Study Questions 6 Numerical Linear Algebra Spring 2024

Two Useful Facts

Recall the following fundamental theorem and definition

1. (Schur Decomposition) For any $A \in \mathbb{C}^{n \times n}$ there exists $Q \in \mathbb{C}^{n \times n}$ and $R \in \mathbb{C}^{n \times n}$ where R is an upper triangular matrix and Q is a unitary matrix, i.e., $Q^{H} Q=Q Q^{H}=I$, such that $A=Q R Q^{H}$.
2. $A \in \mathbb{C}^{n \times n}$ is a normal matrix if and only if $A A^{H}=A^{H} A$ where H indicates Hermitian transpose of a matrix which is the transpose A^{T} if a $A \in \mathbb{R}^{n \times n}$.

Problem 6.1

(Modified Problem 7.1.1 Golub and Van Loan (3rd Ed.) p. 318, Problem 7.1.1(a) Golub and Van Loan (4th Ed.) p. 355)
6.1.a. Suppose $U \in \mathbb{C}^{n \times n}$ is block upper triangular of the form

$$
U=\left(\begin{array}{cc}
U_{11} & U_{12} \\
0 & U_{22}
\end{array}\right), \quad U_{11} \in \mathbb{C}^{k \times k}, \quad U_{22} \in \mathbb{C}^{n-k \times n-k} .
$$

Show that if U is normal then U is a block diagonal matrix, i.e., $U_{12}=0$, and the diagonal blocks U_{11} and U_{22} are both normal matrices.
6.1.b. Show that if $U \in \mathbb{C}^{n \times n}$ is upper triangular and normal then it is a diagonal matrix.
6.1.c. Show that if $L \in \mathbb{C}^{n \times n}$ is lower triangular and normal then it is a diagonal matrix. (Do this without repeating the entire proof above.)

Problem 6.2

(Problem 7.1.1(c) Golub and Van Loan (4th Ed.) p. 355)
Prove that a matrix $A \in \mathbb{C}^{n \times n}$ is normal if and only if there exists a unitary matrix U such that $U^{H} A U$ is a diagonal matrix.

Problem 6.3

Let $A \in \mathbb{C}^{n \times n}$. Define

$$
H_{A}=\frac{1}{2}\left(A+A^{H}\right) \quad \text { and } \quad S_{A}=\frac{1}{2}\left(A-A^{H}\right)
$$

be the Hermitian part and skew Hermitian parts of A respectively. By definition, $A=$ $H_{A}+S_{A}$.

Show that A is a normal matrix if and only if the matrix product of H_{A} and S_{A} commutes, i.e., $H_{A} S_{A}=S_{A} H_{A}$.

Problem 6.4

Let $A \in \mathbb{C}^{n \times n}$ and $B \in \mathbb{C}^{n \times n}$ be normal matrices that are not diagonal matrices. Give a sufficient condition for the matrix product of A and B to commute, i.e., $A B=B A$.

Problem 6.5

6.5.a. Show that if $A \in \mathbb{C}^{n \times n}$ is an Hermitian matrix then it is a normal matrix with real eigenvalues.
6.5.b. Show that if $A \in \mathbb{C}^{n \times n}$ is a skew Hermitian matrix, i.e., $-A=A^{H}$, then it is a normal matrix with imaginary eigenvalues.

Problem 6.6

(Golub and Van Loan Problem 8.3.8. (3rd Ed.) p. 424, Golub and Van Loan Problem 8.3.7. (4th Ed.) p. 465)

Suppose $A=S+\sigma u u^{T}$ where S is skew symmetric $\left(-S=S^{T}\right)$, $u \in \mathbb{R}^{n}$ has unit 2-norm, and $\sigma \in \mathbb{R}$. Show how to compute an orthogonal Q such that $Q^{T} A Q$ is tridiagonal and $Q^{T} u=e_{1}$.

Problem 6.7

Let $T \in \mathbb{R}^{n \times n}$ be a symmetric tridiagonal matrix, i.e., $e_{i}^{T} T e_{j}=e_{j}^{T} T e_{i}$ and $e_{i}^{T} T e_{j}=0$ if $j<i-1$ or $j>i+1$. Consider $T=Q R$ where $R \in \mathbb{R}^{n \times n}$ is an upper triangular matrix and $Q \in \mathbb{R}^{n \times n}$ is an orthogonal matrix.

Recall, the nonzero structure of R was derived in class and shown to be $e_{i}^{T} R e_{j}=0$ if $j<i$ (upper triangular assumption) or if $j>i+2$, i.e, nonzeros are restricted to the main diagonal and the first two superdiagonals.
(6.7.a) Show that Q has nonzero structure such that $e_{i}^{T} Q e_{j}=0$ if $j<i-1$, i.e., Q is upper Hessenberg.
(6.7.b) Show that $T_{+}=R Q$ is a symmetric triagonal matrix.
(6.7.c) Prove the Lemma in the class notes that states that choosing the shift $\mu=\lambda$, where λ is an eigenvalue of T, results in a reduced T_{+}with known eigenvector and eigenvalue.

Problem 6.8

(Golub and Van Loan Problem 8.3.1. (3rd Ed.) p. 423, Golub and Van Loan Problem 8.3.1. (4th Ed.) p. 465)

Suppose λ is an eigenvalue of a symmetric tridiagonal matrix T. Show that if λ has algebraic mulitplicity k, then at least $k-1$ of T 's subdiagonal elements are zero.

