Study Questions 4 Numerical Linear Algebra Spring

2024

Problem 4.1

For $A \in \mathbb{C}^{m \times n}$, prove that

$$
\begin{gathered}
\operatorname{rank}(A)=r \\
\mathcal{N}(A)=\operatorname{span}\left[v_{r+1}, \ldots, v_{n}\right] \\
\mathcal{R}(A)=\operatorname{span}\left[u_{1}, \ldots, u_{r}\right] \\
A=\sum_{i=1}^{n} u_{i} \sigma_{i} v_{i}^{H} \\
\|A\|_{2}=\sigma_{1} \\
\|A\|_{F}^{2}=\sigma_{1}+\cdots+\sigma_{r} \\
\min _{x \neq 0} \frac{\|A x\|_{2}}{\|x\|_{2}}=\sigma_{n}
\end{gathered}
$$

where $u_{i}=U e_{i}, v_{i}=V e_{i}, \sigma_{i}=e_{i}^{T} \Sigma e_{i}$, and $A=U \Sigma V^{H}$ is the SVD of A.

Problem 4.2

(Golub and Van Loan Problem 2.5.5 (3rd Ed.) p. 74, Golub and Van Loan Problem 2.4.2. (4th Ed.) p. 80)

Let $A \in \mathbb{R}^{m \times n}$ and show that

$$
\max _{x \in \Re^{n}, y \in \Re^{m}} \frac{y^{T} A x}{\|x\|_{2}\|y\|_{2}}=\sigma_{1}
$$

where σ_{1} is the largest singular value of A.

Problem 4.3

Given that we know the SVD exists for any complex matrix $A \in \mathbb{C}^{m \times n}$, assume that $A \in$ $\mathbb{R}^{m \times n}$ has rank k with $k \leq n$, i.e., A is real and it may be rank deficient, and show that the SVD of A is all real and has the form

$$
A=U\binom{S}{0} V^{T}=U_{k} \Sigma_{k} V_{k}^{T}
$$

where $S \in \mathbb{R}^{n \times n}$ is diagonal with nonnegative entries,

$$
\begin{gathered}
U=\left(\begin{array}{ll}
U_{k} & U_{m-k}
\end{array}\right), \quad U^{T} U=I_{m} \\
V=\left(\begin{array}{ll}
V_{k} & V_{n-k}
\end{array}\right), \quad V^{T} V=I_{n} \\
U_{k} \in \mathbb{R}^{m \times k}, \quad \text { and } \quad V_{k} \in \mathbb{R}^{n \times k}
\end{gathered}
$$

Hint: Consider the relationship between the SVD and the symmetric eigenvalue decomposition.

Problem 4.4

Consider the linear least squares problem with linear constraints:

$$
\min _{x}\|b-A x\|_{2}^{2} \quad \text { such that } \quad C x=d
$$

where $m \geq n \geq k, A \in \mathbb{R}^{m \times n}, C \in \mathbb{R}^{n \times k}, b \in \mathbb{R}^{m}, d \in \mathbb{R}^{k}, x \in \mathbb{R}^{n}, A$ has full column rank, and C has full row rank.

Show that the problem can be converted to an unconstrained linear least squares problem.

Problem 4.5

Suppose the matrices $A \in \mathbb{R}^{n \times k}, x \in \mathbb{R}^{k}, V_{s} \in \mathbb{R}^{k \times s}, n>k>s+1$, with the columns of A linearly independent, and the columns of $V_{s}=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{s}\end{array}\right]$ also linearly independent.
4.5.a Consider the constrained linear least squares problem,

$$
\min _{x \in x_{0}+\mathcal{R}\left(V_{s}\right)}\|b-A x\|_{2}
$$

where $x_{0} \in \mathbb{R}^{k}$ and $b \in \mathbb{R}^{n}$ are given. (The constraint set contains vectors of the form $\left.x=x_{0}+v, v \in \mathcal{R}\left(V_{s}\right)\right)$. Determine a system of equations that determine the unique solution $x^{*}=x_{0}+V_{s} c_{s}^{*}$ where $c_{s}^{*} \in \mathbb{R}^{s}$.
4.5.b Now suppose a column is added to V_{s} to define $V_{s+1}=\left[\begin{array}{lllll}v_{1} & v_{2} & \ldots & v_{s} & v_{s+1}\end{array}\right]$ so that the columns of V_{s+1} are also linearly independent. Determine a system of equations that determine the unique solution $\tilde{x}^{*}=x_{0}+V_{s+1} c_{s+1}^{*}$, where $c_{s+1}^{*} \in$ \mathbb{R}^{s+1}, to the modified linear least squares problem

$$
\min _{x \in x_{0}+\mathcal{R}\left(V_{s+1}\right)}\|b-A x\|_{2} .
$$

4.5.c Give sufficient conditions on the columns of V_{s+1} so that the two solutions are related by

$$
\begin{gathered}
c_{s+1}^{*}=\binom{c_{s}^{*}}{\gamma_{s+1}^{*}} \\
\tilde{x}^{*}=x_{0}+V_{s+1} c_{s+1}^{*}=x^{*}+v_{s+1} \gamma_{s+1}^{*}
\end{gathered}
$$

Problem 4.6

Consider the roots of unity needed for a radix-2 Cooley-Tukey version of the FFT of length $n=2^{t}$

$$
\hat{f}=F_{n} f=\frac{1}{\sqrt{n}} A_{0} A_{1} \ldots A_{t-1} P_{n} f
$$

where P_{n} is the bit reversal permutation, $A_{k}=I_{2^{k}} \otimes B_{2^{t-k}}, k=0,1, \ldots, t-1$, and

$$
\begin{gathered}
B_{r}=\left(\begin{array}{cc}
I_{s} & \Omega_{s} \\
I_{s} & -\Omega_{s}
\end{array}\right) \\
\Omega_{s}=\left(\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & \mu_{r} & 0 & \ldots & 0 \\
0 & 0 & \mu_{r}^{2} & \ldots & 0 \\
& & & \ddots & \\
0 & 0 & \ldots & 0 & \mu_{r}^{s-1}
\end{array}\right), \quad B_{2}=\left(\begin{array}{cc}
1 & 1 \\
1 & \mu_{2}
\end{array}\right), \quad \mu_{r}=e^{-2 \pi i / r}, ; r=2 s
\end{gathered}
$$

(4.6.a) Identify the relationships between the roots of unity needed to define each of the A_{k}.
(4.6.b) Describe an algorithm to compute the required roots of unity. Try to make the critical path of the computation as short as possible as a function of n since its length is the coefficient of unit roundoff in the order bound on numerical error.

Problem 4.7

Consider a Cooley-Tukey version of the FFT of length $n=16$ that uses radix- 4 rather than radix-2, i.e., at each level of the FFT, all of the DFT's of length k are split into 4 each of length $k / 4$. For $n=16$ this implies

$$
\hat{f}=F_{16} f=\frac{1}{\sqrt{16}} A_{0} A_{1} P_{16} f
$$

where P_{16} is a permutation, $A_{k}=I_{4^{k}} \otimes B_{4^{t-k}}, k=0,1, \ldots, t-1$, and B_{r} is appropriately modified from the radix-2 version.
(4.7.a) Derive the factorization and define the A_{k} 's and P_{16}.
(4.7.b) Discuss the scatter form of P_{16} and its inverse permutation.
(4.7.c) Give the "wiring diagram" or compuational graph for F_{16} based on a radix-4 generalization of the radix-2 butterfly node we have described in class.

