q(QTv) ∈ R⊥(Q) provides the v2 to use in the expression

b = b1 + b2 = b1 + α2v2

to preserve the chosen solution of the problem and b1 while allowing α2 to be used to adjust
the dominance or lack thereof for b1 in b.

When you generate problems for which you do not know the solution a priori, you should
think about how you would determine if the solution is reasonable. For example, you should
examine the residual carefully to make sure it satisfies all required conditions. Also note,
since the solution is supposed to minimize the norm of the residual over all x, you can also
check residuals generated for randomly selected x vectors and compare their norms to the
norm of the residual generated by xmin. Finally, as noted above, you can compare your
results to other libraries or routines available to you.

7


