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Abstract

In this paper we discuss the stabilization of large scale lin-
ear time invariant dynamical systems via feedback. An
overview of efficient schemes based on the Discrete Ric-
cati Difference Equation are presented. In particular, results
are given for a Newton-like approach to the problem.

1 The Problem

In this paper, we focus on the stabilization of a discrete-time
system
41 = Az + Bu,, 1

where A and B are n x n and n X p real matrices which
are known, and z; and u; are vectors of dimension n and
p respectively. The stabilization of the system requires the
computation of a p x n feedback matrix F' such that all
eigenvalues of A — BF are inside the unit circle and there-
fore the corresponding system is stable. For small and mod-
erate values of n, F’ can be computed via pole placement.or
the solution of a matrix equation, e.g., Riccati or Lyapunov
equations. The complexity of standard algorithms for these
approaches is O(n? and hence prohibitive for large values
of n. Fortunately, when n is large and p << n, the system
matrix A and/or input matrix B are typically very sparse.
Algorithms for such problems must therefore exploit this
structure in order to efficiently compute a stabilizing feed-
back.

2 Saad’s Approach

A major contribution to solving large scale stabilization
problems with a few unstable eigenvalues is Saad’s pro-
Jjection method [1], in which stabilization or eigenvalue as-
signment is only imposed on a small invariant subspace. In
Saad’s projection algorithm, a left invariant subspace V' of
A (with presumably small dimension), that contains the left
unstable invariant subspace of A is computed. The low-
order projected system (V' AV, V'B) is then stabilized and
the reduced feedback F, is lifted back to form a stabiliz-
ing feedback F = F,V' for the original system (A, B).
Such an approach is often effective, but it can have conver-
gence difficulties and the need for a basis of a left invariant
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subspace V' of A (with presumably small dimension), that
contains the left unstable invariant subspace of A can cause
excess space requirements for very large systems or for sys-
tems where the number of unstable eigenvalues is not small.

In this paper, we summarize some efficient alternatives that
address the convergence difficulties and motivate an algo-
rithm that avoids the need for an explicitly formed basis of
the invariant subspace. The latter will be explored in detail
in a forthcoming paper. Details on all of the algorithms can
be found in [2].

3 Discrete Riccati Equation Stabilization

The major results of this paper are based on the discrete-
time Riccati equation (DRE) and the discrete-time Riccati
difference equation (DRDE)

P=A(P-PB(R+BPB)'BPIA+Q ()
Py =A'(P;- PB(R+B'PB)"'B'P)A+Q (3)

where R and () are p X p and n X n non-negative matrices
and @ is usually decomposed into CC’. The most gener-
al results about DRE and DRDE convergence are given in
[3]. It is shown there that under the condition of stabiliz-
ability of (A, B), a stabilizer and non-negative solution P
of DRE (2) exists and a stabilizing feedback F' can be com-
puted by (R + B'PB)~1B'PA. Whether the solution of
DRDE (3) converges to the stabilizing solution of DRE de-
pends on properties of (4’, C) and the initial condition Py.

For the purpose of stabilization, we have freedom in choos-
ing R,C and P;. We have developed low-rank stabiliza-
tion algorithms using various combinations of parameter
settings for C' (or ()) and Py. Starting from non-negative
P, P; in the DRDE will keep the non-negative property. If
Q) is chosen as zero, the rank of P; will be non-increasing.
If Py =0, Piyy — P; will be non-negative and its rank will
be non-increasing. The low-rank stabilization algorithm-
s in this paper are based on these non-negative and non-
increasing rank properties and square-root decomposition
of these non-negative matrices (see [2] for the derivations
of these facts).



4 The SQR Stabilization Algorithm

Square root forms of iterations like the DRDE have been
developed for several scenarios in the literature. The square
root algorithm (SQR) of this paper is based on the DRDE
with @ = 0. The feedback generated in the limit moves the
unstable eigenvalues of A, A to their unit circle mirror im-
ages, 1/A, and leaves the stable eigenvalues unchanged. As
a special case of the square root form of DRDE, introduced
in [4] for Kalman filtering, the SQR stabilization algorithm
has the form
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where Uj is orthogonal and the dimension of P,-l/ 2isn x

1, the same as POl /2 Note that the QR decomposition is
computed for a small matrix with size (p + 1) x p (the first
row of (4)) and feedback F; can be computed from (R )1/
and K;. ‘

The SQR iteration can produce the same sequence of sub-
spaces as orthogonal subspace iteration (SSI) with only an

additional economical QR decomposition of Pil/ ? since the

updating of P,/ has the form lelf = A'PM?U22 1 PY/?
is taken to be the same initial subspace basis as used for
SSI, SQR will converge. Even if SSI does not converge,
SQR will converge under conditions related to the ability of
the Stewart’s Schur-Rayleigh-Ritz refinement (SRR), [5], to
extract a convergent subsequence of approximated unstable
invariant subspaces (see [2] for a detailed discussion of the

SSI/SRR used in performance comparisons with SQR).

The use of an effective termination check is needed in or-
der to avoid iterating longer than necessary. The square root
algorithms in the literature usually use a stopping criteri-
on analogous to the convergence of the feedback increment
F; — F;_;, which is determined by the smallest distance of
eigenvalues (especially unstable eigenvalues) of A to the u-
nit circle and would suffer slow convergence if some eigen-
values are too close to the unit circle. We have develope-
d and evaluated a more effective method which can detec-
t stability of A — BF; earlier in the SQR iteration. This
is achieved by extracting an approximation to the unstable
subspace V; via SRR from Pil/ % and comparing the eigen-
values of V(A — BF;)V; and unit circle mirror images of
eigenvalues of V/AV;. Empirical evidence indicates that
this test effectively detects stabilization much earlier than
other convergence tests for square root-like methods.

The combination of a more sophisticated termination crite-
rion with the SQR algorithm produces a stabilization algo-
rithm that often converges much faster than careful imple-
mentations of Saad’s approach using orthogonal subspace
iteration to determine the invariant subspace basis. SQR
also tends to be much more robust in terms of parameter
selection. )

5 The CSQR Stabilization Algorithm

SQR addresses the first two difficulties with Saad’s method
(improved convergence and stability detection, and unifies
the two stages). However, since [, the rank of the SQR ap-
proximation, or the rank of PO1 / 2, is at least the number of
unstable eigenvalues of A, both algorithms still require the
propagation of a basis of the unstable invariant subspace.

A true low-rank stabilization algorithm that does not require
the propagation of an estimate of the basis of the unstable s-
pace can be developed from another well-known recurrence
called the square root Chandrasekhar [4] algorithm (noted
as CSQR). It is based on the DRDE with Py = 0.

Let L; be the square root of P, — F;, starting from Lo =
C, R§ = R and K = 0. CSQR has the form

(R¢_))Y? B'Li o (Rg_)l/2 0
( Ki A'Li 4 U= K; L; ®

where U; is orthogonal and the feedback F; can be com-
puted via K;(R$)~'/2. The dominant computation in each
iteration of CSQR is A’L;..1, whose rank is just the rank of
C. CSQR will converge for any choice of C'. For stabiliza-
tion however, C' should satisfy the condition that (A’, C)
is stabilizable. Typically, C' can be taken as a matrix of
rank 1, but, in general, its rank must be at least the largest
multiplicity of any unstable eigenvalue of A. Note that the
dimensions of the matrices propagated do not depend on the
dimension of the unstable space.

The CSQR algorithm therefore addresses all major difficul-
ties with Saad’s method and in the form above is practical
for many problems. In [2], techniques that improve its per-
formance significantly are discussed and these will be pre-
sented in a forthcoming paper.

6 The TSQR Stabilization Algorithm

The low-rank algorithms SQR and CSQR that stabilize a
large scale (sparse) discrete time system are two differen-
t implementations of the DRDE with different parameter-
s and initial conditions. The DRDE is a fixed point itera-
tion method to solve the DRE and converges linearly with
the rate p?(A — BF,,). Newton’s method, in theory, has
quadratic convergence when used to solve non-linear equa-
tions. In the remainder of this paper, we first summarize
Newton’s iteration for the DRE then describe a new square
root algorithm, TSQR, as an implementation of an approx-
imate Newton’s iteration, of which the DRDE is a special
case. Finally, some results are given indicating the promise
and problems with the TSQR method.

Let R(X) be the residual of the DRE with X as an approx-
imate solution:

R(X) = ~X+A'XA-A'XB(R+B'XB)"'B'XA+Q.



Applying Frechet differentiation and the definition of New-
ton’s method yields a matrix form of Newton’s iteration for
the DRE ([6]): <

X;—A_X;A; 1 =Q+F_RF;_,,i=1,---, (6)
where

F,=(R+B'X;B)"'B'X;A, A;=A-BF;, (1)

A discussion of the solution and convergence of Newton’s
method for the DRE can be found in [6] and its references.
The following result summarizes sufficient conditions for
the existence of a stabilizing solution, convergence and the
convergence rate of Newton’s method applied to the DRE
and merges several results from [6].

Theorem 1 Let (A, B) be stabilizable. Assume that there
is a symmetric solution X of the inequality R(X) > 0 for
which R+B'X B > 0. Forany Fy suchthat Ag = A—BF,
is stable and X which satisfies

Xo - A6XOA0 = Q + FOIRF()

the iteration (6) determines a decreasing sequence of sym-
metric matrices X; such that A — BF; is stable and X;
converges to Xy, a maximal symmetric solution of DRE.
(Maximal means that for any symmetric solution X of
" DRE, X, — X is nonnegative.) Moreover, A — B(R +
B'X,B) 'B'X A is stable and there is a constantc > 0
such that || Xip1 — X+ || < cl|Xi — X4 || fori = 0,1,- -
and any matrix norm || - |}.

Although Newton’s iteration converges quadratically, the
implementation is not easy. It is sensitive to the initial guess;
as stated it requires a stabilizing initial feedback (which is
the whole point of the problem); the discrete Lyapunov e-
quation solved during each iteration does not have a bound-
ed solution for unstable A;; and the cost to solve the Lya-
punov equation is almost the same as solving the DRDE.
An approximate implementation of Newton’s method must
be developed to address these problems. The starting point
for this algorithm is:

Algorithm 1 Approximate Newton Iteration for DRE:
Specify a small integer K (usually around 5). Starting
from XE = Xo, a positive semidefinite random matrix, for
1=1,2,---, (outerloop)and j = 1,2, - -, K (inner loop),

X! =A_ XIT'Ai 1+ Q+F_RFi_; (8

where X? = X{fl, Fi, =
B’XiKlB)_lB'X,-'ﬁlA, A;_1 =A-BF;,_;.

(R +

Algorithm 1 does not require a stabilizing initial guess s-
ince we only use finite steps of iteration to approximate

each Lyapunov equation. We need only randomly choose
a positive semidefinite Xo. Note we use XX, instead of
0 as the initial guess of the next iteration’s approximation
of Lyapunov equation. When applied to stabilize the sys-
tem (A, B), the full rank implementation of Algorithm 1
stabilizes and converges much faster than the DRDE-based
CSQR algorithm, because we can freely choose the ini-
tial guess while Chandrasekhar algorithm restricts its ini-
tial guess to zero. If K is large enough, the convergence is
quadratic. (measured by number of outer loops used).

Direct implementation of Algorithm 1 can be as unstable
as the direct implementation of the DRDE. Note that al-
I the terms in both sides of Equation (8) should be posi-
tive semidefinite, So, we can borrow ideas from CSQR and
SQR to keep X] positive semidefinite. After modification
Equation (8) becomes

[ (xI72 QY2 LRV U = (X)) ]
©)

where U is orthogonal.

For large scale systems, especially large sparse systems, a
full dimension implementation of Equation (9) with ann xn
X f is computationally impractical. Unless @ = 0, where
the rank of the solution P or X is at most the number of
unstable eigenvalues, we have to use some form of trunca-
tion to approximate (X7)'/? such that number of columns
of the approximation (Xf )1/2 is acceptably small. Usual-
ly, we only keep the dominant part of X f as measured by its
largest [ singular values and vectors. In [7], Verlaan uses the
same idea to decompose the DRDE into a square root for-
m. However, as discussed in [2], the methods differ based
on the form of the DRDE upon which they operate. The
square root algorithm and truncation algorithm described in
this paper is, we believe, easier to understand and to imple-
ment.

The key to using a square root and truncation algorithm for
stabilization is the choice of [. It cannot be too small, at
least it should be larger than the number of unstable eigen-
values. Even so, since an eigenvalue being unstable does
not necessarily mean that it will have larger components in
X7 than stable ones, we have to be very careful in choosing
l. Another important issue is the convergence of the trun-
cation algorithm, which needs further research even for the
solution of the DRDE, i.e., independent of stabilization. For
stabilization purposes, if [ is not smaller than the number
of unstable eigenvalues and the spectral radius of the cor-
responding closed loop matrix is not too close to 1, we can
use (A—BF;) - - - (A— BF})B to measure the stabilization.
One exception is when @ = 0 where the rank of a stabiliz-
ing solution of DRE is determined by the number of unsta-
ble eigenvalues, so we can use the stabilization/convergence
measures we used for SQR.

The truncated square root Newton’s iteration (TSQR) is de-
fined as follows:



Algorithm 2 Truncated Square Root Newton’s Itera-
tion: Let A ben x nand B ben x p.

1. Specify integers | > 0 and m (m is zero if we choose
Q = 0). Take (Xo) /2 and Q'/? as random matrices
with dimension n x |l and n x m. Take R = I and
Fy = (R + B'X()B)—lB'XoA.

2. Specify a small integer K > 0 and an integer N. Let
(XE)/? = (Xo)'/2. ForifromIto N,

(a) For jfrom 1to K, do
i (X{)1/2 =
[(A - BF_1)X{™ Q' Fa"—lRl/z] :

ii. Apply economic SVD on (X1)'/? 1o get
(X0)12 = UIS]V].
iii. Update (X1)Y/2 = UJ(:,1:1)S3(1:1,1:
0).
(b) Compute F; = (R+B'X!B)~'B'X] Aandlet
(X0)H? = (X2

(c) Compute some stabilization criterion or conver-
gence criterion. Stop if any criterion is reached.

7 Experiments

In this section we consider two examples from [2]. First,
consider an example where Q = 0 (so truncation will not
cause trouble with convergence if the rank of (X7)!/2 is at
least the number of unstable eigenvalues).

Example 1 The matrix A is a 100 x 100 matrix generated
by RANDN of MATLAB and is scaled to have a spectrum
with many eigenvalues (both stable and unstable) near the
unit circle. The matrix B is a 100 x 1 matrix generated by
RANDN of MATLAB. Such a problem is expected to cause d-
ifficulties for techniques such as SOR. (Xo)'/? is generated
as a 100 x 4 random matrix by RAND of MATLAB. Figure 1
plots the spectral radius of the corresponding closed-loop
matrix vs total number of steps of TSOR (inner loop x out-
er loop). Figure 2 shows the feedback convergence (here we
use F; — F, instead feedback increment). Note that K = 1
is the DRDE. Measured by the total number of iterations, in
the case where K = 5 or K = 10, both the spectral ra-
dius of corresponding closed-loop and feedback converges
much faster than the DRDE. For the corresponding closed-
loop spectral radius to reach convergence, the DRDE uses
at least 300 steps while TSQR with K = 5 or K = 10 us-
es less than 100. Furthermore, from Figure 2, we can see
that TSOQR with K = 5 or K = 10 starts to converge at
the beginning of the iteration while the DRDE spends some
iterations adjusting. The reason is, some unstable eigen-
values of A are very close to 1, and TSQR with larger K
gives these eigenvalues more opportunities to increase their
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components in (X?)/? and F;. When applied a system for
which all the eigenvalues are well-separated from unit cir-
cle, TSQR with larger K uses more steps that the DRDE to
converge to the same tolerance.

With nonzero @, TSQR is very sensitive to the choice of
I. In Example 1, if a nonzero Q'/2 is used keeping all oth-
er parameters fixed, the case with K = 1 (DRDE) needs a
very large [ to reach a stabilizing feedback. Even when we
choose K = 5 or K = 10, we still need to choose K larg-
er than the number of unstable eigenvalues and need large
number of iterations to reach a stabilizing feedback. The
reason is, if ) is not orthogonal to a right stable eigenvec-
tor, we can not assume the component of this eigenvector in
P or X is less significant than unstable eigenvectors. T-
SQR sometimes performs poorly for stabilization since the
components of some unstable eigenvectors in (X}) and F;
are truncated. However, if and only if Q'/2 only contains
unstable components of A, that is, v'Q'/2 = 0 for any right
stable eigenvector of A, the solution of P or X of DRE
should not contain any components of stable eigenvectors
of A. So, truncation should be able to keep the unstable
components instead of the stable components.

TSQR could be modified to improve this situation by in-
serting SSI on Q!/2 along with each (X7)!/? (inner) it-
eration such that (X7)1/2 will only focus on the unsta-
ble components of A. We can also only insert the SSI on
@ into the outer loop along with the update of F;. For
K = 1, this method is equivalent to solving a DRDE
P, = A(Pi_1—P,_1B(R+B'P,_1 B)"'B'P;_1)A+Qi1
where Q1/2 is updated via SSI on QL/* with A'. Since SSI
will converge to eigenvectors with the largest eigenvalues,
for best performance, we should choose the rank of Q(ll/ 2
the same as the number of unstable eigenvalues of A so that
all unstable eigenvectors of A will have significant compo-
nents in @;. On the other hand, it is better to choose [ larger
than the number of unstable eigenvalues for higher flexibil-
ity in truncation. Example 2 shows that the performance of
both stabilization and feedback convergence are enhanced
significantly with this type of modification on @ if the rank
of (X7)'/2 is not less than the number of unstable eigenval-
ues of A.

Example 2 The system (A, B) and (Xo)/? is the same as
in Example 1. Q(l)/ Yisa randomly chosen 100 x 4 matrix
and 1 is chosen as 6. QY/? is updated by SSI as discussed.
Compared to Example 1, Figure 3 shows that with SSI on Q),
the total number of iterations to reach a stabilizing feedback
is cut almost by half for K > 1, while feedback convergence

rate (Figure 4) does not change significantly.
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Figure 1: TSQR(Q = 0) vs. SQR: Spectral radii of A — BF;,
Example 1

8 Summary

'We have summarized three alternatives to Saad’s method for

stabilization of large sparse dynamical systems. We have

concentrated on describing a low-rank stabilization algo-

rithm, TSQR, based on Newton’s method to solve the DRE.

Details of the analysis and performance of SQR and CSQR
. can be found in [2].

If used carefully, TSQR can be used to approximate the
DRDE for large scale optimal filtering problems where all
the parameters are predetermined. For stabilization purpos-
es, TSQR can find a stabilizing feedback efficiently by ma-
nipulating parameters 2, R and the initial guess with more
freedom than the SQR and CSQR algorithms. TSQR also
unifies our algorithms and others in the literature such as

[71.

Many open questions remain. The first is the convergence
properties of the approximate Newton’s iteration (Algorith-
m 1) for an arbitrary initial condition. The second is the
convergence properties of TSQR for both stabilization and
solution of the DRDE. The current form of TSQR does not
attempt to exploit techniques that were used to transform
SQR into CSQR, i.e., computing the difference rather than
the square root. Considering extensions of TSQR along
those lines is promising. The approximation of the solution
to the Lyapunov equation required on each step must also be
considered further in terms of efficiency and its overall role
in the convergence of the iteration. Finally, the approximate
Newton’s iteration and TSQR may be very useful when ap-
plied to solving the continuous-time Riccati Equation for
various purposes. Their adaptation to this case should be
considered. Further research on these issues will benefit not
only stabilization in optimal control, but also optimal filter-
ing and data assimilation problems where solving a large
scale DRDE might be impractical.
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