
Solving General Sparse Linear Systems Using Conjugate Gradient-type
Methods

K. Gallivan, A. Sameh and Z. Zlatev
Center for Supercomputing Research and Development

University of Illinois at Urbana-Champaign

Abstract

The problem of finding an approximation of z = At b
(where At is the pseudo-inverse of A E gimzn with
m 2 n and Tank(A) = n) is discussed. It is assumed
that A is sparse but has neither a special pattern (as
bandedness) nor a special property (as symmetry or
positive definiteness). In this paper it is shown that pre-
conditioners obtained by neglecting small elements dur-
ing the decomposition of A into easily invertible matri-
ces can be used efficiently with conjugate gradient-type
methods if an adaptive strategy for deciding when an el-
ement is small is implemented. The resulting precondi-
tioned methods are often better than the corresponding
direct and pure iterative methods or those based on pre-
conditionings in which elements are neglected when they
appear in a predefined set of positions in the matrix, i.e.
positional rather than numerical dropping. Numerical
results are given to illustrate the performance of the
CG-type methods preconditioned via numerical drop-
ping.

1 The problem

Consider the problem of finding z E Pa’ from z = At b,
where A E Yzn, b E Rmal, m 2 n, and rank(A) = n.
If m > n a linear least squares problem (LLSP) must
be solved and when m = n a system of linear alge-
braic equations (LAE’s) when m = n must be solved.
If mnk(A) < n, or even if rank(A) = n, but A is close
to a rank-deficient matrix, then special methods, such as
those based on the singular value decomposition ([15]),
are required. Such problems will not be considered. The
matrix A is assumed to be a general sparse matrix, i.e.,

Permission to copy without fee all or part of this material is granted provided
that the copies am not made or distributed for direct commercial advantage, the
ACM copyright notice and the title of the publication and its data appear, and
notice Is given that copying Is by permission of the Association for Computing
Machinery. To cow otherwise, or to republish, requires a fee and/or specific
penission.
0 1WO ACM 088791-38&8~/~/0132,..$1.~

no special algebraic properties, e.g.,symmetric positive
definiteness, nor special sparsity patterns, e.g., banded-
ness, are assumed.

There are, of course, two basic classes of methods for
these problems: direct and iterative. Direct methods
are reasonably robust for general matrices and usually
produce sufficiently accurate solutions (although extra
work is usually required to estimate the accuracy). For
general sparse matrices, these methods can be difficult
to map efficiently to parallel processors and tend not to
fully exploit the computational capability of the archi-
tectures (compared, say, to a direct method for dense
problems). For matrices with special algebraic prop-
erties, such as positive definite.ness, iterative methods
whose convergence is assured may be used. These meth-
ods tend to map more easily to parallel architectures
than direct methods but they also often do not fully ex-
ploit the computational capabilities of the architecture.
When these methods converge at a sufficient rate, are
often more efficient over all than direct methods. The
problems with applying them to general sparse prob-
lems are that convergence is no longer assured and when
convergence occurs it may be at an abysmal rate.

The basic question for a general sparse matrix A is then:
Is it possible to design a method for solving z = At b
which preserves the advantages of the iterative meth-
ods and robustly computes an acceptable solution like
the direct methods? In this pa,per we explore one ap-
proach to developing such a method based on the use
of conjugate gradient-type (CG-type) algorithms with
preconditioning for unsymmetric systems; for example,
see [2, 31.

2 Preconditioning

As noted above, the basic problems with iterative meth-
ods are assuring convergence and a sufficiently fast rate
of convergence. For problems with special properties
that guarantee convergence, the rate of convergence is

132

often accelerated by using preconditioning or accelera-
tion parameters [16].

Preconditioning a system AZ = b involves using the
iterative method to solve the related system M-lA =
b where the preconditioner M is easily invertible and
M-lA w I. The choice of M is an art in itself and
depends on the iterative method used, the application
from which the system arises, and, for high-performance
machines, the architecture on which the algorithm is to
execute [18].

One of the most popular preconditioning strategies is
based on incomplete factorization of A (ILU) [19]. Dur-
ing factorization, elements are dropped based on their
position in the matrix. Typically, the elements are
dropped if they are not in a position where a nonzero
element occurs in the original matrix A, i.e. all fill-in
are ignored. This can be generalized so that fill-in is
kept up to some predetermined number of levels, e.g.,
fill-in caused by elements in positions that are nonzero
in A are allowed but not fill-in caused by other fill-in el-
ements. The existence of the incomplete factorizations
and the convergence of some associated iterative meth-
ods has been shown for M-matrices and Stieltjes matri-
ces. Existence and convergence are, of course, not guar-
anteed when positional dropping is applied to a general
matrix. Further, when it is applied and the factoriza-
tion does not exist or the method does not converge it is
not obvious how to alter the method to make existence
or convergence more likely,

Osterby and Zlatev suggested the use of numerical drop
ping to make direct methods more efficient, i.e. ele-
ments were dropped from the factorization when found
to be suitably small [20, 261. An absolute tolerance was
used to determine smallness and a simple iterative re-
finement technique was used to improve the accuracy of
the solution. In this paper, we explore the use of approz-
imate LU and QR factorization preconditioning based
on a more aggressive use of numerical dropping. The
preconditioning is applied to ORTHOMIN, [8], GM-
RES, [21], and CGS [17, 221 for m = n, and to CG
for m > n.

3 Approximate factorization
preconditioning

If rank(A) = n, then z = Ai b reduces to a system of
LAE’s: Bx = c, where B = A and c = b if m = n; and
B = AT A and c = AT bif m > n. Let the drop tolerance,
r _> 0, be given. (For more details concerning the idea of
using 7 see [20]). Suppose we have an algorithm which
produces a matrix i(7) such that, in the absence of
rounding errors, a(7) ---) A as 7 ---) 0. The matrix a(7)

can be used to obtain a preconditioned system Cy = d
from Bx = c.

If m = n, then A(T) = LU is formed by perform-
ing an approximate factorization of A using drop tol-
erance r (permutations required to form L and U
have been ignored for simplicity of presentation). The
preconditioned system is then (LU)-l Aa = (LU)-‘b
which is solved via one of the iterative methods men-
tioned above. If m > n, an approximate orthogo-
nal factorization using drop tolerance r is form based
on the QDR decomposition found by Gentleman’s
form of plane rotations [ll, 121. CG is then used
to solve the preconditioned system Cy = d, where
C = Dml(RT)-‘ATAR-‘D-l, y = DRx, and d =
D-l(RT)--‘ATb.

Of course, for a general matrix A and a given 7 there
is no guarantee that the factorizations exits and if they
that the iterative methods will converge. Hence, the
process above is used as a single major step in our solver.
If the decomposition does not exist T is reduced and
the factorization is restarted. Similarly if the precon-
ditioned iteration does not converge rapidly enough T
is reduced and a new preconditioner is computed. The
algorithm for the case m = n can be summarized:

DROP TOLERANCE 7 IS GIVEN

DESIRED ACCURACY E/IS GIVEN

DO UNTIL (X IS ACCEPTED)

IF(Lu = A(T) EXISTS) THEN

McLU
a t (LU)-lb
CALL PCG-TYPE-METHOD(M,A,a!,b,c)
IF (NOT CONVERGED OR TOO SLOW) THEN

-344
END IF

ELSE

7 + /a(T)
END IF

ENDDO

The functions PI(T) and pz(~) are functions that adjust
the value of 7 given an unsatisfactory performance by
the iterative method and an unsuccessful factorization
respectively. The outer loop around the classical form
of preconditioning which makes use of the two reduction
functions yields a robust algorithm - in the worst case
a direct method will eventually be used. By recomput-
ing the preconditioner with smaller r when the iterative
method does not appear to be performing well we avoid
the use of a poor preconditioner and the subsequent in-
efficiency. The adaptive behavior of the algorithm can
therefore be used, starting with a relatively large ini-
tial 7, to allow the algorithm to find a drop tolerance
that is natural for the problem. The early iterations
with large T require some extra time but the fact that

133

many elements are dropped reduces the number of op
erations performed (significant for a single processor)
and provides more opportunity for the creation of par-
allel pivot sets (important for parallel processors). The
effort is usually repaid with rapid convergence of the it-
erative method and can be very worthwhile if a sequence
of problems is to be solved with similar matrices, i.e.,
those with effective values of r that are about the same.
A similar algorithm can be used for m > n.

The use of r > 0 is based on the following heuristics.
Assume that m = n, E II A - LU and T is chosen so
IIA-lEII < 1. Then (LU)-1 = (I+F)A-’ where]]F]] 5
[IA-‘EII/(l- [IA-‘Eli) ([23, p. 1881). Thus, C = I+F
is a perturbation of the identity matrix. If E = &A
with 0 < 19 < 1 (which is an analog to the assumption
E = EA made in [23]), then]]Fl] 2 &/(l-0~) and]]$‘I[
can be made arbitrarily small by choosing 7 small.

Of course, the two factorization methods and iterative
methods used here are not the only possibilities. Any
factorization that decomposes A into easily invertible
matrices can be applied as well as other iterative meth-
ods such as ORTHODIR and biconjugate gradients [2].

4 Dropping procedures

In order to perform the approximate factorization we
need a non-decreasing (in T) function f(7, i, i, H) 1 0,
whose arguments are the drop-tolerance, the row and
column numbers of the nonzero under consideration and
the stage of the computational process, Then c$’ is

kept and updated as long as (o$’ I> f. If I a!!) I<
f, then it is removed and not used any more &t is
dropped”). One can apply this test to the entire active
portion of the matrix at stage k or it can be combined
with some positional restrictions such as only consider
the pivot row and column to be used in the next stage. If
such a strategy is used modifications to the Markowitz
count can also be made for use in choosing the next
pivot, i.e. the counts may only consider elements that
satisfy the test based on f.

The simplest and least effective function function f is
based on an absolute drop tolerance, i.e., f depends
only on T. The function is defined

f(7, i, j, k) = 7. (1)

Such dropping requires almost no extra work. To fa-
cilitate the choice of r, one can scale A and then set
7 = c * min(q,), i = l(l)m or 7 = C * ??&in(U*,j), j =
l(l)n, where 0 < c < 1 is a constant, a;,, = muz(]
aik I, I a++1 I,. . ., I ai, I) and o,,j is similarly defined
as the maximum in the j-th column. Column and/or
row equilibration is often a successful scaling when A

is not very ill-conditioned. Only column scaling is al-
lowed for LLSP’s. When using approach (1) the code
can remove all of the nonzeros from the active part of a
row or column resulting in structural singularity. This
is not necessarily a problem since it can be handled by
reducing r but it can be preve:nted from happening or
at least made less likely.

Such structural singularity will not occur at stage k if
the dropping is based on

(k) (k) f(r, is jt k) = 7 * min(ai,, j a+,j)j (2)

where oikJ = maa(l a!:) I, 1 a!“,’ 1 -11 ,.‘., I ai:’ I) and atk!
is the maximum in the acti:; part of the j-th columi.
Since the nonzeros are typically ordered either by rows

or by columns, it is not expensive to compute either o!,“I’

or a!:), but not both. Therefore, approach (2) is rather
costly.

A compromise between (2), which is computationally
expensive, and (l), which is cheap but may force us to
repeat the computations with a smaller 7 in situations
where (2) does not, is the choice

f(~, i, j, k) = T * ai,“!, (3)

when the nonzeros are ordered by rows (otherwise or:,)

should be replaced by or]). Compared with (l), (3)

requires some extra work (to calculate oft’). The fact
that 7 < 1 ensures that not all elements’ in the active
part of a row will be dropped. Structural singularity at
stage k can appear, however, when all elements in the
active part of a column are removed. Thus, (3) is not
as reliable as (2), but is cheaper.

Approach (3) may be improved at the cost of some extra

work. An element o$’ could be held, even when (3)
is satisfied, if it is the last element in the active part
of its column. The extra work. is due not only to the
extra check needed to decide whether the element is the
last one in the active part of its column or not, but
also because some small elements are to be kept and
updated. A similar approach can be applied when the
nonzeros are ordered by columns.

Structural singularity of the remaining active part of the
matrix caused by two rows (columns) having a single
element in the same column (row) can also be avoided
when applying numerical dropping. One need only keep
track of the rows and columns which have exactly one
element. When an element is dropped from the active
part of the matrix and produces a new single element
row (column) a single read can be performed to deter-
mine if there is another row with its singleton in the
same column.

134

Matrix 1 n Nonzeros 44
pde-9511 I 961 4681 1.35E-t 2

I I I

naftU04 1 1104 1 16056 1 2.593+11

I I I

west1505 1 1505 1 5414 I 3.87Ef12
hwatt-1 1856 11360 4.31E+ 9
hwatt-2 1856 11550 l.O8E+12

I I I

west2021 1 2021 1 7353 1 3.273412
orsreg-1 1 2205 14133 1 2.223-l- 5

Sherman5 I 3312 20793 1 4.21E-k 3
saylr4 3564 22316 7.593+ 6

Sherman3 5005 20033 6.903+16

Table 1: Harwell-Boeing matrices used in LU experi-
ments.

There seem to be no satisfactorily simple ways of pro-
tecting against numerical dropping producing a numer-
ically singular active portion of the matrix; there are
only ways of recovering once it happens one of which is
the adaptation of T used here.

5 Linear algebraic equations

Three CG-type methods, ORTHOMIN [8], GMRES [21]
and CGS [17, 221, have been tested’, The precondition-
ers are obtained using the sparse solver Y12M [20, 261.
Some results are reported here for which test matrices
from the Harwell-Boeing set of test problems are used
[7]. Some characteristics of these matrices are given in
Table 1. The conclusions presented, however, are based
on results found with several hundred matrices from [7]
and [20]. Condition number estimates are calculated
by Y12M via the estimator from [4] modified for sparse
matrices [29].

Y12M was chosen because it provides a device for
dropping, and because with some minor modifications
the restructuring compiler was able to produce re-
sults superior to those it achieved for MA28 [5, 6] and
SPARSPAK-C [14] (Table 2) ‘. This altered version of

‘Note that ORTHOMIN is labeled OMIN and GMRES is la-
beled GMR in the tables due to space constraints.

zSPARSPAK-C is labeled SPAK-C in the tables

1 Matrix 1 MA28 1 SPAK-C 1 Y12M] OMIN 1

mahis tlh 1 6 1 17 1 4 1 7 (193)
nnc1374 I 224 I 23 1 39 i 43 i 1.6)

I I I I

west1505 I 17 I IO I 2 I 4 (‘2,3j I

Table 2: Computing times in seconds on an Alliant
FX/80. (Iterations and number of trials are given in
parentheses.)

Y12M is slightly faster than the original version on one
processor and on serial machines the altered version is
competitive with SPARSPAK-C (SPARSPAK-C tends
to be slightly faster). The default pivotal strategy of
MA28 has been used in these tests. There is an option in
MA28 based on the pivotal strategy in [25), which per-
forms much better,e.g., the computing time for say14 is
reduced from 1147 to 354 when the default pivotal strat-
egy is replaced (the Y12M, however, time is 147). On
serial machines the new version of Y12M is competitive
with MA28 with the pivotal strategy of [25] (and bet-
ter than MA28 with its default pivotal strategy). The
results in the first three columns of Table 2 illustrate
that on the Alliant the preconditioned CG-type meth-
ods should be compared with the altered Y12M. On
serial machines the preconditioned CG-type methods
must be compared with the best for the particular ma-
trix direct solver (no code, among these three, performs
best for all matrices). For a discussion of more substan-
tial changes to enhance the performance of Y12M via
parallelism see below and for much more detail see [lo].

For the CG-type methods 11~ - zi]]/]]z]] 5 10e4 is re-
quired in order for the method to be considered suc-
cessful (where zi is the accepted approximation). This
requirement has been satisfied by ORTHOMIN for all
problems. The direct codes give better accuracy for all
problems except nnc1374 (the error for nnc1374 is of

135

Matrix CGS OMIN 1 GMR GMR-+ILU

pde-9511 6 10 I 8 34

I I I I

naffll04 I 1 I 1 I 1 I FaiIed

I I I I

west1505 I 1 I 2 I 2 I Failed I
hwatt-1 16 1 33 1 18 1 111
hwatt-2 19 I 53 I 21 I 260

I I I

west2021 I 1 I 4 I 2 I Failed 1
orsreg-1 19 29 25 1 79

Sherman5 14 9 16 I 99
I I

saylr4 38 30 92 553
Sherman3 54 112 137 684

Table 3: Total number of iterations for the CG-type
methods and GMRES+ILU.

order 0.01). A similar relative test on the correction
at each step was used in conjunction with tests on the
residual size to determine termination of the iterative
method. The right-hand sides are generated so that
z = (1, 1, . ..) l)T. The results of more detailed experi-
ments can be found in [lo].

We use (3) with an initial T = 2-’ when dropping to
produce the preconditioner for the CG-type methods.
When the factorization fails to produce a preconditioner
r is multiplied by 2 -lo . If the iterative method does not
converge (or converges slowly) T is multiplied by 2-5 In
both cases, the factorization is repeated with the new r.
Neither initial scaling of A nor the enhancements men-
tioned to reduce th possibility of structural singularity
mentioned earlier are used in the results reported here.
(The tests are therefore very conservative in the amount
of time taken to perform refactorization with different
T values to produce a preconditioner.) The numbers of
trials (factorizations and attempted use of a CG-type
method with a particular T) are given in Table 2 along
with the total number of iterations. The times are sums
of the times spent for all trials.

The approximate factorization preconditioned OR-
THOMIN tends to perform much better than MA28
and SPARSPAK-C as expected. The more efficient di-
rect solver Y12M is better than ORTKOMIN if A is very
sparse and stays very sparse, and/or if several trials are
needed. For some problems, however, ORTHOMIN per-

forms better even if many trials are required. For alI of
the computationally expensive problems ORTHOMIN
performs very well, e.g., for iherman it is 28 times
faster than Y12M. As hoped, the storage is normally
reduced when the preconditioned ORTHOMIN is used.
For example, when saylr4 is solved by Y12M the length
of the large arrays has to be greater than 308630, while
for ORTHOMIN the length is only 22316. For positional
dropping strategies, such a bo,und on space is known a
priori. Indeed, the amount of s,pace available can be one
of the key considerations when choosing the level of fill-
in tolerated in such schemes. In the case of numerical
dropping, no such a priori bound exists but empirical
evidence indicates that savings are realized in practice.

The total number of iteration:5 required for three pre-
conditioned CG-type methods and from GMRES+ILU
(GMRES preconditioned by an incomplete factoriza-
tion; no fill-in allowed, no pivoting used) are given in
Table 3. The computing times for the three CG-type
methods are all comparable and the tendency (for the
whole set of test-matrices) is the same: the precondi-
tioned CG-type methods perform, as a rule, better than
direct methods. They are also considerably more robust
than GMRES+ILU for these general problems in terms
of failures and number of iterations. The version of
GMRES+ILU was optimized for the Alliant by Ander-
son ([1]) to a much greater degree than the compiler-
based optimizations used for the CG-type methods and
its preconditioner Yl2M. For a detailed timing compar-
ison of GMRES+ILU and a more substantially tuned
version of the CG-type codes see [lo]. (These results
will also be presented at the conference.)

CGS, ORTHOMIN and GMRES were also run as pure
iterative methods, i.e. no preconditioning, but the fail-
ure rate was greater than 501terative refinement (IR),
[26], was also used. Comparisons indicate that some-
times it either converges slowly or does not converge for
drop-tolerances for which the CG-type methods con-
verge sufficiently fast. However, when IR could success-
fully be used with the same T as that for the CG-type
methods, it tends to be slightly more efficient (the work
per iteration is smaller).

6 Linear least squares problems

In this section the results of using CG preconditioned
with approximate orthogonal factorizations based on
the codes in [27] and [28] to .solve linear least squares
problems are presented. Column equilibration is applied
to A to facilitate the choice of T and dropping is carried
out using approach (1). The use of (1) with orthogo-
nal transformations performs better than it does with
Gaussian elimination. This may be due to the fact that

136

1 Matrix I Rows I Columns 1 Nonzeros I CG]

I I I I

ash219 I 219 I 85 I 438 I .l (15) I
L

ash331 331 104 662 .2 (14j

ash608 608 188 1216 .3 (16)
I I I I

ash958 I 958 I 292 1 1916 I 5 i15j 1

Table 4: Harwell-Boeing matrices used for least squares
tests and CG time in seconds (iterations).

orthogonal transformations preserve the column norms.
In general, however, it is most likely preferable to ap-
ply (3). The same accuracy requirement as that used
to determine the success of the LU preconditioning is
used. The initial value T is taken to be 2-4 (found ex-
perimentally using a large set of test problems). When
necessary r is updated using the same factors as in the
previous section.

Nine matrices with m > n taken from the Harwell-
Boeing test set are used in the experiments. Table
4) lists some of the characteristics of the matrices and
their pure CG execution time and number of iterations.
While the square unsymmetric matrices in the Harwell-
Boeing test set form a representative subset, this is not
true when m > n. The matrices in Table 4 are rather
sparse and they stay sparse during the orthogonal fac-
torization process. This is not typical; it is well known
that normally a significant amount of fill-in appear dur-
ing the orthogonal decomposition. Therefore, matrices
from [20] are also used. These synthetic test matrices
depend on five parameters: m,n,c,r,cr (by which one
can vary the number of rows, the number of columns,
the sparsity pattern, the number of nonzero and their
magnitude respectively). Four of the parameters are
fixed (m = 500, n = 250, c= 100 anda =32-O), while
T is varied. The number of nonzeros (NZ) increases
with T (NZ = rm + 110). Matrices that create sig-
nificant amounts of fill-in are usually produced when T

becomes large. Thus, we can study the codes when the
orthogonal decomposition suffers from heavy fill-in.

Results are given in Table 5 and Table 6. Two direct
codes, SPARSPAK-B [13] and LLSSOl-DS with T = 0.0
[2’7], an IR code, LLSSOl-IR [27], preconditioned CG,
LLSSOZ [28], and pure CG are usedz. Pure CG failed to
converge for all problems from [20]. Conclusions similar
to the previous section can be drawn from the numerical
results (including others not presented in the tables). It

3Thesc codes arc referred to in the table as SPAK-B, LS-DS,
LS-IR, LS-CG and CG respectively.

Matrix 1 SPAK-B 1 LS-DS 1 LS-IR 1 LS-CG 1

J
ash331 5 1.2 0.4 (6j 0.4 (4j
ash608 7 4.3 0.8 (7) 0.8 (5)

ash958 11 10 1.2 (5) 1.2 (5)

Table 5: Computing times in seconds (iterations) on an
Alliant FX/80 for Harwell-Boeing matrices.

1: SPAK-B LS-DS LS-IR LS-CG

10 36 72 1.4 (19) 1.1 (8)
20 61 107 1.5 (9) 1.4

30 1 73 144 1 2.0 (13)
(7)

1 1.8 (8)
40 I 101 181 1 2.2 (221 1 1.6 (8) I

t 50 I
I I I

128 1 208 1 2.1 i14j I 1.8 i Sj 1
1 3.6 (34j 1 (10)

I
60 136 214 1 2.4

70 141 I 257 I Failed I 6.6 (11)

1 1 (13)
I

90 150 282 Failed 9.6
100 159 268 I Failed I 9.5 (14)

Table 6: Computing times in seconds (iterations) on
Alliant FX/80 for matrices from [20].

is not necessary to repeat them here. We can conclude,
however, that the use of the numerical dropping to pro-
duce approximate factorization preconditioners for the
least squares problem reduced the computing time re-
quired to solve the problems by several orders of mag-
nitude.

7 Comments on further en-
hancements

As noted earlier, the results presented above were for
codes whose parallelism had been generated via minor
changes to the sequential code and a restructuring com-
piler. It should not be surprising that with more intense
tuning the performance of both of the calculation of
the preconditioner and the iterative method can be im-
proved considerably. This has been demonstrated for
the positional dropping GMRES+ILU code developed
by Anderson for the Alliant FX-series [l]. Wijshoff has
also study the architecture/algorithm mapping of sparse
primitives, in particular a sparse matrix multiplied by
one or more dense vectors, that are of interest for the
iterative method portion of the code on multivector pro-

137

1 Matrix 1 Old 1 New 1 I 1 I I

Table 7: Computing time in seconds
torization alteration.

after symbolic fac-

cessors [24]. The effect of applying these performance
enhancements to the iterative method portion of the
code is discussed in [lo].

The improvement of the performance of the general
sparse factorization portion of the algorithm is more
difficult but certainly possible. For example, changing
the way in which the code handles the symbolic factor-
ization portion of the rank-l update further improves
performance. Table 7 compares the performance of the
version of Y12M used in the previous sections to one
with the further changes executing in direct method
mode, i.e., T = 0.

It is well known that for machines with hierarchical
memory systems dense factorization algorithms must
be written in terms of BLAS3 constructs in order to
achieve high performance [9]. Furthermore, on such
machines the discrepancy in the performance of gen-
eral sparse solvers and dense solvers is considerable.
Therefore, the appropriate use of a switch to a dense
solver during sparse factorization can also contribute
to improved performance. Indeed, on a machine like
the Alliant FX/80, for many of the Harwell-Boeing
matrices a well-implemented rank-l-based code with a
dense switch will yield just as significant performance
improvement as codes based on more complex parallel
pivots strategies. Table 8 shows the computing time
for some of the matrices which benefit from the switch
to dense factorization routines. Additional performance
improvements are possible by the careful consideration

Table 8: Computing time in seconds with the addition
of a switch to dense factorization code.

of the use of the memory hierarchy for both rank-l and
parallel pivot versions of the code and by exploiting in-
formation gained in factorizations with larger values of
r when updating the drop tolerance is required.. See
[lo] for more details.

Acknowledgements

This work was supported in part by the NSF under
Grants No. NSF MIP-8410110 ,and No. CCR-8717942,
the Department of Energy under Grant No. DOE-DE-
FG02-85ER25001, and AT&T Corp. under Grant No.
AT&T-AFFL-67-SAMEH.

References

PI

PI

PI

PI

E. C. Anderson, Parallel implementation of
preconditioned conjugate gradient methods for

solving sparse systems of linear equations, Re-
port No. 805. Center for Supercomputing Re-
search and Development, University of Illinois at
Urbana-Champaign, 1988.

0. Axelsson,A survey of preconditioned iterative
methods foT linear systems of algebraic equations,
BIT, 25(X985), pp. 166-187.

0. Axelsson and V. A. Barker, Finite element
solutions of boundary value problems, Academic
Press, New York, 1984.

J. J. Dongarra, J. R. Bunch, C. B. Moler and
G. W. Stewart, LINPACK: Users’ Guide, SIAM,
Philadelphia, 1979.

138

[5] I. S. Duff, M&B: a set of FORTRAN subrou-
tine8 for sparse unsymmetric linear equationa,
Report No. R8730 A.E.R.E., Karwell, England,
1977.

[6] I. S. Duff, A. M. E&man and J. K. Reid, Direct
methods for sparse matrice8, Oxford University
Press, Oxford-London, 1986.

[‘7] I. S. Duff, R. G. Grimes and J. G. Lewis, Sparse
matriz teat problems, ACM Trans. Math. Soft-
ware, 15(1989), pp.l-14.

[8] S. C. Eisenstat, II. C. Elman and M. II. Schultz,
Variational method8 for nonsymmetric systems
of linear equations, SIAM J. Numer. Anal.,
20(1983), pp. 345-357.

[9] K. Gallivan, W. Jalby, U. Meier, and A. Sameh,
Impact of hierarchical memory 8ystem8 on linear
algebra algorithm design, Intl. J . Supercomputer
Appl., 2(1988), pp. 12-48.

[lo] K. Gallivan, A. Sameh and Z. Zlatev, A ro-
bust parallel linear system solver, Report No.
984, Center for Supercomputing Research and
Development, University of Illinois at Urbana-
Champaign, 1990.

[ll] W. M. Gentleman, Least square8 computation8
by Givena traneformalions without square roota,
J. Inst. Math. Applies., 12(1973), pp. 329-336.

[12] W. M. Gentleman, Error analysis of QR
by Givens transformations, Lin. Alg. Appl.,
10(1975), pp. 189-197.

[13] J. A. George and M. T. Heath, Solution of sparse
linear least squares problems using Given8 rota-
tion8, Lin. Alg. Appl., 34(1980), pp. 69-83.

[14] J. A. George and E. Ng, An implementalion of
Gausltian elimination with partial pivoting for
sparse systema, SIAM J. Sci. Statist. Comput.,
6(1985), pp. 390-405.

[15] G. Golub and C. F. Van Loan, Mat&z Computa-
tion8, The John Hopkins University Press, Bal-
timore, 1983.

[16] L. A. Hageman and D. M. Young, Applied Aera-
tive Methods, Academic Press, New York, 1981.

[17 E. F. Kaasschieter, The solution of nonsym-
metric linear Bystems by b&conjugate gradient8
or conjugate gradient8 squared, Report No. 86-
21. Department of Mathematics and Informatics,
Delft University of Technology, Delft, Nether-
lands, 1986.

[18] U. Meier and A. Sameh, The behavior of con-
jugate gradient algorithm8 on a mu&vector pro-
cessor with a hierarchical memory, Jour. Comp.
Appl. Math., 24(1988), pp. 13-32.

[19] J. A. Meijerink and H. A. van der Vorst, An iter-
ative solution method for linear systems of which
the coeficient matrix is a symmetric M-mad&,
Math. Comp., 31(1977), pp. 148-162.

[20] 0. Osterby and 2. Zlatev, Direct method8 for
aparse matrices, Springer, Berlin, 1983.

[21] Y. Saad and M. H. Schultz, GMRES: a general-
ixed minimal residual aZgorithm for solving non-
symmetric linear systems, SIAM J. Sci. Statist.
Comput., 7(1986), pp. 856-869.

[22] P. Sonneveld, CGS, a fast Lanczos-type solver
for nonsymmetric linear systems, SIAM J. Sci.
Statist. Comput., 10(1989), pp. 36-52.

[23] G. W. Stewart, Introduction to matrix computa-
lions, Academic Press, New York, 1973.

[24] H. Wijshoff, Implementing sparse BLAS prim-
itivea on concurrent/vector processors: a ca8e
study, Report No. 843, Center for Supercomput-
ing Research and Development, University of Illi-
nois at Urbana-Champaign, 1989.

[25] Z. Zlatev, On dome pivotal strategies in Gaussian
elimination by sparse technique, SIAM J. Numer.
Anal., 17(1980), pp. 18-30.

[26] Z. Zlatev, Use of iterative refinement in the so-
lution of sparse linear systems, SIAM J. Numer.
Anal., 19(1982), pp. 381-399.

[27] Z. Zlatev, Comparison of tluo pivotal strategies
in sparse plane rotations, Comput. Math. Appl.,
8(1982), pp. 119-135.

[28] Z. Zlatev and H.B. Nielsen, Solving large and
sparse linear least-squares problems by conju-
gate gradient algorithms, Comput. Math. Appl.,
15(1988), pp. 185-202.

[29] Z. Zlatev, J. Wasniewski and K. Schaumburg,
Con&ion number estimators in a sparse matrix
software, SIAM J. Sci. Statist. Comput., 7(1986),
pp. 1175-1186.

139

