
Study Questions 4 Numerical Linear Algebra Spring

2024

Problem 4.1

For A ∈ Cm×n, prove that

rank(A) = r

N (A) = span[vr+1, . . . , vn]

R(A) = span[u1, . . . , ur]

A =
n∑
i=1

uiσiv
H
i

‖A‖2 = σ1

‖A‖2F = σ1 + · · ·+ σr

min
x 6=0

‖Ax‖2
‖x‖2

= σn

where ui = Uei, vi = V ei, σi = eTi Σei, and A = UΣV H is the SVD of A.

Problem 4.2

(Golub and Van Loan Problem 2.5.5 (3rd Ed.) p. 74, Golub and Van Loan Problem 2.4.2.
(4th Ed.) p. 80)

Let A ∈ Rm×n and show that

max
x∈<n, y∈<m

yTAx

‖x‖2‖y‖2
= σ1

where σ1 is the largest singular value of A.

Problem 4.3

Given that we know the SVD exists for any complex matrix A ∈ Cm×n, assume that A ∈
Rm×n has rank k with k ≤ n, i.e., A is real and it may be rank deficient, and show that the
SVD of A is all real and has the form

A = U

(
S
0

)
V T = UkΣkV

T
k
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where S ∈ Rn×n is diagonal with nonnegative entries,

U =
(
Uk Um−k

)
, UTU = Im

V =
(
Vk Vn−k

)
, V TV = In

Uk ∈ Rm×k, and Vk ∈ Rn×k

Hint: Consider the relationship between the SVD and the symmetric eigenvalue decom-
position.

Problem 4.4

Consider the linear least squares problem with linear constraints:

min
x
‖b− Ax‖22 such that Cx = d

where m ≥ n ≥ k, A ∈ Rm×n, C ∈ Rn×k, b ∈ Rm, d ∈ Rk, x ∈ Rn, A has full column rank,
and C has full row rank.

Show that the problem can be converted to an unconstrained linear least squares problem.

Problem 4.5

Suppose the matrices A ∈ Rn×k, x ∈ Rk, Vs ∈ Rk×s, n > k > s + 1, with the columns of A
linearly independent, and the columns of Vs =

[
v1 v2 . . . vs

]
also linearly independent.

4.5.a Consider the constrained linear least squares problem,

min
x∈x0+R(Vs)

‖b− Ax‖2

where x0 ∈ Rk and b ∈ Rn are given. (The constraint set contains vectors of the
form x = x0 + v, v ∈ R(Vs)). Determine a system of equations that determine
the unique solution x∗ = x0 + Vsc

∗
s where c∗s ∈ Rs.

4.5.b Now suppose a column is added to Vs to define Vs+1 =
[
v1 v2 . . . vs vs+1

]
so that the columns of Vs+1 are also linearly independent. Determine a system of
equations that determine the unique solution x̃∗ = x0 + Vs+1c

∗
s+1, where c∗s+1 ∈

Rs+1, to the modified linear least squares problem

min
x∈x0+R(Vs+1)

‖b− Ax‖2.

4.5.c Give sufficient conditions on the columns of Vs+1 so that the two solutions are
related by

c∗s+1 =

(
c∗s
γ∗s+1

)

x̃∗ = x0 + Vs+1c
∗
s+1 = x∗ + vs+1 γ

∗
s+1
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Problem 4.6

Consider the roots of unity needed for a radix-2 Cooley-Tukey version of the FFT of length
n = 2t

f̂ = Fnf =
1√
n
A0A1 . . . At−1Pnf

where Pn is the bit reversal permutation, Ak = I2k ⊗B2t−k , k = 0, 1, . . . , t− 1, and

Br =

(
Is Ωs

Is −Ωs

)

Ωs =


1 0 0 . . . 0
0 µr 0 . . . 0
0 0 µ2

r . . . 0
. . .

0 0 . . . 0 µs−1r

 , B2 =

(
1 1
1 µ2

)
, µr = e−2πi/r, ; r = 2s

(4.6.a) Identify the relationships between the roots of unity needed to define each of
the Ak.

(4.6.b) Describe an algorithm to compute the required roots of unity. Try to make the
critical path of the computation as short as possible as a function of n since its
length is the coefficient of unit roundoff in the order bound on numerical error.

Problem 4.7

Consider a Cooley-Tukey version of the FFT of length n = 16 that uses radix-4 rather than
radix-2, i.e., at each level of the FFT, all of the DFT’s of length k are split into 4 each of
length k/4. For n = 16 this implies

f̂ = F16f =
1√
16

A0A1P16f

where P16 is a permutation, Ak = I4k ⊗ B4t−k , k = 0, 1, . . . , t − 1, and Br is appropriately
modified from the radix-2 version.

(4.7.a) Derive the factorization and define the Ak’s and P16.

(4.7.b) Discuss the scatter form of P16 and its inverse permutation.

(4.7.c) Give the ”wiring diagram” or compuational graph for F16 based on a radix-4
generalization of the radix-2 butterfly node we have described in class.
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