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Abstract—A model order reduction technique for systems depending on two parameters is devel-
oped. Given a large system model, the method generates the descriptor matrices of a system model
of lower order that is a rational interpolant of the transfer function of the large system—the transfer
functions have identical values and derivatives for a finite set of parameter values. The new tech-
nique is a generalization of recently developed algorithms for one-parameter systems that are based
on projections onto Krylov subspaces defined by the descriptor matrices. © 1999 Elsevier Science
Ltd. All rights reserved.
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1. INTRODUCTION

This study presents a moment matching, model order reduction method for two-parameter prob-
lems of the form
(81E1 + 82E2 - A) X(Sl, 82) =bu (31, 52) ’

y (81, 82) = ¢*x (81, 82),

1)
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where A, E;, and E; are n x n system descriptor matrices, b and ¢ are input and output coupling
n-vectors, u is an input, y is an output, the asterisk denotes complex conjugation, and s; and s2
parameters upon which the system response depends. The theory presented here results in a
characterization of a reduced order model of dimension m of the form

(51E1 + 89Ky — A) x(s1,82) = bu (s, s2),

§(s1,82) = €"x(s1,582),

(2

where j(s1, s2) matches y(sy,s2) and its derivatives at several points in the (s, $2) plane for a
unit input.

Recently, significant progress has been made in model reduction of systems linearly dependent
on a single parameter, see [1,2] and their references. While systems of one parameter are re-
markably useful in practice as they naturally occur as Laplace transforms of linear time-invariant
systems, there are important problems which do not fit this form. Two directions of generaliza-
tion are required. The first direction involves relaxing the restriction that the elements of the
matrix defining the systems to be reduced are linear functions of the parameter of interest. In-
deed, for many important problems, the system matrices are nonlinearly or even transcendentally
dependent on their parameter. The second direction entails relaxing the restriction to a single
parameter.

A general p x p linear system nonlinearly dependent on two parameters takes the form
G (s1, 52) Xo0 (51, 82) = bu (s1,52),
Yy (s1,52) = €"Xo0 (51, 82) -

(3)

To accomplish model reduction on this system, a method which incorporates both directions of
generalization is required. To cope with the nonlinearity, the matrix G may be approximated at
various points in the (sj, s2) plane by a truncated Taylor series [3]

I i
G(Sl, 82) ~ Z Z Gijs{s'z_’. (4)
i=0 j=0

Defining x;; = P s3%g0 for 0 < j <4 < I —1, and substituting (4) into (3) results in a system
in the form of (1) where n = p(I1%2 — I +2)/2,

b*=(0 ... 0 b*], «c*={& 0 ... 0], x"=[% % ... X_],
and

Iz E

I Err—1
1
-Go -Gy -Gy -+ -Gy

for £k = 1,2. In these expressions, I; is the Ip x Ip identity matrix,

G =[G Gu ... Gu-1], =[xz ... x3],
1 1 1 1
H, = [Gzo §G11 -2-G11-1] yHp = [EG“ -2-G11~1 Gu] ,
and
I 0
1 1
E, = EI“_I , Es, = §In—1
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After the linearization, the problem of efficiently producing a reduced order model such as (2)
from system (1) remains. Of course, it is possible to set up equations that define the parameters
of the reduced-order system by explicitly matching the moments of an expansion of (1). Such
an approach is taken for problems with one parameter in the method of Asymptotic Waveform
Evaluation (AWE) [4]. This approach leads to severe numerical difficulties which render the
matching of higher-order moments unreliable and has been replaced for large dynamical systems
by the Rational Krylov-based projection methods discussed in [2].

Therefore, in this study, the notion of a Krylov space is generalized to introduce a novel, two
matrix generalized Krylov space upon which the desired two-parameter generalization of the
Rational Krylov family of model reduction methods is based. The generalized technique will also
be shown to reduce to the rational interpolation of the Rational Krylov family if either E; = 0
or E2 = El.

It should be noted, however, that system model (1) is not the most general two-parameter form
possible. For applications such as image processing, extensive work has been done on multidimen-
sional systems. In particular, state space forms for two-parameter systems such as the Roesser
Model and the General Singular Model have been proposed and analyzed {5,6]. The parameters
are often used to represent two continuous or two discrete variables. For some applications, a
mixed strategy has been investigated. In a mixed model, one parameter represents continuous
variable while the other represents a discrete variable [7]. The literature contains work on a
variety of aspects of 2-D systems including: acceptable input sequences [8], local controllability
and reachability conditions [9}, and stabilization of singular 2-D systems via feedback control [7].
The transfer function used in that body of work includes a product of the two parameters that
does not appear in the form used in this paper.

To the best of our knowledge, however, no work on a vector space characterization of projection-
based model reduction has been attempted in the 2-D systems literature. The slightly simpler
transfer function used in this paper is sufficient for several significant applications in computa-
tional electromagnetics. Extensions of the results in this paper applicable to the general 2-D
transfer function will be considered in a future paper.

This paper will proceed as follows. Section 2 highlights the characteristics of Krylov-based
projection methods for one-parameter linear systems. In Section 3, the basic matrices and func-
tions used throughout the paper are defined. The relevant properties of the matrices required
to generate the appropriate moments of two-parameter linear systems are derived in Section 4.
Section 5 introduces the generalized Krylov space and demonstrates how it can be used to define
a reduced-order model satisfying the moment-matching constraints. Finally, Section 6 briefly dis-
cusses some of the applications of this technique, and directions of development currently under
investigation.

2. REVIEW OF KRYLOV-BASED PROJECTION
METHODS FOR ONE-PARAMETER SYSTEMS

Analogous to the reduction of system (1) to system (2), the goal of single-parameter model
order reduction methods is reducing the n dimensional system
(sE — A)x = bu,
=c (5)
y=c'x+du
to an m < n dimensional system
(sE - A) % = bu,
v (6)
y = ¢*X + du,

which preserves some qualities of the original system. Projection methods for model order reduc-
tion involve characterizing rectangular matrices V and Z such that the descriptor matrices of the
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reduced order model (6) can be computed from the matrices in (5) as A = Z*AV, E = Z*EV,
b = Z*b, and é = V*c [2]. Most often, V and Z are chosen so that the resulting reduced-order
model (6) is a partial realization, Padé approximation, or rational interpolant of the transfer
function of the original system (5)

h(s) = c*(sE — A)"'b.
These approximants are defined by the location and number of points in the frequency do-
main at which h(s) and its moments of specified orders match the transfer function h(s) of the
reduced-order system. In [2], the projections that achieve all three of these approximations are
characterized, and it is shown that in all cases, colsp(V) and colsp(Z) must contain unions of

certain Krylov spaces defined in terms of the systems descriptor matrices and vectors. A Krylov
space is defined by a matrix G and a vector g and is of the form

i-1
K;(G,g) = colsp { U Gkg} .

k=0
The similarity between (1) and typical one-parameter linear systems of the form (5) indicates
that a generalization of the Krylov space concept might be possible, resulting in characterizations
of the spaces associated with projection-based techniques for systems with two parameters. Just
as in the one-parameter case, the availability of such spaces naturally leads to algorithms for
model reduction which avoid the numerical problems of explicitly matching moments as in AWE.

3. BASIC DEFINITIONS
Consider a linear system described by (1). Solving (1) for y gives

y= h(sl’ sZ)U’ (7)
where the two-parameter transfer function h(s;, s2) may be written as
h(s1,s2) = [c* (51E1 + 82E3 — A) ™ b]. (8)

Via a shift of coordinates (s1, s2) — ($1 01, s2—02) and a Taylor expansion, (8) may be rewritten

as
oo

h(s1,82) = —¢* Y [s1P'E; + 5P E,) P b, (9)
Jj=0
where
P=A- 0‘1E1 - 0’2E2, (10)

for some complex o; and o3. Expanding each term in (9), and denoting the matrix multiplying

the scalar 5] *sk as Fi(P~1E;, P~ 1E,), (9) may be rewritten as
oo j
h(si,s2) =3 [F{c (P~'E,,P~'E,) s{"“sg]P-lb. (1)
j=0 k=0

Because the function h(sy, s2) is the two-parameter generalization of the transfer function in the
one-parameter case, the scalar values
—~c*F] (P7'E,P7'E;) P~!b
may be thought of as transfer function moments. The functions ch are, therefore, referred to
as moment generating functions due to their intimate relationship with series (11). The goal of
projection-based model reduction is to produce n x m matrices Z and V that define projections
such that reduced order model (2) can be written in terms of system (1) with
A=2'AV, E, =Z'E\V, E;=2"E,V,
b=2Zb, and &=Vc,
such that the transfer function of (2) matches values and selected moments of the transfer function
of (1).

(12)
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4. PROPERTIES OF THE MOMENT
GENERATING FUNCTIONS

Given the definition of the moment generating functions Ff;(Gl, G-2), a method is required for
calculating them recursively for arbitrary square matrices G; and G3. To facilitate this, define
Fi(G1,G2) =0, Vk¢{0,1,...,5}
as these ch do not appear in the expansion of (s;G; + s3G3)?. Then, the Fi(Gl, Gg) can be

generated with the following theorem.

THEOREM 1. Recursive generation of F{;(Gl, Gao).

FJ (G1,G2) = GoFiT] (G1,G2) + G1Fi ! (G1,Gy)

—F{ (G1,G2) G2 + F 1 (G1,G2) Gy, j=1,2 (13)
1-1(G1,G2) G2 + F7 " (G1,G2) Gy, j ' 2, ..

Proor. By induction. Note that by definition,

Fg (Gla G2) = Ia
F(]j (Gh G2) = Gla
F!(G1,G2) = G,.

Thus, the theorem holds for j =1 for all k. Now, assume (13) holds for all j < J. Note that

J=-1
(51G1 + ssz)J = (51G1 + 52G2) Z sf_l_ks'eri"l (G, G2)

, k=0 (14)

= Z s‘{’ks’z‘F,{ (G1,G2)
k=0

or, alternatively,

J-1
(51G1 + sng)J = Z sf'l“"ngi"l (G1,G2) (51G1 + 52G2)
k=0

p (15)
=) si *4F{ (G, G)
k=0
by definition. Matching coefficients in s/ "'“s’; in (14) gives the first equality; doing the same
in (15) gives the second. ]

The equivalence
GoFi~1 (G1,Gy) + G1FI 1 (G1,G2) = FiT1 (G1,G2) G + F{ ™1 (G1,G2) G, (16)

established by Theorem 1 is referred to as pseudo-commutativity, because the positioning of the
matrices G; and Gy with respect to the moment generating functions is reminiscent of commu-
tativity between arbitrary powers of a matrix in moment generation for one-parameter systems.
This should not be misconstrued as the generally incorrect statement that G; and G, commute
with the moment generation matrices. Theorem 2 shows that there is a pseudo-associativity as
well.
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THEOREM 2. Pseudo-Associativity.

F] (BG;,BG;)B = BF] (G;B,G;B), j=0,1,.... (17)

PrOOF. By induction. If j = 0, the result is trivially true for all k. Now assume it is true for
j < J and all k and note that

F{ (BG1,BG;)B = {BG,F{ ] (BG1,BG,) + BG,F{"! (BG;,BG,)} B
=B {G,F/_| (BG,,BG;)B + G,F{"! (BG,BG,) B}
= B {G;BF;_| (G1B, G;B) + G;BF{"! (G;B, G,B)}
= BF} (G1B, G2B).

The third step follows from the induction hypothesis; the last from Theorem 1. 1

Finally, Theorem 3 shows that the moment generation matrices Fi(Gl, G2) at any level j may
be generated from the moment generation matrices at levels [ and j — [ for [ < j.

THEOREM 3. Generalized recursive generation of Fi(Gg Go). -

!
F](G1,G2) =) F}_;(G1,G)FI },;(G1,Gy), 0<5I<i (18)
=0

PRrROOF. By induction. If [ = 0, then expression (18) is trivially true for all k. Assume (18) holds
for [ < L. Then notice that

L+1

Y FL(Gr, GFLI() L (G, Gy)
= L+1 ,
=Y [G2Ff_i(G1,Ga) + GiFLy_(G1, G2)FiZ (1) L, (G1,Go)
| | (19)
=Gy Y Ff ,(G1,Go)FI-(11 . (G1,Gy)
+G1 Y Fiyyi (G, G)FZ 1Y, (G, Gy).
=0

Using the fact that F£,(G1,G2) = F£,,(G1, G2) = 0, and incorporating a shift of index in the
second sum, (19) becomes

L+1
j—(L+1
Z Fiii—i (G, G2)F§c—((L+1))+i (G1,G2)

=0
L L
=Gy Y F{ (G, Go)FI )71, (G1,Ga) + G1 Y _FL (G, Go)FY )15 (G1,Go)

= GoFi7} (G1,G2) + G1Fi ™' (G1,G2) = F (G4, Gy)

by the induction hypothesis and Theorem 1.
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5. GENERALIZED KRYLOV SPACES
AND MOMENT MATCHING

Now that methods for calculating the moment matching functions have been established, gener-
alized, two matrix Krylov spaces can be defined that contain information relevant to the moments
of system (1). A two matrix, generalized Krylov subspace W;(G1, G2, g) may be defined as

7 m
W;(G1,Ga,8) = colsp{ U (U Fp (Gl,Gz)g> } :

m=0 \k=0
The following lemmas provide the basis for a model reduction theorem.

LEMMA 1. If W*V =1 and v € colsp{V} then VW*v = v (see [2]).

PROOF. v € colsp{V} - v=Vg. Then VW*v = VW*Vg=Vg=v. ]
For the lemmas that follow, define P = Z*PV in concert with the definitions in (12). Further-

more, let G™* = (G*)~! for any nonsingular matrix G.

LEMMA 2. If W;(P~1E,,P~E;,P~b) Qcolsp{_V} and Z is any n X m matrix, then
F} (P~'E;,P~IE;) P'b= VF (P16, P71E,) P~'b, 0<k<j<J (1)
ProoF. By induction. First, define W* = (Z*PV)~!Z*P so that W*V = I. Now examine the
case j = k = 0. Starting with the right-hand side of (21)
VP~!b =V (Z'PV)"' Z'b
=V(Z'PV) ' Z*PP~ b
=VW*P b
=P b
by Lemma 4. Assume now that (21) holds for 0< k< j—1<J-1. Then
VF] (15-11?31, 13-11?:2) P-1b
=V [f"ll:}zFi:ll (15—1]‘31,;3—1]”.32)
+PIE F ! (f"‘ﬁ:l,f)—lﬁ:z)] P 1b
=V {P'Z°E, [VF{} (P~'E,, P'E,) P75 (22)
+P-12*E, [VF{ (P~1E,, P18, ) P15] }
= v {P-'Z°E; [F{Z} (P"'E,,P~'E,) P~'b|
+P~12*E; [F{” (PE;, P™'E,) P~'b| }

by the inductive hypothesis. By removing common factors, expression (22) may be then written
as

VF (P-IEI,P-1E2) P-'b
=V (Z'P"'V) Z'P [P'E:F{]} (PT'E;, P7'E,)
+P E,;F] ! (PT'E;, PIE,)| P'b
= VW*F] (P7'E;,P 'E;) P~ 'b
=F] (P7'E,,P7'E;) P~'b
by Theorem 1 and Lemma 1. 1
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LEMMA 3. If W;(P~*E,,P~*E2,P~*c) C colsp{Z}, and V is any n x m matrix, then
c'PIF] (E, P~} E;P7Y) = &P 1F] (E1P~1,E2f>-1) Z, 0<k<j<J

The proof of Lemma 3 is dual to that of Lemma 2. With these lemmas demonstrated, a
theorem for generating a reduced order model of (1) in the form of (11) and (12) is now proven.

THEOREM 4. MODEL REDUCTION. If W, (P~1E,,P~1E;, P~!b) C colsp{V} and W, (P~*
E{,P7*E;,P~*c) C colsp{Z} then

¢'F} (PE1, P~'E,) P~1b = ¢'F} (P~'E,, P~1E,) P-1h, (24)
for0<k<j<Hp+J.+1.

PrROOF. The j = 0 case follows immediately from the lemmas, so it is not proven here. Thus,
choose j, < Jp and j. < J, such that j, + j. + 1 = j. Now

c*F] (P7'E;,P7'E;) P~'b
&« 1 | 1 -1 . 1 1 (25)
=c" Y Fltl  (PT'E,P'ER)FY, ., (PT'EL,PTIE,) P
i=0

by Theorem 3. Applying Theorem 1, (25) may be written as

c*F} (P7'E;,P7'E;) P!
Jet+l

= ¢ [Fs_ (PTE,,PIE,) PIE,
i=0
+Fi . (P~'E;,P™E,) P‘lEl] F{, 1 (PT'E,PIE;) P™b (26)
Jet1
= [¢"PT'F), (B1P EsP ™)) Es + ¢'PTIFY:,,, (B:PT E2P ™)) Ey
i=0

xFP ;14 (PT'E,P7'E) P7'b

by pseudo-associativity. The moment matching Lemmas 2 and 3 may be inserted into (26) to
rewrite it in terms of reduced model parameters to yield

c*F, (P7'E,P7'E;) P'b

= J{f [P F_, (B!, P ) 27Er + PP (EP EoP™Y) 2°Ey
i=0
x VER, 1y (B° £, P16, ) P1b
Jet1 . R o
=3 & [PF, (B BoP ) By + PR, (BB 2P1) By (27)
1=0

X2y (P1Ey PUR,) P1b

_]f** (B9, (8718, B PIE, + Fh,y, (P71B1 PE) PR
1=0
X F . (P7B1, B1E) Pl
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by pseudo-associativity. Invoking pseudo-commutativity, (27) becomes

c*F] (P7'E,,P7'E;) P~ b
Jetl ) L L s e 1 A 1e (28)
= > e FE (PE, PE) F ., (PTE PR, POUB,

1=0

and therefore, by Theorem 3, (28) becomes

~

¢'F| (P7'E:,P~'Ey) P~'b = &'F] (P7'E,, P~'E, ) P1b. 1

This theorem establishes that a reduced order model constructed with V and Z given above
constitute a system with a transfer function that is a Padé approximant to the true system
transfer function. To instead accomplish a rational interpolant which matches all of the moments
of orders between 0 and J§ + J + 1 at ordered pairs (0%,03) i = 1,..., K for some number of
interpolation points K, then V and Z need to be constructed so that

K
Wy (P71, P E,, Py 'b) C colsp {V}

i=1
and

K
U Wy (P7"Ey, P;*E;, Py *c) C colsp{Z}.
i=1
The theorem then shows that such spaces contain the needed information to generate the desired
model.

6. CONCLUSIONS

A generalization for two-parameter linear systems of the vector spaces and projections used to
form reduced-order moment-matched models for one-parameter linear systems contained in [2]
has been presented. The spaces have been characterized via a generalization of the standard
Krylov space, and the matrices V and Z that perform projections onto the appropriate spaces
have been derived via a simple recursion. We note that theorems demonstrating the moment-
matching properties of the reduced order model do not depend on the method of construction
of the matrices. In practice, there are many algorithms that can be used to produce V and Z.
For instance, the Rational Krylov family for one-parameter problems includes: the multipoint
Rational Arnoldi, Rational Lanczos, Dual Rational Arnoldi, and Rational Power methods. For
two-parameter problems, the basic recursions that define V and Z have been used along with
a simple orthogonalization strategy to produce a generalization of the Dual Rational Arnoldi
Algorithm for two parameter problems. Generalizations of the other members of the family are
under consideration.

The combination of linearization and model reduction relative to two parameters using the gen-
eralized Dual Rational Arnoldi algorithm has been successfully applied to significant applications
in electromagnetics. Specifically, the method has been applied to the analysis frequency selective
surfaces which are used for frequency and angular filtering and serve as satellite subreflectors
for dual band receivers [10]. Such problems are formulated using well-known integral equation
techniques, and result in systems of the form of (4) where the parameters s; and sy correspond
to the frequency and incident angle of an electromagnetic wave impinging on the frequency se-
lective surfaces. This method is also being extended to more general scattering problems. These
applications of the theory and generalized Rational Krylov family methods will be discussed in
forthcoming papers.
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