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Abstract

In this paper, a nonsymmetric sparse linear system solver
based on the exploitation of multilevel parallelism is pro-
posed. One of the main issues addressed is the application
of tearing techniques to enhance large grain parallelism in a
manner that maintains reasonable stability. This is accom-
plished by a combination of a novel reordering technique

(H*) and pivoting strategy. The large grain parallelism ex-
posed by the reordering is combined with medium (vari-
ous parallel row updates strategies) and fine grain (vector-
ization) parallelism to allow adaptation to a wide range of

multiprocessor architectures. Experimental results are pre-
sented which show the effectiveness of the reordering, as well

as the stability and efficiency of the solver.

1 Introduction

Several techniques have been proposed to solve large sparse

systems of linear equations on parallel processors. A key

task which determines the effectiveness of these techniques

is the identification and exploitation of the computational

granularity appropriate for the target multiprocessor archi-
tecture while maintaining the stability and sparsity of the

factorization. Many algorithms assume special properties
such as symmetric positive definiteness or exploit knowl-
edge of the application from which the system arises, e.g.,
finite element problems. These properties can be exploited
in the a priori identification of parallelism, preservation of
sparsity and guaranteeing stability. These decisions can be
done statically before the factorization is performed, e.g.,
the symbolic factorization techniques and orderings of many
direct solvers for positive definite systems.

In many applications, such as device simulation, compu-
tational fluid dynamics, circuit simulation, and structural

mechanics, the values in the resulting linear systems are not
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symmetric, though the structure of the system is symmet-
ric. In other application areas, such as linear programming,
optimization problems, directed network problems, and sim-
ulation problems, the resulting linear systems are even non-
symmetric in structure. For these arbitrary nonsymmetric
systems the exploitation of parallelism while maintaining
st abllit y and sparsity becomes extremely ditlicult. This is

due to the fact that the requirements are often contradic-
tory and cannot be totally resolved until information from

the factorization is available, i.e., some decisions must take
place dynamically. As a result, for nonsymmetric systems

on a range of parallel architectures it is often necessary to
carefully mix a priori static and dynamic runtime decisions.

One approach that has been tried for parallel sparse sys-
tem solvers is the multi–front al scheme [11, 13]. A multi–
frontal scheme constructs an elimination tree to organize
the parallel work. A node in the tree represents a certain
computation, which may include handling the information
from the node’s children and performing some pivot elim-

in ations. All leaf nodes of the tree may be computed in
parallel, while internal nodes can only be computed after

their children have completed. A pool of the available work,

the nodes in the tree that can be computed, is maintained in

shared memory. When any process needs work it retrieves a
node from the pool. After all the children of a node have fin-

ished, the parent node is then placed in the pool of available
work. This approach if organized correctly can provide large
and medium grain parallelism. However, the method tends
to work well on matrices with a near-symmetric structure
and the pivot sequence is constrained.

Another approach to parallel sparse solvers exploits the
dynamic identification and application of parallel pivots [1,
7, 19]. At each stage these algorithms construct a set of piv-

ots that can be applied in parallel and perform the appropri-
ate updates. These codes typically concentrate on medium

and fine grain parallelism, and tend to be most efficient on
a moderate number of processors with fairly tight synchro-
nization. There is also previous work on performance im-
provements of direct sparse solvers on vector supercomput-
ers [5]. The results indicate that vect orization can some-
times be used to improve the performance. Both of these

approaches can be used as part of an algorithm which ex-
ploits multiple levels of parallelism.

An important part of any sparse solver is the algorithm
for controlling the amount of fill-in that is generated. Most
sequential sparse matrix packages and, in particular, MA28,
use a strategy which is based on technique proposed by

Markowitz [34]. This strategy involves counting the num-
ber of nonzero elements in each column, cj, and the num-
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ber of nonzero elements in each row, r,, and then choosing
the pivot node to be the element a,,j where the product
(c} – 1) * (r, – 1) is the minimum over all possible pivot can-
didates. Various modified forms of this strate~v that limit

the number of elements considered are possibl;

The final aspect of pivot selection is the maintenance of

stability. Typically, this is done by choosing a pivot element
that is within a specified multiple of the largest element

in the pivot row or pivot column or the active part of the
matrix depending on the efficiency of these tests given the

data structures assumed. (A discussion of stability can be
found in [12].)

The stability and sparsity tests for pivot selection are
often contradictory and most strategies involve some com-
bination of the two, e.g., the generalized Markowitz strat-

egy, [351. par~lel solvers add a third constr~nt to pivot
selection. For the medium and fine grain algorithms men-
tioned above, these three constraints can be considered in

a reasonably straightforward way potentially with respect
to the entire active portion of the matrix. The exploitation

of larger grain parallelism, however, often imposes a static
decomposition on the structure of the matrix which further

constrains pivot selection.
The effect of these constraints, for nonsymmetric prob-

lems, can be seen by considering tearing techniques. These
have been proposed to expose large-grain structure and par-
allelism by reordering the matrix into a bordered block trian-
gular matrix [15, 27]. This effectively partitions the problem
into small subproblems (the diagonal blocks) and then elim-

inates all connections between the subproblems (the border

blocks). Unfortunately, the associated factorization routines

are often unable to preserve stability and sparsity without

destroying this structure. For example, considering the en-
tire active portion of the matrix during a pivot search can
easily destroy the block structure. On the other hand, lim-

iting the search to a particular block, which can reduce the
fill-in within that block, can increase the fill-in for the over-

all matrix and reduce the accuracy of the solution.
The approach taken in this paper uses a novel order-

ing technique, H*, to identify a priori large and medium
grain parallelism by creating a bordered upper triangular
structure and a factorization routine which preserves this
structure while attempting to maintain stability and spar-
sity at acceptable levels. A technique referred to as casting
is used to control the stability of the factorization. The large

and medium grain parallelism (parallel subsystems of vari-
ous sizes) exposed by H* is combined with medium (various
parallel row updates strategies) and fine grain (vectoriza-
tion) parallelism to form a multi-grain parallel solver which

allows adaptation to a wide range of multiprocessor archi-
tectures. A multi–cluster version of the solver, MCSPARSE,
has been implemented and analyzed c n the Cedar system
[37]. Initial results with MCSPARSE were presented in [16]

and more details of the implementation and its tuning can
be found in ~201.

The pape; i; organized as follows. In Section 2 a compar-
ison between our approach and other methods is presented.

The details of the ordering H* are presented in Section 3.
Casting is introduced in Section 4. In Section 5 an overview
of the procedures in MCSPARSE is given. Experimental re-
sults and conclusions are given in Sections 6 and 7.

2 Comparison of Different Approaches

During the introduction, the H* ordering for transforming
a matrix into bordered block upper triangular form was de-

scribed as novel. This is not to say the use of the bordered
triangular form or the bordered block triangular form for
solving sparse nonsymmetric systems is a new idea.

Research into orderings for transforming matrices into
the bordered triangular form has been done using graph

theory methods for finding the minimal essential set [6, 36].

These methods rely on the fact that the sparse system is
positive definite, so that diagonal pivots can be used without
deteriorating the stability of the solution method. In case
of nonsymmetric systems, which are not necessarily positive

definite these methods are not always successful,
For nonsymmetric systems the bordered bloclc triangu-

lar form is preferable as it allows pivot selection within the
diagonal blocks without destroying the overall structure of

the system. Several different methods have been proposed
for finding the bordered block triangular form. Partition-
ing and tearing methods [38] can be used, and algorithms
such as P* [27], P5 [14], the Hierarchical Partition by Lin
and Mah [31], and the level set algorithm by Arioli and
Duff [2] were introduced for ordering the matrix into the
desired form. Although these methods are rather successful
for transforming the system into the bordered block triangu-

lar form, the associated factorization phases lacked stability
and, therefore, are not recommended to be used for general
nonsymmetric systems.

In the remainder of this section we briefly describe the
major steps of the algorithm and relate them to previous
work. Within MCSPARSE the necessary provisions are taken
to guarantee a suitable level of stability within the factoriza-

tion phase. First, the initial phase of H* is used to transfer

relatively large elements of the matrix to the diagonal. This

transformation is based on the transversal algorithm which

is also used in the level set algorithm presented later. The

main difference, however, is that in the level set algorithm
the transversal is not constrained to contain relatively large

elements, but just nonzero elements.
After this initial phase, H* proceeds by reordering the

system into the desired form while preserving the initial
diagonal structure via the use of symmetric permutations.
This is in contrast to the methods on which P4, P5, and
the Hierarchical Partition rely. Symmetric orderings are, of

course, not as flexible as nonsymmetric orderings and the
resulting structure of the system might not have as small of
diagonal block and border block sizes. This can be observed
in the results of the level set algorithm, H* mitigates this

difficulty by using different basic algorithms, i.e. Tarjan’s al-
gorithm and nested dissection, in successive ordering phases
designed to complement each other. As is shown below the
complementary nature of the phases results in a significant

increase in the power of the symmetric permut at ions.
In the factorization phase, provisions have to be taken

to guarantee a reasonably stable solution method. P5, the
Hierarchical Method, and the level set algorithm guarantee
structurally non-singular blocks. However, these methods
are still potentially unstable. Iterative refinement could be
used to improve the stability of these methods, see [~]. In

our method, stability is guaranteed by allowing pivots to be
taken within the diagonal blocks as well w the border. This
was also attempted with the P* ordering [3] however, the
overhead incurred prevented this approach from being com-
petitive with other direct solvers. Within .MCSPARSE border
pivoting relies upon a symmetric permutation, referred to
below as casting, which minimizes the associated overhead.
Also, because the initial phase of the ordering moves large
elements to the diagonal, the amount of casting can be re-
duced significantly. This approach enables MCSPARSE to be
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competitive with other direct solvers, (see Section 6).

Descriptions of the actual algorithms used within the H*

algorithm are presented within the next section. A prelimi-
nary algorithmic description of the H* ordering is in [41].

3 The Hybrid Ordering

3.1 Background

The interpretation of the actions of H* depends upon the
notion of a graph associated with a sparse matrix.

Definition 3.1 Giuenanonsymmetric (Nx N) sparse ma-
trix A . The digraph associated with A is defined to be the

graph G(V E) with IVI = N such that (i, j) c E if and only
if a,,~ is a non-zero entry in A.

The hybrid ordering H* is composed of two different
types of orderings: nonsymmetric and symmetric.

Definition 3.2 An ordering oj a sparse matrix is called
nonsymmetric if the ordering can be represented by

~ == PAQT ,

with P and Q permutation matrices. If P = Q the ordering

is called symmetric.

Note that symmetric orderin~s have the property that

the associated graphs of A and A are isomorphic, i.e., only
the numbering of the nodes differs. Nonsymmetric order-

ings are obtained by independent row and column inter-
changes of the matrix represented by P and Q respectively.
So, where the nonsymmetric orderings change certain prop-
erties of the sparse matrix, e.g., eigenvalues and diagonal

dominance, symmetric orderings maintain these. The non-
symmetric ordering, therefore, can be used to enhance the
numerical properties of the factorization of the matrix if the
values in the matrix are considered when determining the

row and column orderings. In H*, an initial nonsymmetric
ordering is used to enhance the numerical properties of the

factorization and symmetric orderings are used to obtain a
bordered block triangular matrix.

In order to obtain the desired structure, H* exploits the
concepts of a node separator set and a quasi-separator, a
generalization applicable to directed graphs, which are de-
fined as follows.

Definition 3.3 Given a graph G = (V, E) a node separator

set S o.f G is a subset of V such that there exists sets B and
C with

a) B, C and S disjoint,
b) B~S~C=V, and

c) there exist no edges (x, y) c E with
l.y GBandz EC and
2.x~Bandy GC.
If (c.1) is fulfilled but (c.9) is not, the set S is a quasi-

separator.

There are four phases in the hybrid ordering H*. The
first phase, HO, is a nonsymmetric ordering which permutes
the largest elements available at each decision point of the

production of the transversal onto the diagonal. The second
phase consists of applying Tarjan’s algorithm to transform

the matrix into triangular block form. The third phase,
H 1, is applied to each diagonal block produced by Tarjan’s

algorithm that are considered too large. H 1 attempts to
change each of these blocks into bordered block triangular
form via a modified Tarjan’s algorithm. Hz, the last phase,

is also only applied to the large diagonal blocks remaining

in the matrix to change them into bordered block triangular
form via a modified dissection algorithm. The last three
phases, Tarjan’s, H1, and H2 are all symmetric orderings.

3.2 HO

HO is a transversal algorithm for permuting nonzero en-
tries onto the diagonal using a nonsymmetric ordering. The

transversal algorithm has been modified to permute large
elements to the diagonal in order to enhance the stability of

the subsequent factorization.
The transversal ordering is a matching between the columns

and the diagonal positions of the matrix and can be found

using many different algorithms. Algorithms for finding set

representation [33] or solutions to the assignment problem[29]
could be used. An alternative algorithm involves finding
maximal matchings in bipartite graphs[28].

HO is based on work of Duff and Gustavson [9, 10, 26].
The algorithm uses a depth first search of the matrix to
determine a series of column interchanges. The algorithm
creates a transversal by assigning a unique diagonal position
to each column of the matrix. These assignments determine

a column permutation which places nonzero elements on the
diagonal.

At each step j, the algorithm has a transversal for columns
1 through j – 1 and tries to extend the transversal to include

column j. The algorithm first determines if an easy insertion
is possible. An easy insertion occurs when column j’ has a
nonzero element in row i where diagonal i is currently not
assigned to another column. To determine if’ an easy inser-
tion is possible a sequential search is made of the nonzero
elements in column j. If the nonzero element in row i is
in a row whose index is not one of the currently assigned
diagonal positions then diagonal i is assigned to column j,
the search is stopped, and the algorithm proceeds to column
j -I-1. If an easy insertion is not possible then the algorithm
must determine if an insertion can be realized by a suitable
permutation of column 1 through j (backtracking)

The algorithm continues until either an easy insertion is
made, in which case the algorithm can proceed to the next
column, or until it has considered all possible insertions for

column j. If at any stage it is not possible to extend the
transversal then the mat rix is structurally singular, there is
no permutation to make all the diagonal entries nonzero.

This transversal algorithm was modified to enhance the

chances of a stable factorization of the matrix with pivots
selected from the diagonal blocks. The enhanced version of
the algorithm attempts to place large elemexts along the di-

agonal. This is accomplished by only permuting an element

a,~ to the diagonal if its value is within a bound, a, of the
largest element in the column, i.e.,

(1)

Only a few changes to the transversal algorithm are re-
quired to support the enhancement. An initial step is added
to the algorithm to find the maximum absolute value in each
column. During the search phase, for both the easy inser-
tion and the replacement insertions, an element will only be
selected if it meets the bound of Equation 1. Also, instead of

taking the first element that is found by the search, the al-

gorithm searches through all the possible elements and uses
the element with the largest absolute value.

The algorithm starts with an initial bound a and tries
to find a transversal. If a satisfactory bounded transversal
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cannot be found, then an estimate of what bound is neces-
sary is made by examining the columns where the current

bound failed. The bound is then set to this estimate and
the algorithm is restarted. If a bound greater than a pre-

set limit is tried and a transversal is still not found, then
the bound is eliminated totally and the bounded transver-

sal algorithm finds any transversal. However, even with the
bound removed, the algorithm still tries the elements with

the largest absolute value first. The performance of HO al-
gorithm relies upon the ability to quickly find an adequate

bound for the transversal.

3.3 Tarjan’s Algorithm

Tarjan’s algorithm [39] finds the strongly connected compo-
nents of the digraph associated with the matrix with time
complexity linear in the number of nodes and edges. ] A

renumbering of the nodes of the digraph corresponding to
the decomposition of the graph into strongly connected com-

ponents yields a symmetric ordering which transforms the
matrix into a block upper triangular form.

The strongly connected components are found with a
depth-first search of the nodes using a stack to maintain the
active nodes. The algorithm starts by setting the current
node equal to an unprocessed node, placing it on the stack,
and marking the node as being processed. In addition, a
pointer, iotu, is kept for each node on the stack that indicates

the lowest position on the stack reachable from that node.
This pointer is initialized to the node’s position on the stack.

Each edge, (current, y), originating from node current
is considered in turn. If node v has already been processed,
then it is checked to see if it is still on the stack. If it is,
the low pointer of node current is set to the minimum of
the low pointers for nodes current and y. If node y is not
on the stack, then it has been removed earlier and can be
skipped. The algorithm now goes on to the next edge.

If the node y has not been processed, then it is added
to the stack, initializing its low pointer to its position, and
saving a pointer to its predecessor, node current. The cur-

rent node is now set to be the new node and a depth-first
search of its edges begins.

When all of the edges from the current node have been

processed, then the algorithm checks to determine if a strongly
connected component has been found by examining the po-

sition of the current node. If iowcu~re~t equals the node’s
position on the stack then a strongly connected component
has been found including the current node and all the nodes
above it on the stack which are then removed from the stack.
If iowcurr,~, does not equal the node’s position on the stack,
then the low pointer of its predecessor is set to the minimum
of the low.ur,e~~ and the low pointer of the predecessor. The
predecessor is then taken to be the current node and the

search of the predecessor’s edges is resumed.
When all of the nodes that can be reached from the root

node have been processed! then the algorithm starts over
with a new node that has not been processed. When all

nodes have been processed, the algorithm terminates.

3.4 H 1 Algorithm

A problem with most sparse matrices is that they do not
allow a nice decomposition into strongly connected compo-
nents and, therefore, Tarjan’s algorithm, by itself, will not

provide a suitable decomposition. A typical case is a matrix

1A description of this algorithm w, included in this paper so that
the modifications on which HI rehes can be discussed properly.

whose associated digraph contains a large cycle. The third

phase of H*, the H 1 algorithm, addresses this problem. It is

based on Tarjan’s algorithm and extracts from the digraph
a small set of nodes such that the remaining graph allows a

better decomposition into strongly connected components.
During the H1 phase, the size of each potentially strongly

connected component is monitored during its construction,
and, whenever the size grows too large, an attempt is made

to delete a small number of nodes from the graph such that
the strongly connected component will not grow any further.
The HI algorithm is applied to each diagonal block result-
ing from Tarjan’s algorithm that is larger than a threshold,
T~one. Each diagonal block is separated, when possible, into
two or more smaller blocks and a quasi-separator set. The
union of these quasi-separators are placed in the border for
the entire matrix.

The HI algorithm uses the same depth-first search as
Tarjan’s algorithm for placing nodes on the stack (as de-

scribed in the previous section). However, for each node,
x, on the stack two additional pointers are required. The

first, denoted nlow=, is a pointer to the position of the node
lowest on the stack that can be reached from z by a single
edge. The second, denoted mlowz, is a pointer to the po-
sition of lowest node on the stack that can be reached by a
single edge from any of the nodes higher on the stack than
z. When a new node is placed on the stack, both of these

pointers are initialized to the position of the new node.
In Tarian’s a.korithm the value of low. for a node z.

indicates a lower bound for the size of the strongly con-
nect ed component being const rutted. Whenever this size is
less than some threshold, Tdo~e, the H1 algorithm proceeds

identically to Tarj an ‘s. However, when this threshold is ex-
ceeded the mlow.u,re~t pointer is used to define an initial
quasi-separator set consisting of the nodes on the stack from
mlowcUrrent to pos(curTent) – 1.

Throughout the algorithm, whenever an edge to a node
y is encountered such that pos(y) — mlozu.ti,~~~t z Tt~~g
for some threshold value T~o~g, the node current is identi-
fied as having a long edge which increases the size of the

quasi-separator set to an unacceptable level. So, in order
to minimize the size of the quasi-separator set, the pointer

mlowcur,e~t is not updated with the position of the node y
rather, the node cument itself is marked for consideration

later in the algorithm as a node to be moved into the quasi-
separator set. This potentially increases the quasi-separator

set by one node as opposed to keeping the current node in
the strongly connected component and including all of the
nodes from min(m,iowcurrcn~, po.s(y)) to pos(current) — 1 in

the quasi-separator set. The pointer nlowz is maintained
for the current node and the nodes above it on the stack
to allow the actual transfer of the marked nodes into the
quasi-separator set. Whenever the initial quasi-separator
set is constructed, as described above, it is augmented with

the nodes which have been marked as having long edges.

In the implementation of Hl, the pointers nlow and
miow are updated in a manner similar to that used to up-

date low. in Tarjan’s algorithm. When an edge that points
to a node g that is lower on the stack than the current node
is encountered during the depth-first search, the pointers are
updated as follows:

lowcu,,ent = l]man(~owcurrent, Owu ,

ntowcur~ent = min(nlowcurrent, position(y)),

and the pointer mlowcu,,e~t is not updated.
When moving down in the stack to resume the exami-

nation of the edges of the predecessor of the current node
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(denoted below with the subscript prev) the updates per-

formed are

if miowcu,,~nt — nlow.u~~ent < Tto~g then
imlowcuvrent = mm(mlowcuvren~, n owc.rrent )

end if
miowPreV = min(mlowP7eV, mlowc~~ve~t )
IowPrev = min(lOwP~.,, 10w.u.,~~c)

Note that the decision of whether or not a node has a long
edge is postponed until all of the edges of the node have
been examined. This implies that only thelongestedge ofa

node, represented by nlow, is used to decide whether or not
the node is moved to the quasi-separator.

After these updates the decision is made as to whether:
no action is required, a true strongly connected component

has been found (low.~rren~ = pos(cument)), or the thresh-
old on the size of the strongly connected component has

been exceeded. In the last case, an attempt is made to re-
duce the size of the strongly connected component. The
nodes are divided into three sets: the new block, a border
block, and the remaining block. The new block includes

the current node and the nodes above it on the stack. The

border block contains the nodes starting from mlowcu,,e~t

to pos(cument) - 1. As noted above, the border block is
augmented with any nodes in the new block that have been

marked as having a long edge. The bordered block is only
accepted it

● The new block is greater than a minimum size, Trn;nb
and smaller than a maximum size, Tma=b

● The size of the augmented quasi-separator set relative
to the size of the new block is less than Tma.~=P.

If the bordered block is accepted, all three blocks are re-

moved, with the nodes in the remaining block marked as
still to be considered. A new starting node is found and the

algorithm restarts on the nodes yet to be considered.
If a trne strongly connected component has been found

or if the strongly connected component under construction
is still less than its allowed size, the same actions are taken
as in Tarj an’s algorithm.

When all of the nodes that can be reached from the start-

ing node have been processed, the algorithm selects a new

root node that has not been processed and continues. When
all of the nodes have been processed, the last block will
empty the stack and the algorithm is finished.

An example of how the H1 algorithm finds a quasi-separator
set can be found by the application of the H 1 algorithm to
the 8 x 8 sparse matrix in Figure 1. The associated directed
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Figure 1: A 8 x 8 sparse matrix and its associated digraph

graph for the 8 x 8 matrix is also included in this figure.
Figure 2 is the current state of the algorithm when it has

just completed all the edges from node 5. The current block
of completed nodes cent sins nodes 5, 6, 7, and 8. There are

Long
Back Edge

Back Edges

Block Low
Pointer

Node Low
Pointer

. -p $ Node 7 ‘

Node 6
>

Current
Block--- ->

( Current--- - -> Nod:5; + ~Tode

‘od:’!>::;z:o=
Node 3 I

--- ----- 4 .A

I
I ~ Node 2

Figure 2: HI Stack

three back edges from the nodes in the block, these are the

edges {8,1], {7,4}, and {5,3}. The back edge {8,1} however

was determined to be a long edge and it is not included in

determining the size of the quasi-separator set. Therefore,
for node 5 the one edge low pointer for the node points to

node 3 (ntows = 3); And the one edge low pointer for the
nodes above node 5 points to node 4 (mlows = 4). This
yields an initial bordered block size of 4, a quasi-separator
size of 2, and a remaining block size of 2.

Assuming the block sizes meet the necessary constraints,
the search for the long back edges is made. This search finds
the edge {8,1} and places node 8 in the quasi-separator set.
The bordered block size becomes 3, the quasi-separator set
becomes 3, and the remaining block stays at 2. The bordered
block contains nodes 5, 6, and 7. The quasi-separator block
contains the nodes 3, 4, and 8, Next, HI is applied to the
remaining nodes which results in the two independent blocks
1 and 2. The matrix that H1 produces is shown in Figure 3.

/33
21

51 1

61

7 11

31

1 4

1 8

Figure 3: Reordered Matrix

3.5 H2 Algorithm

The HI described above approaches the problem of cre-

ating quasi-separator sets starting from an algorithm that
is clearly intended for structurally nonsymmetric systems

(Tarjan’s algorithm). It is also possible to approach the
problem of transforming the matrix to block upper trian-
gular form starting from the standard techniques used to

produce separator sets for structurally symmetric matrices,
e.g., nested dissection [22, 25].

As in the standard approaches, the ordering E(2 starts
with the construction of separator sets of the adjacency ma-
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trix of A + AT. In our implementation of H2 we used a
straight-forward implementation of automatic nested dissec-

tion [24]. However, other initizd orderings could have been
used such as one-way dissection [23], more sophistical ed im-

plement ations of automatic nested dissection [32], or the
graph bisection heuristics proposed in [30].

The H2 algorithm is only applied to diagonal blocks pro-
duced by HI that are greater than a user-specified threshold,

Tdone. The algorithm starts with the graph (G = (~ E)) as-
sociated with the unscaled symmetric part of the diagonal
block under consideration, 114 = (A+ AT), with the self-
edges generated by the diagonal elements removed. Before
starting the dissection, the nodes are examined to determine
if any have a large number of edges. If the number of edges

connected to the node is greater than ~, where ,!3 is usually
10% of the rows in the original matrix, the node is placed

into the border and removed from further consideration. A
limit is placed on the number of nodes that will be placed in

the border from any particular diagonaJ block by using this
test. In our implementation, this limit is usually 7% of the
nodes in the diagonal block. Our experience with the RUA
matrices has shown the values of 10% and 7% to provide
reasonable performance.

Nested dissection generates a submatrix of bordered block
form. However, since the objective of the H2 ordering is to
bring the submatrix into bordered upper triangular block

form, nested dissection only is too restrictive and the con-
straints on the separator set can be relaxed. This fact is
exploited by the H2 ordering. After each stage when a sep-
arator set S is constructed H 2 reduces the number of nodes
in the separator set by allowing additional fill-in to be cre-

ated in the upper triangular part of the submatrix thereby
producing a quasi-separator set.

After a separator set S has been produced by the version
of automatic nested dissection mentioned above, the graph

G has been decomposed into a separator set S and two dis-
joint sets B and C. H2 attempts to reduce the size of S by
moving nodes out of S into either B or C as long as there
are no edges from nodes in C’ to nodes in B. Edges are al-
lowed from nodes in B to nodes in C. More formally, the
reductions can be described as follows:

1. If there exists no edge (y, z) c E such that y c S and

x E B then y may be moved to C’.

2. If there exists no edge (z, y) G E such that y E S and
z 6 C then y may be moved to B.

An example of the reduction of the separator set can be
seen in Figure 4. Since there is no edge from any node in
C directed to the node d in S, then d may be moved into
B. The node e may not be removed from S since it does
not meet the requirements for either of the reductions and

moving out of S would destroy the desired structure.

Before reduction After reduction

Figure 4: Reduction of the Separator Set

An optimization to the reduction above involves moving

nodes from B to C, or C to B, so that the first two reduc-

tions can be applied to nodes for which the conditions of the

reductions were not met with the initial contents of B and

C. This is implemented by following the initial reductions
with two enhancement phases.

The first phase consists of moving nodes from B to C
together with applying the initial reduction techniq~es. A

set of nodes D c B is moved to set C if all of the following
condlt ions are met:

1. There are no edges (d, b) c E where d 6 D and b c B.

2. There exists R ~ S such that there are edges (y, d) E
E where d E D and y c R; and there are no edges

(y, b) EEwhere yCRandb6(B– D).

3. The size of the remaining part of set B is greater than
the minimum size, I B — D I > T,e~~i~.

After D is moved from B to set C the initial reduction tech-

niques on separator set are repeated.
Symmetric conditions can be defined that allow the mo-

tion of a set of nodes from C to B before repeating the initial
reduction techniques. A set of nodes D C C’ is moved to B
if all of the following conditions are met:

1. There are no edges (c, d) 6 E where a! 6 D and c c C.

2. There exists R ~ S such that there aie edges (d, y) c
E where d c D and y c R; and there are no edges
(c, y)& Ewherey eRandc G(C-D).

3. The size of the remaining part of set C is greater than

the minimum size, ] C – D I > T,emain.

If all of these conditions are met, then the set D can be
moved from C to B and the initial reduction techniques can
be applied.

An example of this enhancement is provided in Figure 5.
None of the reductions may be applied to the initial separa-

tor set. However, the node f can move from C to B and. as
a result, S can be reduced ~y moving the node d into B’.

a

R“
df

b 131

c e h

BSC

1. Before reduction
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bd g

c e h

BSC

3. After reduction

Figure 5: Enhanced Separator Set Reduction

After the separator set has been reduced it is removed
from the graph, and the algorithm is applied recursively to
the two sets B and C until the resulting blocks are less than

the desired maximum block size, Tdome.

3.6 Results for H*

This section presents the results for the hybrid ordering H*
that were collected on one cluster of Cedar, an Alliant FX/8.
These results include border size, diagonzd block sizes and
performance results which include the ordering time. The
interested reader should consult [20] for many more details
concerning the tuning of the heuristics that pzoduces the
data presented below.

The tests were conducted using matrices from the Harwell-
Boeing test collection, All the matrices chosen were from the
real, nonsymmetric, assembled (RU.A) set. The RUA set has
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95 matrices, of which three are structurally singular and are

not considered. Because H* is meant to identify large grain

parallelism, results for H* will only be presented for fourteen
of the matrices which have at least 1,000 rows.

Table 1 contains the results for the application of the
H* ordering to the large matrices. This table cent ains the
transversal bound which was found by HO, the total time

for the H* ordering (user process time in seconds), the total

number of diagonal blocks after the ordering, the number of

rows in the border, and the largest diagonal block.
The transversal bound is a scalar a such that the max-

imum value in a column is not more than a times the cor-

responding diagonal element, I a,,, I *a ~ max?~~~~ I aj,, I
for I s z s n. When the tests were run, the mltml value
of a was lE+l. If this value of a was not adequate the
HO algorithm would estimate what cr should be by looklng
at the columns where the current bound failed. The value
of a would be increased to the estimate and the algorithm
would retry. ThE would continue until either a transversal
had been found or until a bound greater than lE+5 had
been tried. If a bound greater than lE+5 was tried with-
out finding a transversal, then the transversal was then tried
without the bound. For some of the matrices the transversal

~*, this indicates that the HO ~gorit ‘mbound is given as - ,

could not find a bounded transversal within the given limits
and an unbounded transversal search was used.

[

Matrix
Name

gaffl 104
gemat11
gre.1107
hwatt2

mahistlh
nnc1374

or6781hs

orsreg.1

pores-2

saylr4
sherman2
sherman3
sherman5
west2021

m
4929
1107
1856

1258

1374

2529

2205
1224

3564

1080
5005
3312
2021

-miT-

zeroes

16056
33185

5664
11550

7682

8606

90158

14133

9613

22316

23094
20033

20793
7353

0 Otal~ Border Max
3ound Time Blocks Rows Block

1E+4 2.066 190 202 108
1E+2 3.915 437 348 404
lE+l 3.494 23 324 103
1E+8 2.136 142 430 158

* 1.379 930 74 124

1E+9 3.126 91 244 130

1E+6 6.962 2000 355 170

lE+l 2.930 15 438 160

1E+5 2.409 21 245 105
lE+l 4.966 22 634 333

1E+7 5.179 220 352 102
lE+l 3.942 2119 423 394
1E+6 4.483 1680 303 310
1E+6 5.670 1261 93 188

Table 1: H* Statistics for Large RUA Matrices

The results of H* can be compared with the related or-
derings produced by the P4 algorithm [27], the P5 algorithm
[14], and the level set algorithm by Arioli and Duff [2], on a
subset of the Harwell-Boeing matrices for which the results
are available in the literature [4, 2]. This subset comprises
the Grenoble matrices and the Westerberg’s matrices. The
matrices range in order from 67 to 2021.

Table 2 shows the number of rows in the border of the
matrix after the application of the algorithms, and the size of
the largest diagonal block remaining in the matrix after the

application of the orderings. A value of ‘N. A.’ indicates the
result was not available. The results from P5 are omitted

from this table since, as indicated in [2], P5 usually generates
blocks of size 1 or 2, with an occasional block of size 3.

The comparison of the orderings with respect to the re-
sulting block sizes must, of course, be interpreted with care
since, in the final analysis we are interested in their efficacy
when coupled with a parallel system in terms of computing
time. Nevertheless, some relevant points can be made.

Clearly, the P4 and P5 orderings produce smaller bor-

gre-11 5 115
gre-185 185
gre-216 216
gre_216 216
gre-343 343
gre-512 512
gre-1107 1107
westO067 67
westO132 132
westO156 156
westO167 167
west0381 381
west0479 479
west0497 497
west0655 655
west0989 989
west1505 1505
west2021 2021

—

-jp

-33
86
73
70

102
148

324
25

15

3
7

103
85

35
99
69
79

93—

3order Size II Larzest Block
*

77
28

24
24
42

50

100

11
3

3
3

52
38
18
54
77

116

160.

T
P Level H “P

Set
15 18, 10 <3
28 52 16 <3
25 53 19 5
25 N.A. 11 5
52, 65 33 9
55 106 49 5

113 126 103 4
13 12 6 14
4 6 13 10
4 4 12 4
4 4 15 14

53 81 38 18
42 45 41 4
20 12 48 18
66 62 65 4
84 106 } M 4

Level
Set

56
69

N.Y

138

211

447

26

<3
2

30
126

69

15
102
48

79
455

Table 2: Number of Rows in Border & Largest Diagonal

Block Size

ders as well as smaller diagonal blocks than II* and the level
set algorithm. This is not surprising given that they use
nonsymmetric permutations which are more flexible. Un-
fortunately, the small diagonal blocks and border have less
than satisfactory properties when coupled with a factoriza-
tion algorithm. As Arioli and Duff point out in [2], the
small diagonal block sizes can cause difficulties with both

parallelism and the ability to choose stable pivots when the
pivot searches are constrained to the diagonal blocks. Fur-

ther attempts to improve stability via pivoting produced a

prohibitive cost and the use of simple iterative refinement

did not result in satisfactory accuracy [4
J“The difficulties in the coupling of P and P5 and with

a stable factorization method motivated Arioli and Duff to
consider other methods includlng the level set ordering. It,

like H*, uses symmetric permutations. In general, the level
set algorithm creates smaller borders but significantly larger
diagonal blocks than H*.

From this comparison, we see that H* produces a reason-
able compromise of diagonal blocks large enough to serve as
the basis for a pivoting strategy and the exploitation of mul-

tiple levels of parallelism without becoming too large; at the
cost of a somewhat larger border.

4 Stability Issues

4.1 General considerations

The major problem with a large grain parallei solver is main-
taining the stability of the factorization while only working
with pivot selection constrained to a particular subsystem,

e.g., a diagonal block or border block of the reordered sys-
tem. Typically, when using tearing techniques, codes apply

Gaussian elimination to each of the diagonal blocks to cal-
culate a local LU factorization. These factorization are

then used without ~r.wther pivoting to eliminate the border
nonzero elements. Even when such a factorization exists
and is accurately computed, the pivot choices may cause
substantial error growth when applied to the border rows.
Additionally, there is no guarantee that the diagonal blocks
are well-conditioned or even non–singular. The difficulties
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in addressing these issues have prevented tearing techniques
from being used in general matrix factorization packages.

In order to maintain stability it is necessary to apply
a global pivoting strategy. This conflicts with the restric-
tions mentioned above, that are usually imposed in order to

maintain the large grain structure of the matrix during the

factorization. In general factorization routines, the global
pivoting strategy usually involves making sure that a pivot

element is within some factor of the maximum absolute value
within the pivot row. In the case of border block upper tri-
angulm matrices such a strategy could lead to pivot choices
which destroy the structure, e.g., the exchange with a col-

umn in the rightmost part of the matrix can result in the
introduction of nonzero elements in the portion of the lower
block triangular part of the matrix where zeros are desired.
When stability control is combined with fill-in control, the

pivot selection is done on the entire active portion of the
mat rix. Whenever a pivot is chosen outside the diagonal
block being factored but not in the border, i.e., in one of the
other diagonal blocks in the block upper triangular part, a

row permutation is needed along with a column permuta-
tion. This row permutation also destroys the structure of
the matrix.

Row permutations with the border, at the appropriate
point in the factorization, do in fact preserve the bordered

block upper triangular structure. For example, pairwise piv-

oting could be used to eliminate the rows of the border in
parallel [7]. This preserves not only the general structure

but the number of rows in each of the diagonal blocks and
the border as well. (This is, of course, not true for struc-

turally symmetric matrices where the bordered block upper

triangular form is in fact an arrowhead form and any non-
symmetric permutation can potentially destroy structure.)

There are some drawbacks, however. Pairwise pivoting can
permute the relatively dense rows that tend to appear in
the border into the diagonal blocks. This can increase fill-in
during the factorization phase depending on exactly when
the border is eliminated relative to the factorization of the
rest of the diagonal block. The fact that, potentially, all of
the border rows eliminated by adiagonaJ block will require
interchanges implies that the overall bound on the growth
factor of the elimination is larger than that for strategies
that have only one or two comparisons per pivot column or
row. Finally, the complexity of the synchronization during
the factorization and the application of the factorization to
subsequent right-hand side vectors is nontrivial compared to
other ways of handling the problem.

Other strategies discussed previously in the literature
have resulted in solvers with either unacceptable cost or
stability control, e.g., [2, 3, 4]. We would like to develop
a strategy that preserves the overall structure of the ma-

trix while allowing the implementation of a global pivoting
strategy which yields a factorization with stability similar
to more conventional nonsymmetric solvers, such as MA28
[8]. We will, however, allow the size of the border to in-
crease during the factorization, In doing so we would also
like torer.trict any nonsymmetric permutations tothediag-
onal blocks of the block upper triangular part of the matrix
and the diagonal block of the border.

4.2 Casting

The strategy used in MCSPARSE is baaed on a technique
which combines standard nonsymmetric permutations for

pivot selection within the diagonal blocks and symmetric
permutations to facilitate the required global pivoting.

Definition 4.1 Apivot p,, is said to be cast if thesystern
isperrnuted by the coiumnpermzdation (1,2, . . ..l. i,i+i+

1,... ,n) - (1,2,.. -,l,i+l,l, rz, i)z, i) followedbgan iden-
tical row permutation.

Note that by definition casting a pivot is a symmetric
permutation. Also note that in case of solving a bordered
block upper triangular system whenever a pivot is cast the
border size increases by one.

This casting can reincorporated into a factorization as
fouows:

accastnumb = O
begin:

i=l
castnumb = O

for k = 1 to N-accastnumb

foreach a~,, j > i and j < N–castnumb
if p,, is stable for a~,

then eliminate a~,

else cast pi, (A - per-m.(A))
castnumb = castnumb +1
goto end

endif
endforeach
i=i+l

end:
endfor

if castnumb >0 then
accastnumb = accastnumb + castnumb

go to begin

endif

for i = N– accastnumb +1 to N
find a stable pivot p,,
foreach a~;, j > i

eliminate aj,
endforeach

endfor

The last set of nested loops corresponds to the factor-
ization of the dia~ona.1 block relatiu~ all of the cast Divots

(possibly requirin~ a nonsymmetric p~rmutation). Th~ algo~
rithm completes the first phase when all columns have either
completed their eliminations or have cast the pivot element
used for the column in the first phase. Note that the instate-
ment which determines if castnumb is greater than zero will
re-execute the first loops, if any pivots were cast, by j umping
to the begin: label. The re-execution of the first loops is
necessary to eliminate the values in the rows which contain
the cast pivots. Values which have already been eliminated
will be ignored so no redundant work will be performed.

Encountering O pivot elements in the initial part of the
procedure does not cause problem since they will be cast
and eliminated in the second phase of the factorization. The

initial phase may cause some inefficiency since only diagonal
elements are considered as pivots. This can be improved by
allowing some nonsymmetric (local) permutations to place
a stable pivot cm the diagonal and thereby reduce casting.

5 Overview of MCSPARSE

5.1 Hybrid Ordering H*

As indicated above, the purpose of the ordering is to ex-
pose structure in the matrix that is not apparent to allow
the exploit ation of large and medium grain parallelism. H*
attempts to achieve this goal and comprises four distinct
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Figure 6: Bordered Block Upper Triangular Form

phases: HO, Tarjan’s Algorithm, HI, and H2. These phases
have been described in Section 3.

The structure of the matrix after the application of the
permutations generated by the different phases is a bordered

block upper triangular matrix. Further, the rows of the
border are sorted based on the column index of their leftmost

nonzero entry.

5.2 Matrix Structure

The structure of the reordered matrix is shown in Figure 6.

Note that a block upper triangular form is assumed with-
out losing generality. The interaction of diagonal blocks
D1 through Dm is confined to the off-diagonal blocks Cl
through Cm-l. The border diagonal block, F, comprises all

oft he separator sets produced by H*. Therefore, F interacts
with all of the diagonal blocks through both the border and

the off-diagonal blocks Cl through C’~. The recursive na-
ture of the production of the separator sets induces a block

structure within the border. Specifically, the nonzeroes of
the rows belonging to a particular separator set from HI or
H2 are confined to the columns of the diagonal blocks which
correspond to the block that was split by the separator.
Note that the final sorting of the rows in the border does
not affect this property and results in the staircase struc-

ture indicated in Figure 6. This induced border structure is

exploit ed during the factorization.

5.3 Factorization of the Matrix

The factorization of the matrix is performed in four stages.
The first stage is the factorization of the diagonal blocks.
Complete pivoting is used within each diagonal block DJ
to find pivot elements which satisfy both stability and fill-
in constraints. First, candidate pivots are selected using
a modified Markowitz criteria which uses an estimate of
expected off-diagonal block C’j and border block fill-inz.
Then, out of these candidate pivots that pivot pk,rn is chosen
which has the lowest Markowitz count and satisfies lp~,m I ~
p x max~ la~,~], with p = 0.1 and the constraint lp~,~l > a,
with a = 10-5. If a pivot can not be found satisfying the
stability constraint then the column and corresponding row
are cast. (The issue of a factorization not existing for a
diagonal block is discussed Section 4.)

Since this matrix is bordered block upper triangular,
there are no edges from diagonaJ black Dj to diagonal block

2The estimate of the number of fill elements generated outs]de the

diagonal block is based on a worst case scenario. For further details

about this estimate see [20].

D, Vi, i < j. Therefore, when a pivot is seiected in diagonal

Di itwill not perform any updates on the rows in block DJ.
Nor will the pivots in the block D3 update any of the rows in
block D,. As a result, the LU factorization of the blocks can
be performed in parallel. Similarly, after the diagonal blocks
have been factored, the L factors can be used to update the

off-diagonal blocks in parallel.
Next, the border blocks are eliminated using the diago-

nal blocks and the off-diagonal blocks. Again, the absolute
values of the Divots chosen during the diazonaJ block factor-

ization are checked against the absolute values of the border
elements. Whenever the absolute value of a pivot is smaller
than 10-6 x the absolute value of the border element to be
eliminated, the column and corresponding row are cast to
the border, see also Section 4.

The elimination of a given border row by the pivots in
the diagonal blocks must respect certain dependencies. A
diagonal block DJ cannot update a row in the border until

after the row has been updated by all blocks D,, z < j.
However, the update of a row in the border is independent

of the update to the other rows in the border. Therefore,
a diagonal block DJ can update the rows of the border in

parallel. The staircase structure of the border can be ex-

ploited to produce appropriate granularity for a particular
processor. The staircase structure implies that the mtmber
of diagonal blocks involved in the initial updates is equal to
the number of “stairs” in the border. This can be used to
enhance the initial distribution of work and data (diagonal
and off-diagonal blocks) across the processors.

6 MCSPARSE Results

This section presents summary results for the large-grain
parallel sparse system solver, MCSPARSE, on the Cedar mul-
tiprocessor. For a more detailed look at the Cedar perfor-

mance results for MCSPARSE see [21].

6.1 Stability Results

To determine if MCSPARSE was stable, a comparison was
made between the stability of MC SPARSE and MA28, [8], a
standard sparse system solver. Both algorithms were used
to solve the large test matrices from the Harwell-Boeing test

collection and the relative maximum norm of the error,

error ==
maxlS,gn(l xC.kUlated - zh~oum 1)

max~<,<n(l Xkncwm i)
(2)

.-

was calculated for all of the solutions. For the comparison,

MA28 was run with the stability factor3 (u) at 1.0 and with
a value of 0.1. MC SPARSE was run with the diagonal casting
(a = 10-5) and border casting (c = 10-’). There are, of
course, many combinations of casting that can be done. The
combination used here and its parameters have been tuned
via many experiments. The interested reader is directed to
[20] for the details of the casting comparisons and tuning.
Also, MCSPARSE was run both with and without iterative
refinement (1.R.).

Table 3 compares the stability for fourteen of the large
RU.4 matrices. For these matrices MCSPARSE degrades slightly,

for 5070 of the matrices the relative error for MCSPARSE is
of the same order of magnitude or better than MA28 and

for 78% of the matrices the difference between the solvers is

3The stablht.y factor u is used to restrict the pivot choices such

that a pivot a,,,] can only be used if I a,,j 1~ u x max I Uh,j lVk m
the active portion of the matrix.
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within four orders of magnitude. However, with the addition

of a few steps of iterative refinement, MCSPARSE is able to

solve 13 of the matrices with a relative error of at leaat the
same order of magnitude as MA28 and the remaining matrix
has a relative error of only one order of magnitude worse
than MA28. This compares favorably to results in [4] where
the augmentation of their limited pivoting strategy with it-
erative refinement did not produce satisfactory results.

rMatrix

-

1 gaffl104
2 gematl 1

3 gre.1107
4 hwatt.2
5 mahistlh
6 nnc1374
7 or6781hs
8 orsreg-1
9 pores-2

10 saylr4
11 sherman2
12 sherman3

13 sherman5

Relative Error Fill-i] (x103)
MCSPARSE MA28 MCSP . MA28

w lout I Wlt h I 26=1 u= U=lu=

.4E-13 .4E-13 .6E-06 .2E-06

.lE-08 .6E-11 .lE-12 .lE-12

.5E02 .5E-03 .2E-04 .lE-C14

.5E-13 .3E-14 .5E-12 .9E-12

.lE-12 .7E-13 .4E-12 .4E-11

.lE-05 .6E-12 .lE-09 .lE-09

.9E-11 .2E-11 .2E1o .8E1O

.lE-02 .3E-11 .6E-08 .7E-06

.5E-12 .2E-12 .4E-12 .2E-09

.6E-07 .2E-14 .2E-12 .2E-09

105
143

183
245

12
192
221
261

97
548
431
311

314
.1 E051.1E-091 .4 E-081 .3E081 251

1.0 0.1

58 62
28 19

40 37
102 247

53
58 43
25 14

311 137

29 29
288 451

258 241
190 368

191 132
44

Table 3: Stability and Fill–in Comparison Between MC-

SPARSE and MA28

6.2 Fill-in Results

To determine if the modified Markowitz count was successful
in reducing the amount of fill-in a number of tests were

run using the RUA matrices from the Harwell–Boeing test
collection. This section presents the results from the tests
conducted with the large matrices (the matrices with at least

1,000 rows). The number of rows and original number of
elements in the matrices can be found in Table 1.

The number of fill-in elements from the tests are in Ta-
ble 3. This table also contains two other columns. The MA28
column indicates the number of fill-in elements generated by
MA28 with the stability factor (u) at 1.0 and 0.1.

As expected, MA28 almost always produces less fill-in
than MCSPARSE due to its more global pivot search. How-
ever, MCSPARSE benefits from a localization of the fill-in
which allows for a more efficient exploitation of storage (due
to selected use of dense structures) so that the cost of the
extra work created by fill-in is significantly reduced.

6.3 Cedar Performance Results

This section summarizes the performance results for MC-

SPARSE collected on a four cluster Cedar configuration, with
each cluster comprising eight processors. In fact, each clus-
ter represents an Alliant FX/8 with increased cache size
and the four clusters share a global memory accessed by
an omega interconnection net work[37]. Since MCSPARSE was
designed to exploit large grain parallelism, the multi-cluster
performance is examined first, followed by the one cluster

performance. The times given in this section are wall clock
times, in seconds, for the code running in single user mode.

The size of the system to be solved has to be fairly large
in order to reduce the overhead associated with the exploita-
tion of large grain parallelism to an accept able level. So, only

the fourteen large–sized Harwell–Boeing matrices listed in

Table 3 were used to obtain Performance measurements on

the Cedar system. The resuits for these systems are sum-

marized in Table 4, which compares the time to run on four
clusters, T(4CL), (using all 32 processors) to the time to
run on one cluster, T( 1CL), (using eight processors). For

these tests, repeated runs were used to eliminate any effects
the virtual memory system might have on the results.

Matrixl 12345678 91011121314

;[;:;; 2.13.12 .32.11.81.92.6 3.01.73 .02.22.83.01.9

Table 4: Summary of MCSPARSE Multi–Cluster Performance
on Cedar (Matrices Numbered as in Table 3)

As can be seen from these tests, the multi-cluster perfor-
mance of Cedar resulted in a cluster speed up ranging from
1.7 up to 3.1 (out of a possible 4.0). For 10 of the 14 ma-
trices, the speed up was at least 2 and for 4 of the matrices
the speed up was at least 3. In the following section the one
cluster performance of NICSPARSE is compared to the per-
formance of MA28 (the results from these two sections can
be combined to determine the standard speed up comparing

one processor to 32 processors.)

6.4 Performance Comparison for MCSPARSE and MA28

In this section we give performance results for NICSPARSE on

one cluster of Cedar, an Alliant FX/8, and compare its effec-
tiveness against a known sequential spa:se solver, MA28 [8].

The solution times of the large matrices from the RUA
collection for both the MCSPARSE and MA28 solvers are pre-
sented in Table 5. This table cent ains the wall clock times
for the solutions as collected in single-user mode on the one
cluster of Cedar. The times for the MCSPARSE solver are
presented for both one and eight processor runs. The times

for MA28 are presented for eight processor runs.
When comparing the solution times for MCSPARSE against

MA28, it is necessary to include the ordering time for the ma-
trix along with the solution time. The columns labeled as

Total contain the sum of the ordering time and the solution

time. For MA28 the solution times are presented for the
stability constraint u = 0.1 and using the improved pivot
search algorithm with the pivot search being limited to four
rows and four columns. The single time presented for the
MA28 run cent sins both the ordering and solution time.

This table shows that, although YICSPARSE was not specif-
ically designed to run efficiently on an Alliant FX/8, the

speedup obtained for eight processors over one processor
is significant. The Alliant FX/8 is a tightly coupled mul-
tiprocessor compared to the Cedar architecture for which
MCSPARSE was intended. These results clearly indicate that

the large and medium grain parallelism exploited by Mc-
SPARSE does not entail an unnecessary amount of overhead

or mismatch in load balance that would prevent reasonable
performance on a tightly coupled architecture. Second, it
can be observed that the time for performing the ordering
H* is less than the time needed for factoring and solving the
system, though still proportional to the latter one. It should
be noted, however, that the ordering was performed on one
processor. The ordering time could be reduced significantly
via a parallel implementation, which should be easy real-
izable due to the recursive nature of H*. The comparison
with MA28 shows that the performance improvement can
vary considerably, but is substantial, e.g., a factor of 29 for
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Matrix Hybrid

Reorder

gaffl104 2.14

gematll 4.04
gre.1107 3.65

hwatt.2 2.23

mahistlh 1.45
nnc1374 3.26
or6781hs 7.20

orsreg-1 3.07
pores-2 2.53
saylr4 5.15
sherman2 5.40
sherman3 4.09
sherman5 4.70
west2021 5.89

MCSPA
lCE

-sGIE
24.49

40.14
20.53

33.49
3.18

19.97
38.75
41.69
11.15

114.06
78.41

127.64
125.68

6.87

-ma
26.63

44.18
24.18

35.72
4.63

23.23

45.95
44.76
13.68

119.21
83.81

131.73
130.38

12.76

%3-E-H%
Solve Total u =().1

5,22 7.36 54.72

10.96 15.00 11.41
3.76 7.41 28.46

6.28 8.51 77.82

0.72 2.17 3.30
3.81 7.07 27.84
7.62 14.82 62.69

9.61 12.68 117.79
2.19 4.72 19.03

23.51 28.66 306.07
13.37 18.77 554.09
26.85 30.94 187.87
28.62 33.32 309.70

1.64 7.53 2.38

Table 5: Solution Time Comparison Between MCSPARSE and

MA28

shermam?. The eight processor version of MA28 was pro-
duced via a restructuring compiler so there is clearly room
for improvement in its performance. Nevertheless, the su-
periority of MCSPARSE is often large enough to indicate any
performance increase via a redesign of MA28 to apply paral-
lel pivots might still fall short. In any case, MCSPARSE often
compares favorably with such a parallel pivots code for non-

symmetric systems. The interested reader should see [19] for
the performance of the nonsymmetric sparse code Y12M2.

7 Conclusions

A parallel solver for nonsymmetric linear systems of equa-
tions, MCSPARSE, was introduced, which combines different

granularities of parallelism. One of the main concerns ad-
dressed by MCSPARSE is the maintaining of stability and
sparsity at acceptable levels while allowing large grain par-
allelism to be exploited. This is achieved by using a novel
ordering technique H* combined with a new technique, cast-
ing, which provides a mean to discard the application of

unstable pivots during the factorization. This enables MC-
SPARSE to obtain stable factorization which are comparable

to standard factorization routines, such as MA28.
The H* ordering combines four different orderings, HO,

Tarjan’s algorithm for finding strongly connected compo-
nents, H1 and H2, to transform a matrix into bordered block
upper triangular form. Except for the HO ordering these or-
derings are symmetric, which distinguishes H* from other
tearing techniques. The effectiveness of the H* ordering,
in terms of producing small borders and for improving the
stability of the factorization, has been demonstrated.

Casting has been described for general matrices and for
the bordered block upper triangular form produced by H*.
For the latter matrices, casting maintains stability by using

numerical information gathered during the factorization to
adjust the diagonal blocks and the border produced by H*.
The particular implementation of diagonal block and bor-
der block casting used in MCSPARSE has been described and

evaluated by comparison with MA28.
Multiple levels of parallelism are present and exploitable

in MCSPARSE: very large-grain parallelism with several di-
agonal block factorization and border block updates per
cluster of processors; large-grain parallelism within a clus-
ter when factoring a diagonal block per processor; medium-

grain parallelism when using the processors in one cluster
to factor a single diagonal block or update a single border

block; and fine-grain vectorization used within each pro-
cessor. Experiments investigating the performance of MC-

SPARSE on both a tightly coupled multi-vector processor,

an Alliant FX/8, and a more loosely coupled cluster-based

architecture, a four cluster Cedar, have been reported and
show the algorithm’s effectiveness.

There are several avenues of investigation left to purswe
with respect to MC SPARSE. A parallel implementation of the

H* ordering would improve further the overall performance
of MCSPARSE. The code could be adapted to map its muL
tilevel parallelism onto other multi-vector processors and to
exploit their architectures efficiently. Initial results, [40], in-
dicate that MCSPARSE can be adapted to use a combination
of positional dropping, i.e., ignoring a fill-in element due
to its position in the matrix, and numerical dropping, i.e.,
ignoring a fill-in element because of its relative magnitude
[18, 17], to produce a preconditioned for conjugate gradient-

like algorithms. Finally, the techniques used in MCSPARSE

should be considered for use with more conventional ap-
proaches to solving systems with tearing techniques, e.g.,

exploiting the Sherman- Morrison- Wo od?mry formula.
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