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Abstract

In this paper, a nonsymmetric sparse linear system solver
based on the exploitation of multilevel parallelism is pro-
posed. One of the main issues addressed is the application
of tearing techniques to enhance large grain parallelism in a
manner that maintains reasonable stability. This is accom-
plished by a combination of a novel reordering technique
(H*) and pivoting strategy. The large grain parallelism ex-
posed by the reordering is combined with medium (vari-
ous parallel row updates strategies) and fine grain (vector-
ization) parallelism to allow adaptation to a wide range of
multiprocessor architectures. Experimental results are pre-
sented which show the effectiveness of the reordering, as well
as the stability and efficiency of the solver.

1 Introduction
Several techniques have been proposed to solve large sparse
systems of linear equations on parallel processors. A key
task which determines the effectiveness of these techniques
is the identification and exploitation of the computational
granularity appropriate for the target multiprocessor archi-
tecture while maintaining the stability and sparsity of the
factorization. Many algorithms assume special properties
such as symmetric positive definiteness or exploit knowl-
edge of the application from which the system arises, e.g.,
finite element problems. These properties can be exploited
in the a priori identification of parallelism, preservation of
sparsity and guaranteeing stability. These decisions can be
done statically before the factorization is performed, e.g.,
the symbolic factorization techniques and orderings of many
direct solvers for positive definite systems.

In many applications, such as device simulation, compu-
tational fluid dynamics, circuit simulation, and structural
mechanics, the values in the resulting linear systems are not
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symmetric, though the structure of the system is symmet-
ric. In other application areas, such as linear programming,
optimization problems, directed network problems, and sim-
ulation problems, the resulting linear systems are even non-
symmetric in structure. For these arbitrary nonsymmetric
systems the exploitation of parallelism while maintaining
stability and sparsity becomes extremely difficult. This is
due to the fact that the requirements are often contradic-
tory and cannot be totally resolved until information from
the factorization is available, i.e., some decisions must take
place dynamically. As a result, for nonsymmetric systems
on a range of parallel architectures it is often necessary to
carefully mix a priori static and dynamic runtime decisions.

One approach that has been tried for parallel sparse sys-
tem solvers is the multi~frontal scheme [11, 13]. A multi-
frontal scheme constructs an elimination tree to organize
the parallel work. A node in the tree represents a certain
computation, which may include handling the information
from the node’s children and performing some pivot elim-
inations. All leaf nodes of the tree may be computed in
parallel, while internal nodes can only be computed after
their children have completed. A pool of the available work,
the nodes in the tree that can be computed, is maintained in
shared memory. When any process needs work it retrieves a
node from the pool. After all the children of a node have fin-
ished, the parent node is then placed in the pool of available
work. This approach if organized correctly can provide large
and medium grain parallelism. However, the method tends
to work well on matrices with a near-symmetric structure
and the pivot sequence is constrained.

Another approach to parallel sparse solvers exploits the
dynamic identification and application of parallel pivots [1,
7, 19]. At each stage these algorithms construct a set of piv-
ots that can be applied in parallel and perform the appropri-
ate updates. These codes typically concentrate on medium
and fine grain parallelism, and tend to be most efficient on
a moderate number of processors with fairly tight synchro-
nization. There is also previous work on performance im-
provements of direct sparse solvers on vector supercomput-
ers [5]. The results indicate that vectorization can some-
times be used to improve the performance. Both of these
approaches can be used as part of an algorithm which ex-
ploits multiple levels of parallelism.

An important part of any sparse solver is the algorithm
for controlling the amount of fill-in that is generated. Most
sequential sparse matrix packages and, in particular, MA28,
use a strategy which is based on technigue proposed by
Markowitz [34]. This strategy involves counting the num-
ber of nonzero elements in each column, ¢;, and the num-



ber of nonzero elements in each row, r,, and then choosing
the pivot node to be the element a.;, where the product
(¢; —1)*(r, — 1) is the minimum over all possible pivot can-
didates. Various modified forms of this strategy that limit
the number of elements considered are possible.

The final aspect of pivot selection is the maintenance of
stability. Typically, this is done by choosing a pivot element
that is within a specified multiple of the largest element
in the pivot row or pivot column or the active part of the
matrix depending on the efficiency of these tests given the
data structures assumed. (A discussion of stability can be
found in [12].)

The stability and sparsity tests for pivot selection are
often contradictory and most strategies involve some com-
bination of the two, e.g., the generalized Markowitz strat-
egy, [35]. Parallel solvers add a third constraint to pivot
selection. For the medium and fine grain algorithms men-
tioned above, these three constraints can be considered in
a reasonably straightforward way potentially with respect
to the entire active portion of the matrix. The exploitation
of larger grain parallelism, however, often imposes a static
decomposition on the structure of the matrix which further
constrains pivot selection.

The effect of these constraints, for nonsymmetric prob-
lems, can be seen by considering tearing techniques. These
have been proposed to expose large-grain structure and par-
allelism by reordering the matrix into a bordered block trian-
gular matrix [15, 27]. This effectively partitions the problem
into small subproblems (the diagonal blocks) and then elim-
inates all connections between the subproblems (the border
blocks). Unfortunately, the associated factorization routines
are often unable to preserve stability and sparsity without
destroying this structure. For example, considering the en-
tire active portion of the matrix during a pivot search can
easily destroy the block structure. On the other hand, him-
iting the search to a particular block, which can reduce the
fill-in within that block, can increase the fill-in for the over-
all matrix and reduce the accuracy of the solution.

The approach taken in this paper uses a novel order-
ing technique, H*, to identify a priori large and medium
grain parallelism by creating a bordered upper triangular
structure and a factorization routine which preserves this
structure while attempting to maintain stability and spar-
sity at acceptable levels. A technique referred to as casting
is used to control the stability of the factorization. The large
and medium grain parallelism (parallel subsystems of vari-
ous sizes) exposed by H* is combined with medium (various
parallel row updates strategies) and fine grain (vectoriza-
tion) parallelism to form a multi-grain parallel solver which
allows adaptation to a wide range of multiprocessor archi-
tectures. A multi—cluster version of the solver, MCSPARSE,
has been implemented and analyzed cn the Cedar system
[37]. Initial results with MCSPARSE were presented in [16]
and more details of the implementation and its tuning can
be found in [20].

The paper is organized as follows. In Section 2 a compar-
ison between our approach and other methods is presented.
The details of the ordering H* are presented in Section 3.
Casting is introduced in Section 4. In Section 5 an overview
of the procedures in MCSPARSE is given. Experimental re-
sults and conclusions are given in Sections 6 and 7.

2 Comparison of Different Approaches

During the introduction, the H* ordering for transforming
a matrix into bordered block upper triangular form was de-
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scribed as novel. This is not to say the use of the bordered
triangular form or the bordered block triangular form for
solving sparse nonsymmetric systems is a new idea.

Research into orderings for transforming matrices into
the bordered triangular form has been done using graph
theory methods for finding the minimal essential set [6, 36].
These methods rely on the fact that the sparse system is
positive definite, so that diagonal pivots can be used without
deteriorating the stability of the solution method. In case
of nonsymmetric systems, which are not necessarily positive
definite these methods are not always successful.

For nonsymmetric systems the bordered block triangu-
lar form is preferable as it allows pivot selection within the
diagonal blocks without destroying the overall structure of
the system. Several different methods have been proposed
for finding the bordered block triangular form. Partition-
ing and tearing methods [38] can be used, and algorithms
such as P* [27], P® [14], the Hierarchical Partition by Lin
and Mah [31], and the level set algorithm by Arioli and
Duff {2] were introduced for ordering the matrix into the
desired form. Although these methods are rather successful
for transforming the system into the bordered block triangu-
lar form, the associated factorization phases lacked stability
and, therefore, are not recommended to be used for general
nonsymmetric systems.

In the remainder of this section we briefly describe the
major steps of the algorithm and relate them to previous
work. Within MCSPARSE the necessary provisions are taken
to guarantee a suitable level of stability within the factoriza-
tion phase. First, the initial phase of H* is used to transfer
relatively large elements of the matrix to the diagonal. This
transformation is based on the transversal algorithm which
is also used in the level set algorithm presented later. The
main difference, however, is that in the level set algorithm
the transversal is not constrained to contain relatively large
elements, but just nonzero elements.

After this initial phase, H* proceeds by reordering the
system into the desired form while preserving the initial
diagonal structure via the use of symmetric permutations.
This is in contrast to the methods on which P*, P%®, and
the Hierarchical Partition rely. Symmetric orderings are, of
course, not as flexible as nonsymmetric orderings and the
resulting structure of the system might not have as small of
diagonal block and border block sizes. This can be observed
in the results of the level set algorithm. H* mitigates this
difficulty by using different basic algorithms, i.e. Tarjan’s al-
gorithm and nested dissection, in successive ordering phases
designed to complement each other. As is shown below the
complementary nature of the phases results in a significant
increase in the power of the symmetric permutations.

In the factorization phase, provisions have to be taken
to guarantee a reasonably stable solution method. P®, the
Hierarchical Method, and the level set algorithm guarantee
structurally non-singular blocks. However, these methods
are still potentially unstable. Iterative refinement could be
used to improve the stability of these methods, see [2]. In
our method, stability is guaranteed by allowing pivots to be
taken within the diagonal blocks as well as the border. This
was also attempted with the P* ordering [3] however, the
overhead incurred prevented this approach from being com-
petitive with other direct solvers. Within McsSPARSE border
pivoting relies upon a symmetric permutation, referred to
below as casting, which minimizes the associated overhead.
Also, because the initial phase of the ordering moves large
elements to the diagonal, the amount of casting can be re-
duced significantly. This approach enables MCSPARSE to be



competitive with other direct solvers, (see Section 6).
Descriptions of the actual algorithms used within the H*

algorithm are presented within the next section. A prelimi-

nary algorithmic description of the H* ordering is in [41].

3 The Hybrid Ordering

3.1 Background

The interpretation of the actions of H* depends upon the
notion of a graph associated with a sparse matrix.

Definition 3.1 Given a nonsymmetric (N x N ) sparse ma-
triz A . The digraph associated with A is defined to be the
graph G(V, E) with |V| = N such that (i,7) € £ if and only

if a,,; is a non-zero entry in A.

The hybrid ordering H* is composed of two different
types of orderings: nonsymmetric and symmetric.

Definition 3.2 An ordering of a sparse matrir is called
nonsymmetric if the ordering can be represented by

A=PAQ?,

with P and Q permutation matrices. If P = @ the ordering
is called symmetric.

Note that symmetric orderings have the property that
the associated graphs of A and A are isomorphic, i.e., only
the numbering of the nodes differs. Nonsymmetric order-
ings are obtained by independent row and column inter-
changes of the matrix represented by P and @ respectively.
So, where the nonsymmetric orderings change certain prop-
erties of the sparse matrix, e.g., eigenvalues and diagonal
dominance, symmetric orderings maintain these. The non-
symmetric ordering, therefore, can be used to enhance the
numerical properties of the factorization of the matrix if the
values in the matrix are considered when determining the
row and column orderings. In H¥, an initial nonsymmetric
ordering is used to enhance the numerical properties of the
factorization and symmetric orderings are used to obtain a
bordered block triangular matrix.

In order to obtain the desired structure, H* exploits the
concepts of a node separator set and a quasi-separator, a
generalization applicable to directed graphs, which are de-
fined as follows.

Definition 3.3 Given a graph G = (V, E) a node separator
set S of G is a subset of V such that there exists sets B and
C with

a) B,C and S disjoint,

b) BUSUC =V, and

c) there ezist no edges (z,y) € E with

1. yé B andz € C and

2.z€BandyeC.

If (c.1) is fulfilled but (c.2) is not, the set S is a quasi-

separator.

There are four phases in the hybrid ordering H*. The
first phase, HO, is a nonsymmetric ordering which permutes
the largest elements available at each decision point of the
production of the transversal onto the diagonal. The second
phase consists of applying Tarjan’s algorithm to transform
the matrix into triangular block form. The third phase,
H1, is applied to each diagonal block produced by Tarjan’s
algorithm that are considered too large. HI1 attempts to
change each of these blocks into bordered block triangular
form via a modified Tarjan’s algorithm. H2, the last phase,
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is also only applied to the large diagonal blocks remaining
in the matrix to change them into bordered block triangular
form via a modified dissection algorithm. The last three
phases, Tarjan’s, H1, and H2 are all symmetric orderings.

3.2 Ho

HO is a transversal algorithm for permuting nonzero en-
tries onto the diagonal using a nonsymmetric ordering. The
transversal algorithm has been modified to permute large
elements to the diagonal in order to enhance the stability of
the subsequent factorization.

The transversal ordering is a matching between the columns
and the diagonal positions of the matrix and can be found
using many different algorithms. Algorithms for finding set
representation [33] or solutions to the assignment problem[29]
could be used. An alternative algorithm involves finding
maximal matchings in bipartite graphs{28].

HO is based on work of Duff and Gustavson [9, 10, 26].
The algorithm uses a depth first search of the matrix to
determine a series of column interchanges. The algorithm
creates a transversal by assigning a unique diagonal position
to each column of the matrix. These assignments determine
a column permutation which places nonzero elements on the
diagonal.

At each step j, the algorithm has a transversal for columns
1 through j—1 and tries to extend the transversal to include
column j. The algorithm first determines if an easyinsertion
is possible. An easy insertion occurs when column j has a
nonzero element in row ¢ where diagonal ¢ is currently not
assigned to another column. To determine if an easy inser-
tion is possible a sequential search is made of the nonzero
elements in column j. If the nonzero element in row ¢ is
in a row whose index is not one of the currently assigned
diagonal positions then diagonal ¢ is assigned to column j,
the search is stopped, and the algorithm proceeds to column
7+ 1. If an easyinsertion is not possible then the algorithm
must determine if an insertion can be realized by a suitable
permutation of column 1 through j (backtracking).

The algorithm continues until either an easy insertion is
made, in which case the algorithm can proceed to the next
column, or until it has considered all possible insertions for
column j. If at any stage it is not possible to extend the
transversal then the matrix is structurally singular, there is
no permutation to make all the diagonal entries nonzero.

This transversal algorithm was modified to enhance the
chances of a stable factorization of the matrix with pivots
selected from the diagonal blocks. The enhanced version of
the algorithm attempts to place large elements along the di-
agonal. This is accomplished by only permuting an element
a., to the diagonal if its value is within a bound, «, of the
largest element in the column, i.e.,

|ai; | xa 2 max(] ax, |) (1)

Only a few changes to the transversal algorithm are re-
quired to support the enhancement. An initial step is added
to the algorithm to find the maximum absolute value in each
column. During the search phase, for both the easy inser-
tion and the replacement insertions, an element will only be
selected if it meets the bound of Equation 1. Also, instead of
taking the first element that is found by the search, the al-
gorithm searches through all the possible elements and uses
the element with the largest absolute value.

The algorithm starts with an initial bound o and tries
to find a transversal. If a satisfactory bounded transversal



cannot be found, then an estimate of what bound is neces-
sary is made by examining the columns where the current
bound failed. The bound is then set to this estimate and
the algorithm is restarted. If a bound greater than a pre-
set limit is tried and a transversal is still not found, then
the bound is eliminated totally and the bounded transver-
sal algorithm finds any transversal. However, even with the
bound removed, the algorithm still tries the elements with
the largest absolute value first. The performance of HO al-
gorithm relies upon the ability to quickly find an adequate
bound for the transversal.

3.3 Tarjan’s Algorithm

Tarjan’s algorithm [39] finds the strongly connected compo-
nents of the digraph associated with the matrix with time
complexity linear in the number of nodes and edges.! A
renumbering of the nodes of the digraph corresponding to
the decomposition of the graph into strongly connected com-
ponents yields a symmetric ordering which transforms the
matrix into a block upper triangular form.

The strongly connected components are found with a
depth-first search of the nodes using a stack to maintain the
active nodes. The algorithm starts by setting the current
node equal to an unprocessed node, placing it on the stack,
and marking the node as being processed. In addition, a
pointer, low, is kept for each node on the stack that indicates
the lowest position on the stack reachable from that node.
This pointer is initialized to the node’s position on the stack.

Each edge, (current,y), originating from node current
is considered in turn. If node y has already been processed,
then it is checked to see if it is still on the stack. If it is,
the low pointer of node current is set to the minimum of
the low pointers for nodes current and y. If node y is not
on the stack, then it has been removed earlier and can be
skipped. The algorithm now goes on to the next edge.

If the node y has not been processed, then it is added
to the stack, initializing its low pointer to its position, and
saving a pointer to its predecessor, node current. The cur-
rent node is now set to be the new node and a depth-first
search of its edges begins.

When all of the edges from the current node have been
processed, then the algorithm checks to determine if a strongly
connected component has been found by examining the po-
sition of the current node. If lowcyrrent equals the node’s
position on the stack then a strongly connected component
has been found including the current node and all the nodes
above it on the stack which are then removed from the stack.
If lowcurrent does not equal the node’s position on the stack,
then the low pointer of its predecessor is set to the minimum
of the lowcyrrens and the low pointer of the predecessor. The
predecessor is then taken to be the current node and the
search of the predecessor’s edges is resumed.

When all of the nodes that can be reached from the root
node have been processed, then the algorithm starts over
with a new node that has not been processed. When all
nodes have been processed, the algorithm terminates.

3.4 H1 Algorithm

A problem with most sparse matrices is that they do not
allow a nice decomposition into strongly connected compo-
nents and, therefore, Tarjan’s algorithm, by itself, will not
provide a suitable decomposition. A typical case is a matrix

1 A description of this algorithm is included in this paper so that
the modifications on which H1 relies can be discussed properly.
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whose associated digraph contains a large cycle. The third
phase of H*, the H1 algorithm, addresses this problem. It is
based on Tarjan’s algorithm and extracts from the digraph
a small set of nodes such that the remaining graph allows a
better decomposition into strongly connected components.
During the H1 phase, the size of each potentially strongly
connected component is monitored during its construction,
and, whenever the size grows too large, an attempt is made
to delete a small number of nodes from the graph such that
the strongly connected component will not grow any further.
The H1 algorithm is applied to each diagonal block result-
ing from Tarjan’s algorithm that is larger than a threshold,
Tdone. Each diagonal block is separated, when possible, into
two or more smaller blocks and a quasi-separator set. The
union of these quasi-separators are placed in the border for
the entire matrix.

The H1 algorithm uses the same depth-first search as
Tarjan’s algorithm for placing nodes on the stack (as de-
scribed in the previous section). However, for each node,
z, on the stack two additional pointers are required. The
first, denoted nlow,, is a pointer to the position of the node
lowest on the stack that can be reached from z by a single
edge. The second, denoted mlow,, is a pointer to the po-
sition of lowest node on the stack that can be reached by a
single edge from any of the nodes higher on the stack than
2. When a new node is placed on the stack, both of these
pointers are initialized to the position of the new node.

In Tarjan’s algorithm the value of low, for a node z
indicates a lower bound for the size of the strongly con-
nected component being constructed. Whenever this size is
less than some threshold, T4one, the H1 algorithm proceeds
identically to Tarjan’s. However, when this threshold is ex-
ceeded the mlowcyrren: pointer is used to define an initial
quasi-separator set consisting of the nodes on the stack from
mloWeurrent to pos(current) — 1.

Throughout the algorithm, whenever an edge to a node
y is encountered such that pos(y) — mlowcurrent > Ziong
for some threshold value Tiong, the node current is identi-
fied as having a long edge which increases the size of the
quasi-separator set to an unacceptable level. So, in order
to minimize the size of the quasi-separator set, the pointer
mlowWeyrrent 1s not updated with the position of the node y
rather, the node current itself is marked for consideration
later in the algorithm as a node to be moved into the quasi-
separator set. This potentially increases the gquasi-separator
set by one node as opposed to keeping the current node in
the strongly connected component and including all of the
nodes from min(mlowcurrens, pos(y)) to pos(current)—1in
the quasi-separator set. The pointer nlow, is maintained
for the current node and the nodes above it on the stack
to allow the actual transfer of the marked nodes into the
quasi-separator set. Whenever the initial quasi-separator
set is constructed, as described above, it is augmented with
the nodes which have been marked as having long edges.

In the implementation of H1, the pointers nlow and
miow are updated in a manner similar to that used to up-
date low; in Tarjan’s algorithn. When an edge that points
to a node y that is lower on the stack than the current node
is encountered during the depth-first search, the pointers are
updated as follows:

loWeurrent = min(lowcurrent, lo’wy),

nloll)current = min(nzOW¢urrent, position(g)),

and the pointer mlowcyrrent is not updated.
When moving down in the stack to resume the exami-
nation of the edges of the predecessor of the current node



(denoted below with the subscript prev) the updates per-
formed are

if mlowcurrent — nlowcu'r?‘ent < Tlong then

mloWeyrrent = min(mlowcurrent,nlowcu.rrent)
end if
mlowprey, = Min(MIoWpres, MIOWeurrent)
lo'wprev = mln(lowprev,lowcurrent)

Note that the decision of whether or not a node has a long
edge is postponed until all of the edges of the node have
been examined. This implies that only the longest edge of a
node, represented by nlow, is used to decide whether or not
the node is moved to the quasi-separator.

After these updates the decision is made as to whether:
no action is required, a true strongly connected component
has been found (lowcurrent = pos(current)), or the thresh-
old on the size of the strongly connected component has
been exceeded. In the last case, an attempt is made to re-
duce the size of the strongly connected component. The
nodes are divided into three sets: the new block, a border
block, and the remaining block. The new block includes
the current node and the nodes above it on the stack. The
border block contains the nodes starting from mlowcurrent
to pos(current) — 1. As noted above, the border block is
augmented with any nodes in the new block that have been
marked as having a long edge. The bordered block is only
accepted if:

e The new block is greater than a minimum size, Trmins
and smaller than a maximum size, Tmazb

¢ The size of the augmented quasi-separator set relative
to the size of the new block is less than Thhazsep.

If the bordered block is accepted, all three blocks are re-
moved, with the nodes in the remaining block marked as
still to be considered. A new starting node is found and the
algorithm restarts on the nodes yet to be considered.

If a true strongly connected component has been found
or if the strongly connected component under construction
is still less than its allowed size, the same actions are taken
as in Tarjan’s algorithm.

When all of the nodes that can be reached from the start-
ing node have been processed, the algorithm selects a new
root node that has not been processed and continues. When
all of the nodes have been processed, the last block will
empty the stack and the algorithm is finished.

An example of how the H1 algorithm finds a quasi-separator

set can be found by the application of the H1 algorithm to
the 8 x 8 sparse matrix in Figure 1. The associated directed

11 4 5
21
3 1 3 6
41
1 5 1
6 1 2 7
1 701
1 8 1 8

Figure 1: A 8 x 8 sparse matrix and its associated digraph

graph for the 8 x 8 matrix is also included in this figure.
Figure 2 is the current state of the algorithm when it has

just completed all the edges from node 5. The current block

of completed nodes contains nodes 5, 6, 7, and 8. There are
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Figure 2: H1 Stack

three back edges from the nodes in the block, these are the
edges {8,1}, {7,4}, and {5,3}. The back edge {8,1} however
was determined to be a long edge and it is not included in
determining the size of the quasi-separator set. Therefore,
for node 5 the one edge low pointer for the node points to
node 3 (nlows = 3); And the one edge low pointer for the
nodes above node 5 points to node 4 (mlows = 4). This
yields an initial bordered block size of 4, a quasi-separator
size of 2, and a remaining block size of 2.

Assuming the block sizes meet the necessary constraints,
the search for the long back edges is made. This search finds
the edge {8,1} and places node 8 in the quasi-separator set.
The bordered block size becomes 3, the quasi-separator set
becomes 3, and the remaining block stays at 2. The bordered
block contains nodes 5, 6, and 7. The quasi-separator block
contains the nodes 3, 4, and 8. Next, H1 is applied to the
remaining nodes which results in the two independent blocks
1 and 2. The matrix that H1 produces is skown in Figure 3.

A
2 |1
5 1 1
6 1
7 11
3 1
1 4
1 8

Figure 3: Reordered Matrix

3.5 H2 Algorithm

The H1 described above approaches the problem of cre-
ating quasi-separator sets starting from an algorithm that
is clearly intended for structurally nonsymmetric systems
(Tarjan’s algorithm). It is also possible to approach the
problem of transforming the matrix to block upper trian-
gular form starting from the standard techniques used to
produce separator sets for structurally symmetric matrices,
e.g., nested dissection [22, 25].

As in the standard approaches, the ordering H2 starts
with the construction of separator sets of the adjacency ma-
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trix of A + A7. In our implementation of H2 we used a
straight-forward implementation of automatic nested dissec-
tion [24]. However, other initial orderings could have been
used such as one-way dissection [23], more sophisticated im-
plementations of automatic nested dissection [32], or the
graph bisection heuristics proposed in [30].

The H2 algorithm is only applied to diagonal blocks pro-
duced by H1 that are greater than a user-specified threshold,
Tdaone. The algorithm starts with the graph (G = (V, E)) as-
sociated with the unscaled symmetric part of the diagonal
block under consideration, M = (A + AT), with the self-
edges generated by the diagonal elements removed. Before
starting the dissection, the nodes are examined to determine
if any have a large number of edges. If the number of edges
connected to the node is greater than 3, where # is usually
10% of the rows in the original matrix, the node is placed
into the border and removed from further consideration. A
limit is placed on the number of nodes that will be placed in
the border from any particular diagonal block by using this
test. In our implementation, this limit is usually 7% of the
nodes in the diagonal block. Our experience with the RUA
matrices has shown the values of 10% and 7% to provide
reasonable performance.

Nested dissection generates a submatrix of bordered block
form. However, since the objective of the H2 ordering is to
bring the submatrix into bordered upper triangular block
form, nested dissection only is too restrictive and the con-
straints on the separator set can be relaxed. This fact is
exploited by the H2 ordering. After each stage when a sep-
arator set S is constructed H2 reduces the number of nodes
in the separator set by allowing additional fill-in to be cre-
ated in the upper triangular part of the submatrix thereby
producing a quasi-separator set.

After a separator set S has been produced by the version
of automatic nested dissection mentioned above, the graph
G has been decomposed into a separator set S and two dis-
joint sets B and €. H2 attempts to reduce the size of S by
moving nodes out of S into either B or C as long as there
are no edges from nodes in C to nodes in B. Edges are al-
lowed from nodes in B to nodes in C. More formally, the
reductions can be described as follows:

1. If there exists no edge (y,z) € E such that y € S and
z € B then y may be moved to C.

2. If there exists no edge (z,y) € E such that y € S and
z € C then y may be moved to B.

An example of the reduction of the separator set can be
seen in Figure 4. Since there is no edge from any node in
C directed to the node d in §, then d may be moved into
B. The node € may not be removed from S since it does
not meet the requirements for either of the reductions and
moving out of .S would destroy the desired structure.

a d f

B 8

c e h
B S C

After reduction

Before reduction
Figure 4: Reduction of the Separator Set

An optimization to the reduction above involves moving
nodes from B to C, or C to B, so that the first two reduc-
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tions can be applied to nodes for which the conditions of the
reductions were not met with the initial contents of B and
C. This is implemented by following the initial reductions
with two enhancement phases.

The first phase consists of moving nodes from B w0 C
together with applying the initial reduction techniques. A
set of nodes D C B is moved to set C if all of the following
conditions are met:

. There are no edges (d,b) € E where d € D and b € B.

. There exists R C S such that there are edges (y,d) €
E where d € D and y € R; and there are no edges
(y,b) € E wherey € Rand b€ (B~ D).

. The size of the remaining part of set B is greater than
the minimum size, | B — D | > Tremain.

After D is moved from B to set C the initial reduction tech-
nigues on separator set are repeated.

Symmetric conditions can be defined that allow the mo-
tion of a set of nodes from C to B before repeating the initial
reduction techniques. A set of nodes D C C is moved to B
if all of the following conditions are met:

1. There are no edges (¢,d) € E whered € D and c € C.

2. There exists R C S such that there are edges (d,y) €
E where d € D and y € R; and there are no edges
(¢,y) € E wherey € Rand c € (C ~ D).

3. The size of the remaining part of set C is greater than
the minimum size, | C — D | > Tremain-

If all of these conditions are met, then the set D can be
moved from C to B and the initial reduction techniques can
be applied.

An example of this enhancement is provided in Figure 5.
None of the reductions may be applied to the initial separa-
tor set. However, the node f can move from C to B and, as
a result, S can be reduced by moving the node d into B.

a d f o >0 i f O]
i ao—koy a Opm

b b O o g d g

c e h ¢l e Ton ¢ e h

B S{C B S C B S C

1. Before reduction 2. After enhancement 3. After reduction

Figure 5: Enhanced Separator Set Reduction

After the separator set has been reduced it is removed
from the graph, and the algorithm is applied recursively to
the two sets B and C until the resulting blocks are less than
the desired maximum block size, Tuone.

3.6 Results for H*

This section presents the results for the hybrid ordering H*
that were collected on one cluster of Cedar, an Alliant FX/8.
These results include border size, diagonal block sizes and
performance results which include the ordering time. The
interested reader should consult [20] for many more details
concerning the tuning of the heuristics that produces the
data presented below.
The tests were conducted using matrices from the Harwell-

Boeing test collection. All the matrices chosen were from the
real, nonsymmetric, assembled (RUA) set. The RUA set has



95 matrices, of which three are structurally singular and are
not considered. Because H* is meant to identify large grain
parallelism, results for H* will only be presented for fourteen
of the matrices which have at least 1,000 rows.

Table 1 contains the results for the application of the
H* ordering to the large matrices. This table contains the
transversal bound which was found by HO, the total time
for the H* ordering (user process time in seconds), the total
number of diagonal blocks after the ordering, the number of
rows in the border, and the largest diagonal block.

The transversal bound is a scalar o such that the max-
imum value in a column is not more than o« times the cor-
responding diagonal element, | a.. | o > maxig;<n | a5, |
for 1 < i € n. When the tests were run, the initial value
of & was 1E+1. If this value of @ was not adequate the
HO algorithm would estimate what « should be by looking
at the columns where the current bound failed. The value
of o would be increased to the estimate and the algorithm
would retry. This would continue until either a transversal
had been found or until a bound greater than 1E+5 had
been tried. If a bound greater than 1E+435 was tried with-
out finding a transversal, then the transversal was then tried
without the bound. For some of the matrices the transversal
bound is given as ‘*’, this indicates that the HO algorithm
could not find a bounded transversal within the given limits
and an unbounded transversal search was used.

Matrix |[Rows| Non- HO|Totall Total|[Border| Max
Name zeroes| Bound | Time|Blocks| Rows|Block
gaff1104 | 1104} 16056] 1E+4]2.066 190 202] 108
gematll | 4929|33185| 1E+2]3.915 437 348 404
gre 1107 | 1107| 5664 1E4-1/3.494 23 324§ 103
hwatt2 1856] 11550| 1E+48}2.136 142 430] 158
mahistlh | 1258] 7682 *11.379 930 747 124
nncl374 | 1374| 8606| 1E+49{3.126 91 244 130
or678lhs | 2529} 90158| 1E+46(6.962] 2000 355f 170
orsreg.1 | 2205(14133| 1E+1}2.930 15 438 160
pores_2 | 1224} 9613] 1E+5]2.409 21 245 105
saylr4 3564} 22316] 1E4-1{4.966 22 634 333
sherman2| 1080| 23094} 1E47(5.179 220 3521 102
sherman3| 5005| 20033| 1E+1)3.942! 2119 423] 394
sherman5| 3312) 20793} 1E--6/4.483| 1680 303] 310
west2021 | 2021 7353| 1E+4+6]5.670{ 1261 93] 188

Table 1: H* Statistics for Large RUA Matrices

The results of H* can be compared with the related or-
derings produced by the P* algorithm [27], the P® algorithm
[14], and the level set algorithm by Arioli and Duff [2], on a
subset of the Harwell-Boeing matrices for which the results
are available in the literature [4, 2]. This subset comprises
the Grenoble matrices and the Westerberg’s matrices. The
matrices range in order from 67 to 2021.

Table 2 shows the number of rows in the border of the
matrix after the application of the algorithms, and the size of
the largest diagonal block remaining in the matrix after the
application of the orderings. A value of ‘N.A.” indicates the
result was not available. The results from P® are omitted
from this table since, as indicated in [2], P® usually generates
blocks of size 1 or 2, with an occasional block of size 3.

The comparison of the orderings with respect to the re-
sulting block sizes must, of course, be interpreted with care
since, in the final analysis we are interasted in their efficacy
when coupled with a parallel system in terms of computing
time. Nevertheless, some relevant points can be made.

Clearly, the P* and P® orderings produce smaller bor-
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Matrix |Order Border Size Largest Block
H¥T P*| P°[Level | H*] P*|Level

Set Set

gre_115 1154 33 15| 15 18 10|<3 36
gre_185 1851 86| 28| 28 52H 16, < 3 69
gre 216 216 73| 24! 25 531t 18 5 82
gre__216 2160l 701 24| 25| N.A. || 11 5| N.A.
gre_343 3431(102| 42} 52 651 33 9| 138
gre 512 51211148 50} 55| 106} 49 51 211
gre 1107 | 1107]1324|100|113| 126} 103 4| 447
west0067 67 25} 11] 13 12 6| 14 26
west0132 132 15 3 4 6l 131 10] <3
west0156 156 3 3| 4 41 12 4 2
west0167 167 7 3 4 4| 15| 14 30
west0381 3814103| 52| 53 811 38) 18! 126
west0479 479 (| 851 381 42 451 41 4 69
west0497 497 35 18] 20 12]} 48| 18 15
west0655 655 99| 54| 66 621 65 4] 102
west0989 9891 69| T7| 84] 106 85 4 48
west1505| 1505 7911161127 112|145 4 79
west2021| 2021)f 93|160[175] 156|188 4 455J

Table 2: Number of Rows in Border & Largest Diagonal
Block Size

ders as well as smaller diagonal blocks than H* and the level
set algorithm. This is not surprising given that they use
nonsymmetric permutations which are more flexible. Un-
fortunately, the small diagonal blocks and border have less
than satisfactory properties when coupled with a factoriza-
tion algorithm. As Arioli and Duff point out in [2], the
small diagonal block sizes can cause difficuities with both
parallelism and the ability to choose stable pivots when the
pivot searches are constrained to the diagonal blocks. Fur-
ther attempts to improve stability via pivoting produced a
prohibitive cost and the use of simple iterative refinement
did not result in satisfactory accuracy [4].

The difficulties in the coupling of P? and P® and with
a stable factorization method motivated Arioli and Duff to
consider other methods including the level set ordering. It,
like H*, uses symmetric permutations. In general, the level
set algorithm creates smaller borders but significantly larger
diagonal blocks than H*.

From this comparison, we see that H* produces a reason-
able compromise of diagonal blocks large enough to serve as
the basis for a pivoting strategy and the exploitation of mul-
tiple levels of parallelism without becoming too large; at the
cost of a somewhat larger border.

4 Stability Issues

4.1 General considerations

The major problem with a large grain paralle] solver is main-
taining the stability of the factorization while only working
with pivot selection constrained to a particular subsystem,
e.g., a diagonal block or border block of the reordered sys-
tem. Typically, when using tearing techniques, codes apply
Gaussian elimination to each of the diagonal blocks to cal-
culate a local LU factorization. These factorizations are
then used without further pivoting to eliminate the border
nonzero elements. Even when such a factorization exists
and i accurately computed, the pivot choices may cause
substantial error growth when applied to she border rows.
Additionally, there is no guarantee that the diagonal blocks
are well-conditioned or even non-singular. The difficulties



in addressing these issues have prevented tearing techniques
from being used in general matrix factorization packages.

In order to maintain stability it is necessary to apply
a global pivoting strategy. This conflicts with the restric-
tions mentioned above, that are usually imposed in order to
maintain the large grain structure of the matrix during the
factorization. In general factorization routines, the global
pivoting strategy usually involves making sure that a pivot
element is within some factor of the maximum absolute value
within the pivot row. In the case of border block upper tri-
angular matrices such a strategy could lead to pivot choices
which destroy the structure, e.g., the exchange with a col-
umn in the rightmost part of the matrix can result in the
introduction of nonzero elements in the portion of the lower
block triangular part of the matrix where zeros are desired.
When stability control is combined with fill-in control, the
pivot selection is done on the entire active portion of the
matrix. Whenever a pivot is chosen outside the diagonal
block being factored but not in the border, i.e., in one of the
other diagonal blocks in the block upper triangular part, a
row permutation is needed along with a column permuta-
tion. This row permutation also destroys the structure of
the matrix.

Row permutations with the border, at the appropriate
point in the factorization, do in fact preserve the bordered
block upper triangular structure. For example, pairwise piv-
oting could be used to eliminate the rows of the border in
parallel [7]. This preserves not only the general structure
but the number of rows in each of the diagonal blocks and
the border as well. (This is, of course, not true for struc-
turally symmetric matrices where the bordered block upper
triangular form is in fact an arrowhead form and any non-
symmetric permutation can potentially destroy structure.)
There are some drawbacks, however. Pairwise pivoting can
permute the relatively dense rows that tend to appear in
the border into the diagonal blocks. This can increase fill-in
during the factorization phase depending on exactly when
the border is eliminated relative to the factorization of the
rest of the diagonal block. The fact that, potentially, all of
the border rows eliminated by a diagonal block will require
interchanges implies that the overall bound on the growth
factor of the elimination is larger than that for strategies
that have only one or two comparisons per pivot column or
row. Finally, the complexity of the synchronization during
the factorization and the application of the factorization to
subsequent right-hand side vectors is nontrivial compared to
other ways of handling the problem.

Other strategies discussed previously in the literature
have resulted in solvers with either unacceptable cost or
stability control, e.g., [2, 3, 4]. We would like to develop
a strategy that preserves the overall structure of the ma-
trix while allowing the implementation of a global pivoting
strategy which yields a factorization with stability similar
to more conventional nonsymmetric solvers, such as MA28
[8]. We will, however, allow the size of the border to in-

crease during the factorization. In doing so we would also
like to restrict any nonsymmetric permutations to the diag-

onal blocks of the block upper triangular part of the matrix
and the diagonal block of the border.

4.2 Casting

The strategy used in MCSPARSE is based on a technique
which combines standard nonsymmetric permutations for
pivot selection within the diagonal blocks and symmetric
permutations to facilitate the required global pivoting.
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Definition 4.1 A pivot p,, is said to be cast if the system
is permuted by the column permutation (1,2,---,4~1,1,i+
1,---,m) > (1,2,---,i—1,i+1,- .-, n,1) followed by an iden-
tical row permutation.

Note that by definition casting a pivot is a symmetric
permutation. Also note that in case of solving a bordered
block upper triangular system whenever a pivot is cast the
border size increases by one.

This casting can be incorporated into a factorization as
follows:

accastnumb = 0
begin:
1=1
castnumb =0
for k¥ = 1 to N—accastnumb
foreach a;,,7 > ¢ and § < N—castnumb
if p., is stable for a,,
then eliminate a;,
else cast pi, (A — perm(A))
castnumb = castnumb +1
goto end
endif
endforeach
i=1+4+1
end:
endfor
if castnumb > 0 then
accastnumb = accastnumb + castnumb
go to begin
endif
for : = N— accastnumb +1 to N
find a stable pivot p,,
foreach a,;,7 >
eliminate a;,
endforeach
endfor

The last set of nested loops corresponds to the factor-
ization of the diagonal block relating all of the cast pivots
{possibly requiring a nonsymmetric permutation). The algo-
rithm completes the first phase when all columns have either
completed their eliminations or have cast the pivot element
used for the column in the first phase. Note that the ifstate-
ment which determines if castnumb is greater than zero will
re-execute the first loops, if any pivots were cast, by jumping
to the begin: label. The re-execution of the first loops is
necessary to eliminate the values in the rows which contain
the cast pivots. Values which have already been eliminated
will be ignored so no redundant work will be performed.

Encountering 0 pivot elements in the initial part of the
procedure does not cause problem since they will be cast
and eliminated in the second phase of the factorization. The
initial phase may cause some inefficiency since only diagonal
elements are considered as pivots. This can be improved by
allowing some nonsymmetric (local) permutations to place
a stable pivot on the diagonal and thereby reduce casting.

5 Overview of MCSPARSE
5.1 Hybrid Ordering H*

As indicated above, the purpose of the ordering is to ex-
pose structure in the matrix that is not apparent to allow
the exploitation of large and medium grain parallelism. H*
attempts to achieve this goal and comprises four distinct
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Figure 6: Bordered Block Upper Triangular Form

phases: HO, Tarjan’s Algorithm, H1, and H2. These phases
have been described in Section 3.

The structure of the matrix after the application of the
permutations generated by the different phases is a bordered
block upper triangular matrix. Further, the rows of the
border are sorted based on the column index of their leftmost
nonzero entry.

5.2 Matrix Structure

The structure of the reordered matrix is shown in Figure 6.
Note that a block upper triangular form is assumed with-
out losing generality. The interaction of diagonal blocks
D; through D, is confined to the off-diagonal blocks C;
through Cp—1. The border diagonal block, F', comprises all
of the separator sets produced by H*. Therefore, F' interacts
with all of the diagonal blocks through both the border and
the off-diagonal blocks C) through Cm. The recursive na-
ture of the production of the separator sets induces a block
structure within the border. Specifically, the nonzeroes of
the rows belonging to a particular separator set from H1 or
H2 are confined to the columns of the diagonal blocks which
correspond to the block that was split by the separator.
Note that the final sorting of the rows in the border does
not affect this property and results in the staircase struc-
ture indicated in Figure 6. This induced border structure is
exploited during the factorization.

5.3 Factorization of the Matrix

The factorization of the matrix is performed in four stages.
The first stage is the factorization of the diagonal blocks.
Complete pivoting is used within each diagonal block D,
to find pivot elements which satisfy both stability and fill-
in constraints. First, candidate pivots are selected using
a modified Markowitz criteria which uses an estimate of
expected off-diagonal block C, and border block fill-in®.
Then, out of these candidate pivots that pivot pi,m is chosen
which has the lowest Markowitz count and satisfies |px,m| >
p X maxg |ax,m|, with = 0.1 and the constraint |pi,m| > o,
with & = 107°. If a pivot can not be found satisfying the
stability constraint then the column and corresponding row
are cast. (The issue of a factorization not existing for a
diagonal block is discussed Section 4.)

Since this matrix is bordered block upper triangular,
there are no edges from diagonal block D; to diagonal block

2The estimate of the number of fill elements generated outside the
diagonal block is based on a worst case scenario. For further details
about this estimate see [20].
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D, Vi, i < j. Therefore, when a pivot is selected in diagonal
D; it will not perform any updates on the rows in block D,.
Nor will the pivots in the block D, update any of the rows in
block D,. As a result, the LU factorization of the blocks can
be performed in parallel. Similarly, after the diagonal biocks
have been factored, the L factors can be used to update the
off-diagonal blocks in parallel.

Next, the border blocks are eliminated using the diago-
nal blocks and the off-diagonal blocks. Again, the absolute
values of the pivots chosen during the diagonal block factor-
1zations are checked against the absolute values of the border
elements. Whenever the absolute value of a pivot is smaller
than 1076 x the absolute value of the border element to be
eliminated, the column and corresponding row are cast to
the border, see also Section 4.

The elimination of a given border row by the pivots in
the diagonal blocks must respect certain dependencies. A
diagonal block D; cannot update a row in the border until
after the row has been updated by all blocks D,, i < j.
However, the update of a row in the border is independent
of the update to the other rows in the border. Therefore,
a diagonal block D, can update the rows of the border in
parallel. The staircase structure of the border can be ex-
ploited to produce appropriate granularity for a particular
processor. The staircase structure implies that the number
of diagonal blocks involved in the initial updates is equal to
the number of “stairs” in the border. This can be used to
enhance the initial distribution of work and data (diagonal
and off-diagonal blocks) across the processors.

6 MCSPARSE Results

This section presents summary results for the large-grain
parallel sparse system solver, MCSPARSE, on the Cedar mul-
tiprocessor. For a more detailed look at the Cedar perfor-
mance results for MCSPARSE see [21].

6.1 Stability Results

To determine if MCSPARSE was stable, a comparison was
made between the stability of MCSPARSE and MA28, [8], a
standard sparse system solver. Both algorithms were used
to solve the large test matrices from the Harwell-Boeing test
collection and the relative maximum norm of the error,

error = ma.X1<zSn(l Zcaleulated ™ Thnoun D (())

maxy qun(I Tknown i)

was calculated for all of the solutions. For the comparison,
MA28 was run with the stability factor® (u) at 1.0 and with
a value of 0.1. MCSPARSE was run with the diagonal casting
(o = 107°) and border casting (¢ = 107%). There are, of
course, many combinations of casting that can be done. The
combination used here and its parameters have been tuned
via many experiments. The interested reader is directed to
{20] for the details of the casting comparisons and tuning.
Also, MCSPARSE was run both with and without iterative
refinement (I.R.).

Table 3 compares the stability for fourteen of the large
RUA matrices. For these matrices MCSPARSE degrades slightly,
for 50% of the matrices the relative error for MCSPARSE is
of the same order of magnitude or better than MA28 and
for 78% of the matrices the difference between the solvers is

3The stability factor u is used to restrict the pivot choices such
that a pivot a,,; can only be used if | a,,; |{> u X max| ax,; [Vk 1n
the active portion of the matrix.



within four orders of magnitude. However, with the addition
of a few steps of iterative refinement, MCSPARSE is able to
solve 13 of the matrices with a relative error of at least the
same order of magnitude as MA28 and the remaining matrix
has a relative error of only one order of magnitude worse
than Ma28. This compares favorably to results in [4] where
the augmentation of their limited pivoting strategy with it-
erative refinement did not produce satisfactory results.

the fourteen large-sized Harwell-Boeing matrices listed in
Table 3 were used to obtain performance measurements on
the Cedar system. The results for these systems are sum-
marized in Table 4, which compares the time to run on four
clusters, T(4CL), (using all 32 processors) to the time to
run on one cluster, T(1CL), (using eight processors). For
these tests, repeated runs were used to eliminate any effects
the virtual memory system might have on the results.

Matrix Relative Error Fill-in {x10%) Matrix] 1 2 3 4 5 6 7 8 9 10 il 12 13 14
MCSPARSE MA28  |MCSP.| MA28 Forer3[213.123211.81.926301.73.022283019
W/out| With] u=| u= u=[u =
LR.| LR. 1.0 0.1 1.0] 0.1 .
Table 4;: Summary of MCSPARSE Multi-Cluster Performance
; gaffllt(;li ;g'gg 1%_'(1)(15 gg:(llg ig:tl)g }22 gg (153 on Cedar (Matrices Numbered as in Table 3)
gemal 3E-10§. . .
2 }glf:'tl;tl 027 Zg:(llg igzgg ég: 82 gg:gg ;Zg lég 22; As can be seen from these tests, the multi—cluster perfor-
5 a;' ;lh 'IE 08 .6E-11 'lE-12 ‘lE-12 12l 5l 3 mance of Cedar resulted in a cluster speed up ranging from
6 II:;C11§74 . 5]*50" '5E-03 ‘ZE-04 .1E~04 192| 58] 43 1.7 up to 3.1 (out of a possible 4.6). For 10 of the 14 ma-
71 or6 781k ;’>E—1§ .3E 14 '5E—12 ~9E—1‘7 221! 25| 14 trices, the speed up was at least 2 and for 4 of the matrices
8 g:sre ls ‘lE—12 ‘7E:13 .4E-12 .4E—II 2611311137 the speed up was at least 3. In the following section the one
9 oresg_z '1E-05 '6E-12 .lE-09 'lE-09 97| 29| 29 cluster performance of MCSPARSE is compared to the per-
10 Sa 4 OE-111 2B-11 -2E—10 .8E—10 548/ 288] 451 formance of MA28 (the results from these two sections can
11 sthman2 .lE-OZ .3E-11 '6E—08 .7E-06 431) 258/ 241 be combined to determine the standard speed up comparing
12|sherman3| .5E-12|.2E-12.4E-12| 2E-09| 311|190|368|  ©ORe Processor to 32 processors.)
13|sherman5| .6E-07|.2E-14|.2E-12(.2E-09] 314/191]132 .
14| west2021 | .1E-051.1E-09|.4E-08!.3E-08 251 4] 4 6.4 Performance Compatison for MCSPARSE and MA28
. . . In this section we give performance results for MCSPARSE on
Table 3: Stability and Fill-in Comparison Between Mc- one cluster of Cedar, an Alliant FX/8, and compare its effec-

SPARSE and MA28

6.2 Fill-in Results

To determine if the modified Markowitz count was successful
in reducing the amount of fill-in a number of tests were
run using the RUA matrices from the Harwell-Boeing test
collection. This section presents the results from the tests
conducted with the large matrices (the matrices with at least
1,000 rows). The number of rows and original number of
elements in the matrices can be found in Table 1.

The number of fill-in elements from the tests are in Ta-
ble 3. This table also contains two other columns. The MA28
column indicates the number of fill-in elements generated by
MA28 with the stability factor (u) at 1.0 and 0.1.

As expected, MA28 almost always produces less fill-in
than MCSPARSE due to its more global pivot search. How-
ever, MCSPARSE benefits from a localization of the fill-in
which allows for a more efficient exploitation of storage {(due
to selected use of dense structures) so that the cost of the
extra work created by fill-in is significantly reduced.

6.3 Cedar Performance Results

This section summarizes the performance results for Mc-
SPARSE collected on a four cluster Cedar configuration, with
each cluster comprising eight processors. In fact, each clus-
ter represents an Alliant FX/8 with increased cache size
and the four clusters share a global memory accessed by
an omega interconnection network[37]. Since MCSPARSE was
designed to exploit large grain parallelism, the multi~cluster
performance is examined first, followed by the one cluster
performance. The times given in this section are wall clock
times, in seconds, for the code running in single user mode.

The size of the system to be solved has to be fairly large
in order to reduce the overhead associated with the exploita-
tion of large grain parallelism to an acceptable level. So, only
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tiveness against a known sequential sparse solver, MA28 [8].

The solution times of the large matrices from the RUA
collection for both the MCSPARSE and MA28 solvers are pre-
sented in Table 5. This table contains the wall clock times
for the solutions as collected in single-user mode on the one
cluster of Cedar. The times for the MCSPARSE solver are
presented for both one and eight processor runs. The times
for MA28 are presented for eight processor runs.

When comparing the solution times for MCSPARSE against
MA28, it is necessary to include the ordering time for the ma-
trix along with the solution time. The columns labeled as
Total contain the sum of the ordering time and the solution
time. For MA28 the solution times are presented for the
stability constraint « = 0.1 and using the improved pivot
search algorithm with the pivot search being limited to four
rows and four columns. The single time presented for the
MA28 run contains both the ordering and solution time.

This table shows that, although MCSPARSE was not specif-
ically designed to run efficiently on an Alliant FX/8, the
speedup obtained for eight processors over one processor
is significant. The Alliant FX/8 is a tightly coupled mul-
tiprocessor compared to the Cedar architecture for which
MCSPARSE was intended. These results clearly indicate that
the large and medium grain parallelism exploited by Mc-
SPARSE does not entail an unnecessary amount of overhead
or mismatch in load balance that would prevent reasonable
performance on a tightly coupled architecture. Second, it
can be observed that the time for performing the ordering
H* is less than the time needed for factoring and solving the
system, though still proportional to the latter one. It should
be noted, however, that the ordering was performed on one
processor. The ordering time could be reduced significantly
via a parallel implementation, which should be easy real-
izable due to the recursive nature of H*. The comparison
with MA28 shows that the performance improvement can
vary considerably, but is substantial, .g., a factor of 29 for



Matrix Hybnd MCSPARSE MA28
Reorder 1CE 8CE 8CE

Solve] Tot olve|Total[u = 0.1

gaff1104 2.14] 24.49| 26.63| 5.22| 7.36 54.72
gematll 4.04 40.141 44.18(10.96|15.00 11.41
gre_1107 3.65| 20.53| 24.18} 3.76| 7.41 28.46
hwatt_2 2.231 33.49( 35.72| 6.28} 8.51 77.82
mahistlh 1.45 3.18 4.631 0.72| 2.17 3.30
nncl374 3.26f 19.97| 23.23| 3.81} 7.07 27.84
or678lhs 7.20| 38.75] 45.95| 7.62|14.82 62.69
orsreg-1 3.07| 41.69| 44.76| 9.61]12.68]| 117.79
pores_2 2.531 11.15] 13.68| 2.19} 4.72 19.03
saylrd 5.15{114.06(119.21]23.51128.66| 306.07
sherman?2 5.40( 78.411 83.81|13.37|18.77| 554.09
sherman3 4.091127.641131.73126.85|30.94| 187.87
sherman5 4.701125.681130.38 |28.62|33.32| 309.70
west2021 5.89 6.87| 12.76| 1.64| 7.53 2.38

Table 5: Solution Time Comparison Between MCSPARSE and
MA28

sherman2. The eight processor version of MA28 was pro-
duced via a restructuring compiler so there is clearly room
for improvement in its performance. Nevertheless, the su-
periority of MCSPARSE is often large enough to indicate any
performance increase via a redesign of MA28 to apply paral-
lel pivots might still fall short. In any case, MCSPARSE often
compares favorably with such a parallel pivots code for non-
symmetric systems. The interested reader should see [19] for
the performance of the nonsymmetric sparse code Y12M2.

7 Conclusions

A parallel solver for nonsymmetric linear systems of equa-
tions, MCSPARSE, was introduced, which combines different
granularities of parallelism. Omne of the main concerns ad-
dressed by MCSPARSE is the maintaining of stability and
sparsity at acceptable levels while allowing large grain par-
allelism to be exploited. This is achieved by using a novel
ordering technique H* combined with a new technique, cast-
ing, which provides a mean to discard the application of
unstable pivots during the factorization. This enables MC-
SPARSE to obtain stable factorizations which are comparable
to standard factorization routines, such as MA28.

The H* ordering combines four different orderings, HO,
Tarjan’s algorithm for finding strongly connected compo-
nents, H1 and H2, to transform a matrix into bordered block
upper triangular form. Except for the HO ordering these or-
derings are symmetric, which distinguishes H* from other
tearing techniques. The effectiveness of the H* ordering,
in terms of producing small borders and for improving the
stability of the factorization, has been demonstrated.

Casting has been described for general matrices and for
the bordered block upper triangular form produced by H*.
For the latter matrices, casting maintains stability by using
numerical information gathered during the factorization to
adjust the diagonal blocks and the border produced by H*.
The particular implementation of diagonal block and bor-
der block casting used in MCSPARSE has been described and
evaluated by comparison with MA28.

Multiple levels of parallelism are present and exploitable
in MCSPARSE: very large-grain parallelism with several di-
agonal block factorizations and border block updates per
cluster of processors; large-grain parallelism within a clus-
ter when factoring a diagonal block per processor; medium-
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grain parallelism when using the processors in one cluster
to factor a single diagonal block or update a single border
block; and fine-grain vectorization used within each pro-
cessor. Experiments investigating the performance of Mc-
SPARSE on both a tightly coupled multi-vector processor,
an Alliant FX/8, and a more loosely coupled cluster-based
architecture, a four cluster Cedar, have been reported and
show the algorithm’s effectiveness.

There are several avenues of investigation left to pursue
with respect to MCSPARSE. A parallel implementation of the
H* ordering would improve further the overall performance
of MCSPARSE. The code could be adapied to map its mul-
tilevel parallelism onto other multi-vector processors and to
exploit their architectures efficiently. Initial results, [40], in-
dicate that MCSPARSE can be adapted to use a combination
of positional dropping, i.e., ignoring a fill-in element due
to its position in the matrix, and numerical dropping, i.e.,
ignoring a fill-in element because of its relative magnitude
[18, 17], to produce a preconditioner for conjugate gradient-
like algorithms. Finally, the techniques used in MCSPARSE
should be considered for use with more conventional ap-
proaches to solving systems with tearing techniques, e.g.,
exploiting the Sherman-Morrison-Woodbury formula.
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