
Study Questions 5 Numerical Linear Algebra Spring

2024

Problem 5.1

Let A ∈ Rn×n be a symmetric positive definite and define the A-norm using the A-inner
product

〈v1, v2〉A = vT2 Av1

‖v‖2A = 〈v, v〉A.

Consider the linear system Ax = b with solution x∗ = A−1b. Define the two functions from
Rn to R

E(x) = ‖x− x∗‖2A, f(x) =
1

2
xTAx− bTx

( 5.1.a) Show that E(x) and f(x) have the same unique minimizer x∗.

( 5.1.b) If Ax = b is solved using the general descent method the stepsize αk, used
in xk+1 = xk + αkpk, is defined in terms of pk, rk and A. Show that αk is the
solution of a n× 1-dimensional minimization problem of the form

min
α∈R
‖v(k)1 − v

(k)
2 α‖2

expressed using its normal equations. In your solution, identify the vector norm
used to define the n × 1-dimensional minimization problem, give v

(k)
1 and v

(k)
2 ,

and show how αk arises from the associated normal equations.

Problem 5.2

Let A = QΛQT be a symmetric positive definite matrix where Q is an orthogonal matrix
and Λ is a diagonal matrix whose diagonal elements are positive and also are the eigenvalues
of A. Define

x̃ = QTx and b̃ = QT b

Ax = b and Λx̃ = b̃

Given x0 and x̃0, define the sequence xk as the sequence of vectors produced by steepest
descent applied to Ax = b and the sequence x̃k as the sequence of vectors produced by
steepest descent applied to Λx̃ = b̃.
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Let e(k) = xk − x and ẽ(k) = x̃k − x̃. Show that if x̃0 = QTx0 then

‖e(k)‖2 = ‖ẽ(k)‖2, k > 0

‖rk‖2 = ‖r̃k‖2, k > 0.

Also, what is the relationship between the stepsizes αk and α̃k for the xk and x̃k iterations
respectively.

Problem 5.3

Let A ∈ Rn×n be a symmetric positive definite matrix with eigendecomposition A = QΛQT

where Q is an orthogonal matrix and Λ is a diagonal matrix whose diagonal elements are
positive and also are the eigenvalues of A. Consider solving the linear system Ax = b with
solution x∗ = A−1b. using the general descent method.

( 5.3.a) Show that for the choice of stepsize αk used in the method we have rTk+1pk = 0,
i.e., rk+1 ⊥ pk in the Euclidean inner product, where rk+1 = b − Axk+1 is the
residual vector for xk+1.

( 5.3.b) Suppose we take a direction vector pk such that pk ⊥ rk, where rk = b−Axk
is the residual vector for xk. How does this affect the iteration?

( 5.3.c) A matrix polynomial of degree k+1 can be defined as Pk+1(A) = ν0I+ν1A+
· · · + νkA

k + νk+1A
k+1 where the νi are real scalars. When analyzing iterative

methods for linear systems the matrix polynomial can often be expressed in the
more specific product form of degree k + 1

Pk+1(A) =
k∏
i=0

(I − γiA) (1)

where the γi are real scalars. Consider solving Ax = b using the Steepest Descent
method, i.e., the general descent method with pk = rk. Show that the residual
at step k + 1, rk+1 = b− Axk+1 can be written as

rk+1 = Pk+1(A)r0

where r0 = b− Ax0 and Pk+1(A) has the product form of (1). Be specific about
relating the γi to parameters in the Steepest Descent sequence.

( 5.3.d) Assuming x̃k = QTxk, k ≥ 0 and b̃ = QT b, what matrix polynomial relates
r̃k+1 = b̃− Λx̃k+1 and r̃0 for the Steepest Descent method?
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Problem 5.4

Let A ∈ Rn×n be a symmetric positive definite tridiagonal matrix, i.e., its elements are 0
when not on the main diagonal or first superdiagonal or first subdiagonal. For n = 6, A
would have the form

A =


α11 α12 0 0 0 0
α21 α22 α23 0 0 0
0 α32 α33 α34 0 0
0 0 α43 α44 α45 0
0 0 0 α54 α55 α56

0 0 0 0 α65 α66


where αij = αji. Consider solving the linear system Ax = b with solution x∗ = A−1b. using
the general descent method.

Determine the computational complexity, i.e., what are the number of storage locations
and the number of computations, for the method. Be sure to give the numbers for each major
computation done in each iteration and for the matrix and any vectors required. Express
the totals as

Cnd +O(nd−1) computations and C̃nd̃ +O(nd̃−1) locations.

Problem 5.5

Let A ∈ Rn×n be a symmetric positive definite matrix with eigendecomposition A = QΛQT

where Q is an orthogonal matrix and Λ is a diagonal matrix whose diagonal elements are
positive and also are the eigenvalues of A. Consider solving the linear system Ax = b with
solution x∗ = A−1b. using the Steepest Descent method.

( 5.5.a) Suppose the n eigenvalues of A all have the same value, i.e., λ1,1 = λ2,2 =
. . . = λn,n = µ > 0. What behavior does this cause for the iteration from the
Steepest Descent method for all x0 ∈ Rn?

( 5.5.b) Now suppose the n eigenvalues of A on take on two distinct values, i.e.,
λ1,1 = λ2,2 = . . . = λs,s = µ1 > 0 and λs+1,s+1 = λs+2,s+2 = . . . = λn,n = µ2 > 0
with µ1 6= µ2. Does the behavior you identified when all eigenvalues had the
same value still occur? Justify your answer.

( 5.5.c) For the situation where µ1 6= µ2 are the only values taken on by the λi,i,
relate the stepsize αk used to compute xk+1 = xk + rkαk in the Steepest Descent
method to the µj and the residual vector rk.
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Problem 5.6

5.6.a

If CG is used to solve Ax = b where A is symmetric positive definite then the iterates and
errors have the form

xk = x0 + α0d0 + α1d1 + . . .+ αk−1dk−1 = xk−1 + αk−1dk−1

e(k) = x∗ − xk, x∗ = A−1b

e(0) = α0d0 + α1d1 + . . .+ αn−1dn−1, αi =
〈e(0), di〉A
〈di, di〉A

〈di, dj〉A = dTi Adj = 0 for i 6= j, 〈di, di〉A = dTi Adi = ‖di‖2A 6= 0

i.e., the vectors {d0, . . . , dn−1} are A-orthogonal.
It can be shown that taking an arbitrary x0 and d0 = r0 = b − Ax0 that we have the

spaces Sk for k = 0, . . . , n− 1 with multiple bases and satisfying the conditions

Sk = span [d0, d1, . . . , dk−1, dk] = span [d0, d1, . . . , dk−1, rk] = span [r0, r1, . . . , rk−1, rk]

rTk dj = 0, j = 0, . . . , k − 1

rTi rj = 0, i 6= j, 0leqi, j ≤ n− 1

xk+1 = x0 + zk = xk + αkdk, zk ∈ Sk.

It is straightforward to show that for CG we have

rT1 d0 = rT1 r0 = 0

span [d0, d1] = span [r0, r1] = span [r0, Ar0] .

Use the definitions and properties of CG given above and assume the induction hypoth-
esis,

Sk−1 = span
[
r0, Ar0, . . . , A

k−2r0, A
k−1r0

]
to show that

Sk = span
[
r0, Ar0, . . . , A

k−1r0, A
kr0
]
.

Hint: Consider the recurrence used in the efficient CG implementation to update
rk−1 to rk which relates rk−1, rk, dk−1 and A.
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5.6.b

Show that xk generated by CG satisfies

‖e(k)‖2A ≤ min
x∈x0+Sk−1

‖x∗ − x‖2A.

(In fact, for CG it is a strict inequality but you need not prove that.)

Problem 5.7

Suppose A is symmetric positive definite matrix and the system Ax = b with solution
x∗ = A−1b is to be solved by Steepest Descent and CG. An approximation of x∗ , denoted
v, is said to be accurate to d decimal digits if

‖x∗ − v‖A
‖x∗‖A

≤ 10−d

where accuracy is measured using the A-norm in this case.

5.7.a. Suppose A is symmetric positive definite with a condition number of 10. De-
termine an expression for a lower bound on the number of iterations of Steepest
Descent would be required to guarantee 6 places of accuracy in the solution of
Ax = b assuming that x0 was accurate to 3 decimal digits?

5.7.b. Suppose all you know about A is its condition number. Would you expect
Conjugate Gradient to be guaranteed to achieve the same accuracy as Steepest
Descent in fewer steps than the the number you determined for the previous part
of the question? If so what is the relationship between the two number of steps?
If not, why not?

5.7.c. What other information about A would you want to know to show that the
number of steps required by Conjugate Gradient to guarantee a given accuracy
is less than the number of steps based on only the condition number?

Problem 5.8

Let A ∈ Rn×n be a symmetric positive definite matrix, C ∈ Rn×n be a symmetric nonsingular
matrix, and b ∈ Rn be a vector. The matrix M = C2 is therefore symmetric positive definite.
Also, let Ã = C−1AC−1 and b̃ = C−1b.

The preconditioned Steepest Descent algorithm to solve Ax = b is:

A, M are symmetric positive definite
x0 arbitrary; r0 = b− Ax0; solve Mz0 = r0
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do k = 0, 1, . . . until convergence

wk = Azk

αk =
zTk rk
zTk wk

xk+1 ← xk + zkαk
rk+1 ← rk − wkαk
solve Mzk+1 = rk+1

end

The Steepest Descent algorithm to solve Ãx̃ = b̃ is:

Ã is symmetric positive definite

x̃0 arbitrary; r̃0 = b̃− Ãx̃0; ṽ0 = Ãr̃0

do k = 0, 1, . . . until convergence

α̃k =
r̃Tk r̃k
r̃Tk ṽk

x̃k+1 ← x̃k + r̃kα̃k
r̃k+1 ← r̃k − ṽkα̃k
ṽk+1 ← Ãr̃k+1

end

Show that given the appropriate consistency between initial guesses the preconditioned
steepest descent recurrences to solve Ax = b can be derived from the steepest descent
recurrences to solve Ãx̃ = b̃.
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