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Abstract 

The problem of finding an approximation of z = At b 
(where At is the pseudo-inverse of A E gimzn with 
m 2 n and Tank(A) = n) is discussed. It is assumed 
that A is sparse but has neither a special pattern (as 
bandedness) nor a special property (as symmetry or 
positive definiteness). In this paper it is shown that pre- 
conditioners obtained by neglecting small elements dur- 
ing the decomposition of A into easily invertible matri- 
ces can be used efficiently with conjugate gradient-type 
methods if an adaptive strategy for deciding when an el- 
ement is small is implemented. The resulting precondi- 
tioned methods are often better than the corresponding 
direct and pure iterative methods or those based on pre- 
conditionings in which elements are neglected when they 
appear in a predefined set of positions in the matrix, i.e. 
positional rather than numerical dropping. Numerical 
results are given to illustrate the performance of the 
CG-type methods preconditioned via numerical drop- 
ping. 

1 The problem 

Consider the problem of finding z E Pa’ from z = At b, 
where A E Yzn, b E Rmal, m 2 n, and rank(A) = n. 
If m > n a linear least squares problem (LLSP) must 
be solved and when m = n a system of linear alge- 
braic equations (LAE’s) when m = n must be solved. 
If mnk(A) < n, or even if rank(A) = n, but A is close 
to a rank-deficient matrix, then special methods, such as 
those based on the singular value decomposition ([15]), 
are required. Such problems will not be considered. The 
matrix A is assumed to be a general sparse matrix, i.e., 
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no special algebraic properties, e.g.,symmetric positive 
definiteness, nor special sparsity patterns, e.g., banded- 
ness, are assumed. 

There are, of course, two basic classes of methods for 
these problems: direct and iterative. Direct methods 
are reasonably robust for general matrices and usually 
produce sufficiently accurate solutions (although extra 
work is usually required to estimate the accuracy). For 
general sparse matrices, these methods can be difficult 
to map efficiently to parallel processors and tend not to 
fully exploit the computational capability of the archi- 
tectures (compared, say, to a direct method for dense 
problems). For matrices with special algebraic prop- 
erties, such as positive definite.ness, iterative methods 
whose convergence is assured may be used. These meth- 
ods tend to map more easily to parallel architectures 
than direct methods but they also often do not fully ex- 
ploit the computational capabilities of the architecture. 
When these methods converge at a sufficient rate, are 
often more efficient over all than direct methods. The 
problems with applying them to general sparse prob- 
lems are that convergence is no longer assured and when 
convergence occurs it may be at an abysmal rate. 

The basic question for a general sparse matrix A is then: 
Is it possible to design a method for solving z = At b 
which preserves the advantages of the iterative meth- 
ods and robustly computes an acceptable solution like 
the direct methods? In this pa,per we explore one ap- 
proach to developing such a method based on the use 
of conjugate gradient-type (CG-type) algorithms with 
preconditioning for unsymmetric systems; for example, 
see [2, 31. 

2 Preconditioning 

As noted above, the basic problems with iterative meth- 
ods are assuring convergence and a sufficiently fast rate 
of convergence. For problems with special properties 
that guarantee convergence, the rate of convergence is 
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often accelerated by using preconditioning or accelera- 
tion parameters [16]. 

Preconditioning a system AZ = b involves using the 
iterative method to solve the related system M-lA = 
b where the preconditioner M is easily invertible and 
M-lA w I. The choice of M is an art in itself and 
depends on the iterative method used, the application 
from which the system arises, and, for high-performance 
machines, the architecture on which the algorithm is to 
execute [18]. 

One of the most popular preconditioning strategies is 
based on incomplete factorization of A (ILU) [19]. Dur- 
ing factorization, elements are dropped based on their 
position in the matrix. Typically, the elements are 
dropped if they are not in a position where a nonzero 
element occurs in the original matrix A, i.e. all fill-in 
are ignored. This can be generalized so that fill-in is 
kept up to some predetermined number of levels, e.g., 
fill-in caused by elements in positions that are nonzero 
in A are allowed but not fill-in caused by other fill-in el- 
ements. The existence of the incomplete factorizations 
and the convergence of some associated iterative meth- 
ods has been shown for M-matrices and Stieltjes matri- 
ces. Existence and convergence are, of course, not guar- 
anteed when positional dropping is applied to a general 
matrix. Further, when it is applied and the factoriza- 
tion does not exist or the method does not converge it is 
not obvious how to alter the method to make existence 
or convergence more likely, 

Osterby and Zlatev suggested the use of numerical drop 
ping to make direct methods more efficient, i.e. ele- 
ments were dropped from the factorization when found 
to be suitably small [20, 261. An absolute tolerance was 
used to determine smallness and a simple iterative re- 
finement technique was used to improve the accuracy of 
the solution. In this paper, we explore the use of approz- 
imate LU and QR factorization preconditioning based 
on a more aggressive use of numerical dropping. The 
preconditioning is applied to ORTHOMIN, [8], GM- 
RES, [21], and CGS [17, 221 for m = n, and to CG 
for m > n. 

3 Approximate factorization 
preconditioning 

If rank(A) = n, then z = Ai b reduces to a system of 
LAE’s: Bx = c, where B = A and c = b if m = n; and 
B = AT A and c = AT bif m > n. Let the drop tolerance, 
r _> 0, be given. (For more details concerning the idea of 
using 7 see [20]). Suppose we have an algorithm which 
produces a matrix i(7) such that, in the absence of 
rounding errors, a(7) ---) A as 7 ---) 0. The matrix a(7) 

can be used to obtain a preconditioned system Cy = d 
from Bx = c. 

If m = n, then A(T) = LU is formed by perform- 
ing an approximate factorization of A using drop tol- 
erance r (permutations required to form L and U 
have been ignored for simplicity of presentation). The 
preconditioned system is then (LU)-l Aa = (LU)-‘b 
which is solved via one of the iterative methods men- 
tioned above. If m > n, an approximate orthogo- 
nal factorization using drop tolerance r is form based 
on the QDR decomposition found by Gentleman’s 
form of plane rotations [ll, 121. CG is then used 
to solve the preconditioned system Cy = d, where 
C = Dml(RT)-‘ATAR-‘D-l, y = DRx, and d = 
D-l(RT)--‘ATb. 

Of course, for a general matrix A and a given 7 there 
is no guarantee that the factorizations exits and if they 
that the iterative methods will converge. Hence, the 
process above is used as a single major step in our solver. 
If the decomposition does not exist T is reduced and 
the factorization is restarted. Similarly if the precon- 
ditioned iteration does not converge rapidly enough T 
is reduced and a new preconditioner is computed. The 
algorithm for the case m = n can be summarized: 

DROP TOLERANCE 7 IS GIVEN 

DESIRED ACCURACY E/IS GIVEN 

DO UNTIL (X IS ACCEPTED) 

IF( Lu = A(T) EXISTS) THEN 

McLU 
a t (LU)-lb 
CALL PCG-TYPE-METHOD(M,A,a!,b,c) 
IF (NOT CONVERGED OR TOO SLOW) THEN 

-344 
END IF 

ELSE 

7 + /a(T) 
END IF 

ENDDO 

The functions PI(T) and pz(~) are functions that adjust 
the value of 7 given an unsatisfactory performance by 
the iterative method and an unsuccessful factorization 
respectively. The outer loop around the classical form 
of preconditioning which makes use of the two reduction 
functions yields a robust algorithm - in the worst case 
a direct method will eventually be used. By recomput- 
ing the preconditioner with smaller r when the iterative 
method does not appear to be performing well we avoid 
the use of a poor preconditioner and the subsequent in- 
efficiency. The adaptive behavior of the algorithm can 
therefore be used, starting with a relatively large ini- 
tial 7, to allow the algorithm to find a drop tolerance 
that is natural for the problem. The early iterations 
with large T require some extra time but the fact that 
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many elements are dropped reduces the number of op 
erations performed (significant for a single processor) 
and provides more opportunity for the creation of par- 
allel pivot sets (important for parallel processors). The 
effort is usually repaid with rapid convergence of the it- 
erative method and can be very worthwhile if a sequence 
of problems is to be solved with similar matrices, i.e., 
those with effective values of r that are about the same. 
A similar algorithm can be used for m > n. 

The use of r > 0 is based on the following heuristics. 
Assume that m = n, E II A - LU and T is chosen so 
IIA-lEII < 1. Then (LU)-1 = (I+F)A-’ where ]]F]] 5 
[IA-‘EII/(l- [IA-‘Eli) ([23, p. 1881). Thus, C = I+F 
is a perturbation of the identity matrix. If E = &A 
with 0 < 19 < 1 (which is an analog to the assumption 
E = EA made in [23]), then ]]Fl] 2 &/(l-0~) and ]]$‘I[ 
can be made arbitrarily small by choosing 7 small. 

Of course, the two factorization methods and iterative 
methods used here are not the only possibilities. Any 
factorization that decomposes A into easily invertible 
matrices can be applied as well as other iterative meth- 
ods such as ORTHODIR and biconjugate gradients [2]. 

4 Dropping procedures 

In order to perform the approximate factorization we 
need a non-decreasing (in T) function f(7, i, i, H) 1 0, 
whose arguments are the drop-tolerance, the row and 
column numbers of the nonzero under consideration and 
the stage of the computational process, Then c$’ is 

kept and updated as long as ( o$’ I> f. If I a!!) I< 
f, then it is removed and not used any more &t is 
dropped”). One can apply this test to the entire active 
portion of the matrix at stage k or it can be combined 
with some positional restrictions such as only consider 
the pivot row and column to be used in the next stage. If 
such a strategy is used modifications to the Markowitz 
count can also be made for use in choosing the next 
pivot, i.e. the counts may only consider elements that 
satisfy the test based on f. 

The simplest and least effective function function f is 
based on an absolute drop tolerance, i.e., f depends 
only on T. The function is defined 

f(7, i, j, k) = 7. (1) 

Such dropping requires almost no extra work. To fa- 
cilitate the choice of r, one can scale A and then set 
7 = c * min(q,), i = l(l)m or 7 = C * ??&in(U*,j), j = 
l(l)n, where 0 < c < 1 is a constant, a;,, = muz(] 
aik I, I a++1 I,. . ., I ai, I) and o,,j is similarly defined 
as the maximum in the j-th column. Column and/or 
row equilibration is often a successful scaling when A 

is not very ill-conditioned. Only column scaling is al- 
lowed for LLSP’s. When using approach (1) the code 
can remove all of the nonzeros from the active part of a 
row or column resulting in structural singularity. This 
is not necessarily a problem since it can be handled by 
reducing r but it can be preve:nted from happening or 
at least made less likely. 

Such structural singularity will not occur at stage k if 
the dropping is based on 

(k) (k) f(r, is jt k) = 7 * min(ai,, j a+,j)j (2) 

where oikJ = maa(l a!:) I, 1 a!“,’ 1 -11 ,.‘., I ai:’ I) and atk! 
is the maximum in the acti:; part of the j-th columi. 
Since the nonzeros are typically ordered either by rows 

or by columns, it is not expensive to compute either o!,“I’ 

or a!:), but not both. Therefore, approach (2) is rather 
costly. 

A compromise between (2), which is computationally 
expensive, and (l), which is cheap but may force us to 
repeat the computations with a smaller 7 in situations 
where (2) does not, is the choice 

f(~, i, j, k) = T * ai,“!, (3) 

when the nonzeros are ordered by rows (otherwise or:,) 

should be replaced by or]). Compared with (l), (3) 

requires some extra work (to calculate oft’ ). The fact 
that 7 < 1 ensures that not all elements’ in the active 
part of a row will be dropped. Structural singularity at 
stage k can appear, however, when all elements in the 
active part of a column are removed. Thus, (3) is not 
as reliable as (2), but is cheaper. 

Approach (3) may be improved at the cost of some extra 

work. An element o$’ could be held, even when (3) 
is satisfied, if it is the last element in the active part 
of its column. The extra work. is due not only to the 
extra check needed to decide whether the element is the 
last one in the active part of its column or not, but 
also because some small elements are to be kept and 
updated. A similar approach can be applied when the 
nonzeros are ordered by columns. 

Structural singularity of the remaining active part of the 
matrix caused by two rows (columns) having a single 
element in the same column (row) can also be avoided 
when applying numerical dropping. One need only keep 
track of the rows and columns which have exactly one 
element. When an element is dropped from the active 
part of the matrix and produces a new single element 
row (column) a single read can be performed to deter- 
mine if there is another row with its singleton in the 
same column. 
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Matrix 1 n Nonzeros 44 
pde-9511 I 961 4681 1.35E-t 2 

I I I 

naftU04 1 1104 1 16056 1 2.593+11 

I I I 

west1505 1 1505 1 5414 I 3.87Ef12 
hwatt-1 1856 11360 4.31E+ 9 
hwatt-2 1856 11550 l.O8E+12 

I I I 

west2021 1 2021 1 7353 1 3.273412 
orsreg-1 1 2205 14133 1 2.223-l- 5 

Sherman5 I 3312 20793 1 4.21E-k 3 
saylr4 3564 22316 7.593+ 6 

Sherman3 5005 20033 6.903+16 

Table 1: Harwell-Boeing matrices used in LU experi- 
ments. 

There seem to be no satisfactorily simple ways of pro- 
tecting against numerical dropping producing a numer- 
ically singular active portion of the matrix; there are 
only ways of recovering once it happens one of which is 
the adaptation of T used here. 

5 Linear algebraic equations 

Three CG-type methods, ORTHOMIN [8], GMRES [21] 
and CGS [17, 221, have been tested’, The precondition- 
ers are obtained using the sparse solver Y12M [20, 261. 
Some results are reported here for which test matrices 
from the Harwell-Boeing set of test problems are used 
[7]. Some characteristics of these matrices are given in 
Table 1. The conclusions presented, however, are based 
on results found with several hundred matrices from [7] 
and [20]. Condition number estimates are calculated 
by Y12M via the estimator from [4] modified for sparse 
matrices [29]. 

Y12M was chosen because it provides a device for 
dropping, and because with some minor modifications 
the restructuring compiler was able to produce re- 
sults superior to those it achieved for MA28 [5, 6] and 
SPARSPAK-C [14] (Table 2) ‘. This altered version of 

‘Note that ORTHOMIN is labeled OMIN and GMRES is la- 
beled GMR in the tables due to space constraints. 

zSPARSPAK-C is labeled SPAK-C in the tables 

1 Matrix 1 MA28 1 SPAK-C 1 Y12M ] OMIN 1 

mahis tlh 1 6 1 17 1 4 1 7 ( 193) 
nnc1374 I 224 I 23 1 39 i 43 i 1.6) 

I I I I 

west1505 I 17 I IO I 2 I 4 (‘2,3j I 

Table 2: Computing times in seconds on an Alliant 
FX/80. (Iterations and number of trials are given in 
parentheses.) 

Y12M is slightly faster than the original version on one 
processor and on serial machines the altered version is 
competitive with SPARSPAK-C (SPARSPAK-C tends 
to be slightly faster). The default pivotal strategy of 
MA28 has been used in these tests. There is an option in 
MA28 based on the pivotal strategy in [25), which per- 
forms much better,e.g., the computing time for say14 is 
reduced from 1147 to 354 when the default pivotal strat- 
egy is replaced (the Y12M, however, time is 147). On 
serial machines the new version of Y12M is competitive 
with MA28 with the pivotal strategy of [25] (and bet- 
ter than MA28 with its default pivotal strategy). The 
results in the first three columns of Table 2 illustrate 
that on the Alliant the preconditioned CG-type meth- 
ods should be compared with the altered Y12M. On 
serial machines the preconditioned CG-type methods 
must be compared with the best for the particular ma- 
trix direct solver (no code, among these three, performs 
best for all matrices). For a discussion of more substan- 
tial changes to enhance the performance of Y12M via 
parallelism see below and for much more detail see [lo]. 

For the CG-type methods 11~ - zi]]/]]z]] 5 10e4 is re- 
quired in order for the method to be considered suc- 
cessful ( where zi is the accepted approximation). This 
requirement has been satisfied by ORTHOMIN for all 
problems. The direct codes give better accuracy for all 
problems except nnc1374 (the error for nnc1374 is of 
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Matrix CGS OMIN 1 GMR GMR-+ILU 

pde-9511 6 10 I 8 34 

I I I I 

naffll04 I 1 I 1 I 1 I FaiIed 

I I I I 

west1505 I 1 I 2 I 2 I Failed I 
hwatt-1 16 1 33 1 18 1 111 
hwatt-2 19 I 53 I 21 I 260 

I I I 

west2021 I 1 I 4 I 2 I Failed 1 
orsreg-1 19 29 25 1 79 

Sherman5 14 9 16 I 99 
I I 

saylr4 38 30 92 553 
Sherman3 54 112 137 684 

Table 3: Total number of iterations for the CG-type 
methods and GMRES+ILU. 

order 0.01). A similar relative test on the correction 
at each step was used in conjunction with tests on the 
residual size to determine termination of the iterative 
method. The right-hand sides are generated so that 
z = (1, 1, . ..) l)T. The results of more detailed experi- 
ments can be found in [lo]. 

We use (3) with an initial T = 2-’ when dropping to 
produce the preconditioner for the CG-type methods. 
When the factorization fails to produce a preconditioner 
r is multiplied by 2 -lo . If the iterative method does not 
converge (or converges slowly) T is multiplied by 2-5 In 
both cases, the factorization is repeated with the new r. 
Neither initial scaling of A nor the enhancements men- 
tioned to reduce th possibility of structural singularity 
mentioned earlier are used in the results reported here. 
(The tests are therefore very conservative in the amount 
of time taken to perform refactorization with different 
T values to produce a preconditioner.) The numbers of 
trials (factorizations and attempted use of a CG-type 
method with a particular T) are given in Table 2 along 
with the total number of iterations. The times are sums 
of the times spent for all trials. 

The approximate factorization preconditioned OR- 
THOMIN tends to perform much better than MA28 
and SPARSPAK-C as expected. The more efficient di- 
rect solver Y12M is better than ORTKOMIN if A is very 
sparse and stays very sparse, and/or if several trials are 
needed. For some problems, however, ORTHOMIN per- 

forms better even if many trials are required. For alI of 
the computationally expensive problems ORTHOMIN 
performs very well, e.g., for iherman it is 28 times 
faster than Y12M. As hoped, the storage is normally 
reduced when the preconditioned ORTHOMIN is used. 
For example, when saylr4 is solved by Y12M the length 
of the large arrays has to be greater than 308630, while 
for ORTHOMIN the length is only 22316. For positional 
dropping strategies, such a bo,und on space is known a 
priori. Indeed, the amount of s,pace available can be one 
of the key considerations when choosing the level of fill- 
in tolerated in such schemes. In the case of numerical 
dropping, no such a priori bound exists but empirical 
evidence indicates that savings are realized in practice. 

The total number of iteration:5 required for three pre- 
conditioned CG-type methods and from GMRES+ILU 
(GMRES preconditioned by an incomplete factoriza- 
tion; no fill-in allowed, no pivoting used) are given in 
Table 3. The computing times for the three CG-type 
methods are all comparable and the tendency (for the 
whole set of test-matrices) is the same: the precondi- 
tioned CG-type methods perform, as a rule, better than 
direct methods. They are also considerably more robust 
than GMRES+ILU for these general problems in terms 
of failures and number of iterations. The version of 
GMRES+ILU was optimized for the Alliant by Ander- 
son ([1]) to a much greater degree than the compiler- 
based optimizations used for the CG-type methods and 
its preconditioner Yl2M. For a detailed timing compar- 
ison of GMRES+ILU and a more substantially tuned 
version of the CG-type codes see [lo]. (These results 
will also be presented at the conference.) 

CGS, ORTHOMIN and GMRES were also run as pure 
iterative methods, i.e. no preconditioning, but the fail- 
ure rate was greater than 501terative refinement (IR), 
[26], was also used. Comparisons indicate that some- 
times it either converges slowly or does not converge for 
drop-tolerances for which the CG-type methods con- 
verge sufficiently fast. However, when IR could success- 
fully be used with the same T as that for the CG-type 
methods, it tends to be slightly more efficient (the work 
per iteration is smaller). 

6 Linear least squares problems 

In this section the results of using CG preconditioned 
with approximate orthogonal factorizations based on 
the codes in [27] and [28] to .solve linear least squares 
problems are presented. Column equilibration is applied 
to A to facilitate the choice of T and dropping is carried 
out using approach (1). The use of (1) with orthogo- 
nal transformations performs better than it does with 
Gaussian elimination. This may be due to the fact that 
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1 Matrix I Rows I Columns 1 Nonzeros I CG ] 

I I I I 

ash219 I 219 I 85 I 438 I .l (15) I 
L 

ash331 331 104 662 .2 (14j 

ash608 608 188 1216 .3 (16) 
I I I I 

ash958 I 958 I 292 1 1916 I 5 i15j 1 

Table 4: Harwell-Boeing matrices used for least squares 
tests and CG time in seconds (iterations). 

orthogonal transformations preserve the column norms. 
In general, however, it is most likely preferable to ap- 
ply (3). The same accuracy requirement as that used 
to determine the success of the LU preconditioning is 
used. The initial value T is taken to be 2-4 (found ex- 
perimentally using a large set of test problems). When 
necessary r is updated using the same factors as in the 
previous section. 

Nine matrices with m > n taken from the Harwell- 
Boeing test set are used in the experiments. Table 
4) lists some of the characteristics of the matrices and 
their pure CG execution time and number of iterations. 
While the square unsymmetric matrices in the Harwell- 
Boeing test set form a representative subset, this is not 
true when m > n. The matrices in Table 4 are rather 
sparse and they stay sparse during the orthogonal fac- 
torization process. This is not typical; it is well known 
that normally a significant amount of fill-in appear dur- 
ing the orthogonal decomposition. Therefore, matrices 
from [20] are also used. These synthetic test matrices 
depend on five parameters: m,n,c,r,cr (by which one 
can vary the number of rows, the number of columns, 
the sparsity pattern, the number of nonzero and their 
magnitude respectively). Four of the parameters are 
fixed (m = 500, n = 250, c= 100 anda =32-O), while 
T is varied. The number of nonzeros (NZ) increases 
with T ( NZ = rm + 110 ). Matrices that create sig- 
nificant amounts of fill-in are usually produced when T 

becomes large. Thus, we can study the codes when the 
orthogonal decomposition suffers from heavy fill-in. 

Results are given in Table 5 and Table 6. Two direct 
codes, SPARSPAK-B [13] and LLSSOl-DS with T = 0.0 
[2’7], an IR code, LLSSOl-IR [27], preconditioned CG, 
LLSSOZ [28], and pure CG are usedz. Pure CG failed to 
converge for all problems from [20]. Conclusions similar 
to the previous section can be drawn from the numerical 
results (including others not presented in the tables). It 

3Thesc codes arc referred to in the table as SPAK-B, LS-DS, 
LS-IR, LS-CG and CG respectively. 

Matrix 1 SPAK-B 1 LS-DS 1 LS-IR 1 LS-CG 1 

J 
ash331 5 1.2 0.4 ( 6j 0.4 ( 4j 
ash608 7 4.3 0.8 ( 7) 0.8 ( 5) 

ash958 11 10 1.2 ( 5) 1.2 ( 5) 

Table 5: Computing times in seconds (iterations) on an 
Alliant FX/80 for Harwell-Boeing matrices. 

1: SPAK-B LS-DS LS-IR LS-CG 

10 36 72 1.4 (19) 1.1 ( 8) 
20 61 107 1.5 ( 9) 1.4 

30 1 73 144 1 2.0 (13) 
( 7) 

1 1.8 ( 8) 
40 I 101 181 1 2.2 (221 1 1.6 ( 8) I 

t 50 I 
I I I 

128 1 208 1 2.1 i14j I 1.8 i Sj 1 
1 3.6 (34j 1 (10) 

I 
60 136 214 1 2.4 

70 141 I 257 I Failed I 6.6 (11) 

1 1 (13) 
I 

90 150 282 Failed 9.6 
100 159 268 I Failed I 9.5 (14) 

Table 6: Computing times in seconds (iterations) on 
Alliant FX/80 for matrices from [20]. 

is not necessary to repeat them here. We can conclude, 
however, that the use of the numerical dropping to pro- 
duce approximate factorization preconditioners for the 
least squares problem reduced the computing time re- 
quired to solve the problems by several orders of mag- 
nitude. 

7 Comments on further en- 
hancements 

As noted earlier, the results presented above were for 
codes whose parallelism had been generated via minor 
changes to the sequential code and a restructuring com- 
piler. It should not be surprising that with more intense 
tuning the performance of both of the calculation of 
the preconditioner and the iterative method can be im- 
proved considerably. This has been demonstrated for 
the positional dropping GMRES+ILU code developed 
by Anderson for the Alliant FX-series [l]. Wijshoff has 
also study the architecture/algorithm mapping of sparse 
primitives, in particular a sparse matrix multiplied by 
one or more dense vectors, that are of interest for the 
iterative method portion of the code on multivector pro- 
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1 Matrix 1 Old 1 New 1 I 1 I I 

Table 7: Computing time in seconds 
torization alteration. 

after symbolic fac- 

cessors [24]. The effect of applying these performance 
enhancements to the iterative method portion of the 
code is discussed in [lo]. 

The improvement of the performance of the general 
sparse factorization portion of the algorithm is more 
difficult but certainly possible. For example, changing 
the way in which the code handles the symbolic factor- 
ization portion of the rank-l update further improves 
performance. Table 7 compares the performance of the 
version of Y12M used in the previous sections to one 
with the further changes executing in direct method 
mode, i.e., T = 0. 

It is well known that for machines with hierarchical 
memory systems dense factorization algorithms must 
be written in terms of BLAS3 constructs in order to 
achieve high performance [9]. Furthermore, on such 
machines the discrepancy in the performance of gen- 
eral sparse solvers and dense solvers is considerable. 
Therefore, the appropriate use of a switch to a dense 
solver during sparse factorization can also contribute 
to improved performance. Indeed, on a machine like 
the Alliant FX/80, for many of the Harwell-Boeing 
matrices a well-implemented rank-l-based code with a 
dense switch will yield just as significant performance 
improvement as codes based on more complex parallel 
pivots strategies. Table 8 shows the computing time 
for some of the matrices which benefit from the switch 
to dense factorization routines. Additional performance 
improvements are possible by the careful consideration 

Table 8: Computing time in seconds with the addition 
of a switch to dense factorization code. 

of the use of the memory hierarchy for both rank-l and 
parallel pivot versions of the code and by exploiting in- 
formation gained in factorizations with larger values of 
r when updating the drop tolerance is required.. See 
[lo] for more details. 
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