
Study Problems 3 Numerical Linear Algebra 1 Spring

2024

Problem 3.1

Let x and y be two vectors in Rn.

3.1.a. Show that given x and y the value of ‖x− αy‖2 is minimized when

αmin =
xTy

yTy

3.1.b. Show that x = yαmin + z where yT z = 0, i.e., x is easily written as the sum of
two orthogonal vectors with specifed minimization properties.

Problem 3.2

Recall that an elementary reflector has the form Q = I + αzzT ∈ Rn×n with ‖z‖2 6= 0.

3.2.a. Show that Q is orthogonal if and only if

α =
−2

zT z
or α = 0

3.2.b. Given v ∈ Rn, let γ = ±‖v‖ and z = v + γe1. Assuming that z 6= v show that

zT z

zTv
= 2

3.2.c. Using the definitions and results above show that Qv = −γe1

Problem 3.3

Let A ∈ Rn×k have full column rank. Describe an efficient algorithm based on Householder
reflectors, Hi, 1 ≤ i ≤ k that computes a matrix Q ∈ Rn×k with orthonormal columns such
that

R(A) = R(Q)

i.e., A and Q have the same range space.
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Problem 3.4

Consider a Householder reflector, H, in R2. Show that

H =

(
− cos(φ) − sin(φ)
− sin(φ) cos(φ)

)
where φ is some angle.

Problem 3.5

Let A ∈ Rn×n and Q ∈ Rn×k be given with QTQ = Ik, i.e., Q has orthonormal columns.
Find Mmin ∈ Rk×k such that

Mmin = argmin
M∈Rk×k

‖AQ−QM‖F

Problem 3.6

3.6.a. Let H = I + αxxT ∈ Rn×n, where α = −2/‖x‖22, be a Householder reflector.
Determine two distinct eigenvalues for H and associated eigenvectors.

3.6.b. Let γ = cos θ and σ = sin θ and consider the 2× 2 matrix

M =

(
γ σ
−σ γ

)
Determine the eigenvalues and eigenvectors of M .

Problem 3.7

If A ∈ Cn1×n2 and B ∈ Cn3×n4 then the Kronecker product

M = A⊗B ∈ Cn1n3×n2n4

is defined in terms of blocks Mij ∈ Cn3×n4 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 where

Mij = αijB.

The Kronecker product is useful for expressing many structured matrix expressions, e.g.,
the Cooley-Tukey FFT/IFFT.

Let A ∈ Cm×m, B ∈ Cn×n, x ∈ Cmn, and y ∈ Cmn.

3.7.a. Describe an algorithm to evaluate the matrix vector product

y = (A⊗B)x

i.e., given A,B, x determine y.
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3.7.b. What is the complexity of the algorithm?

3.7.c. How does the complexity of the algorithm compare to the standard matrix-
vector product computation, y = Mx, that ignores the structure of M .

Problem 3.8

If A ∈ Cn1×n2 and B ∈ Cn3×n4 then the Kronecker product

M = A⊗B ∈ Cn1n3×n2n4

is defined in terms of blocks Mij ∈ Cn3×n4 for 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2 where

Mij = αijB.

Let A,B,C,D ∈ Cn×n be given square matrices.

3.8.a. Show that
(I ⊗ A)(I ⊗B) = (I ⊗ AB)

3.8.b. Show that
(A⊗ I)(I ⊗B) = (I ⊗B)(A⊗ I) = (A⊗B)

3.8.c. Show that
(A⊗ I)(B ⊗ I) = (AB ⊗ I)

3.8.d. Show that
(A⊗B)(C ⊗D) = (AC)⊗ (BD).

3.8.e. Show that if A ∈ Cn×n and B ∈ Cn×n have inverses A−1 and B−1, respectively,
then (A⊗B) has an inverse.

Problem 3.9

Let A ∈ Rn×k have rank k, i.e., have k linearly independent columns. The linear least squares
problem

min
x∈Rk
‖b− Ax‖2

has a unique solution xmin for any b ∈ Rn. The mapping b 7→ xmin defines a linear transfor-
mation, A†, from Rn to Rk called the pseudoinverse.

The pseudoinverse for rectangular full column-rank matrices behaves much as the inverse
for nonsingular matrices. To see this answer the following questions and show the following
identities are true :

3.9.a. Use the normal equations to write A† in terms of A.
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3.9.b. If A ∈ Rn×n what is A†?

3.9.c. AA†A = A

3.9.d. A†AA† = A†

3.9.e. A†A = (A†A)T

3.9.f. AA† = (AA†)T

3.9.g. If A ∈ Rn×k has orthonormal columns then A† = AT . Why is this important for
consistency with simpler forms of least squares problems that we have discussed?

Problem 3.10

Any subspace S of Rn of dimension k ≤ n must have at least one orthogonal matrix Q ∈ Rn×k

with orthonormal columns such that R(Q) = S, The matrix P = QQT is a projector onto
S, i.e., Px is the unique component of x contained in S.

3.10.a. P is clearly symmetric, show that it is idempotent, i.e., P 2 = P .

3.10.b. Show that R(P ) = S.

3.10.c. Show that if M is an idempotent symmetric matrix then it is a projector onto
R(M).

3.10.d. Choose any subspace of R3 that has dimension 2 and construct two orthornor-
mal bases, Q1 and Q2. Verify that P = Q1Q

T
1 = Q2Q

T
2 .

Problem 3.11

(Problem 7.1.5 Golub and Van Loan (3rd Ed.), p. 318, Problem 7.1.5 Golub and Van Loan
(4th Ed.), p. 355)

Use the Schur decomposition of an arbitrary matrix A ∈ Cn×n, to show that for every
ε > 0 there exists a diagonalizable matrix B such that ‖A − B‖2 < ε. (Hint: consider a
simple condition on the eigenvalues of B that guarantee it is diagonalizable.)

Problem 3.12

Let x ∈ Rn be a known vector with components ξi = eTi x, 1 ≤ i ≤ n and consider the
computation of

ν = ξ1 − ‖x‖2
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where ‖x‖22 =
∑n

i=1 ξ
2
i . (Recall this is a key computation in the production of a Householder

reflector in least squares problems.) When ξ1 > 0 and ξ1 ≈ ‖x‖2 the cancellation in the
subtraction may result in a significant loss of accuracy.

Find an alternate expression for ν that does not suffer from cancellation when ξ1 > 0
and ξ1 ≈ ‖x‖2 . (Hint: Consider a difference of squares.)
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