
ELSEVIER Applied Numerical Mathematics 19 (1995) 287-317

APPLIED
NUMERICAL

MATHEMATICS

A new family of preconditioned iterative solvers for
nonsymmetric linear systems*

Ulrike Meier Yang *, Kyle A. Gallivan l
Coordinated Science Laboratory, University of Illinois, 1308 W. Main St., Urbana, IL 61801, USA

Abstract

A new family of iterative methods, the family of EN-like methods, is introduced, and its relationship to
other methods is investigated. The complexity and convergence behavior of the new methods as well as their
restarted and truncated versions are examined. The methods are also shown to be suitable in the context of
inner/outer iteration schemes. Their adaptive versions are included into a robust software package PARASPAR,
and numerical experiments are presented, which demonstrate the efficiency of several members of this new
family in comparison with other known methods.

I . I n t r o d u c t i o n

There still is a great need to find a robust parallel iterative solver and preconditioner for a general
sparse linear system. A large number of iterative methods have been developed, which, when conver-
gent, are efficient. Such methods, however, fail often, and the more robust methods available tend to
converge too slowly. Many preconditioning techniques have been proposed with various restrictions
on their applicability. The more general and robust ones tend to be costly in sequential terms and can
have difficulty exploiting more than a moderate number of processors when implemented in parallel.

In this paper, we investigate preconditioned iterative solvers based on rank-one updates for the
nonsymmetric linear system A x = b where A is a general sparse matrix. Our goal is to design and
implement an efficient robust iterative solver for such systems.

Specifically, two families of algorithms are considered:
(i) the family of Broyden algorithms for nonsymmetric linear systems,

(ii) the family of EN-like methods, a new family of methods, which includes a method proposed
by Eirola and Nevanlinna [12].

* This research was supported in part by the National Science Foundation under Grant No. CCR-9120105.
* Corresponding author. E-mail: meier@csrd.uiuc.edu.
t E-mail: gallivan@csrd.uiuc.edu.

0168-9274/95/$09.50 (~) 1995 Elsevier Science B.V. All rights reserved
SSDI 0168-9274(95)00088-7

288 U. Me&r Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995) 287-317

In the past, methods of family (i) had a bad reputation for solving linear systems, but recent
efforts [11] have shown that different line search principles lead to versions that are competitive
with GMRES [24]. Under certain assumptions, members of both families will terminate after a finite
number of steps and have local superlinear convergence. As with other iterative methods such as
GMRES, the full methods are too expensive, and restarted, truncated and adaptive versions must
be considered. The computational complexity per iteration step of methods of family (ii) is almost
twice as high as the corresponding methods of family (i) and GMRES. Whereas the full EN-like
methods in many cases only converge about twice as fast, their restarted versions often converge
significantly more than twice as fast as the corresponding Broyden methods and GMRES and are
therefore more efficient. We will also see that they often require less memory than the corresponding
Broyden methods and GMRES.

Iterative methods in both families require, like most other methods, a good preconditioner in order
to be robust. There are different ways to precondition iterative methods. We will consider here two
different types of preconditioners, the use of an inner iterative method as a preconditioner similar to
GMRESR [29] or FGMRES [22] and an incomplete LU factorization with numerical dropping. For
the former type of preconditioning the new algorithms are considered as an inner as well as an outer
method. The latter preconditioner is taken from PARASPAR, a robust parallel software package based
on Y12M [15], which has many other interesting features. The new family of methods appears to
be very suitable for the strategy used in PARASPAR that gives it its robustness.

A more detailed discussion of the results of this paper as well as the proofs for the theorems and
lemmas can be found in [19].

2. Two families of iterative linear solvers

2.1. The fami ly o f Broyden methods

An important class of methods based on rank-k updates are the quasi-Newton methods [7].
The purpose of quasi-Newton methods is to determine the zero of a function F or minimize a
function G. They approximate the Jacobian of F or the Hessian of G, which is symmetric and often
positive definite, or their inverses. There are a variety of effective quasi-Newton methods, such as
the Fletcher-Powell-Davidon method and the BFGS method [7]. These methods, however, assume
symmetric (and often positive definite) matrices, and we will not consider them here, since our goal
is to solve nonsymmetric linear systems. Instead, we will focus on some variants of Broyden's method
[3], a quasi-Newton method, which is suitable for solving nonsymmetric linear systems. F is defined
here by F (x) = Ax - b, and its Jacobian equals A.

In its most general form, Broyden's method is given by

Algorithm 1 (Broyden's method) .
Initialization: Xo, Ho arbitrary, ro = b - Axo.
For k = O, 1 :

Pk = Hkrk

qk = Ap~

(1)

(2)

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317 2 8 9

Xk+l = Xk + olkpk

r k + 1 = r k - - Olkq k

(p~ - Hkqt) f ~
Hk+l = H~ +

fHqk

end

(3)

(4)

(5)

where fk needs to be chosen in such a way, that f H q k --# O.

There are two undefined variables, fk and ak, whose choice must be considered.
For the original Broyden's method, which is also often called Broyden's "good" method (GBM),

Broyden used f k H = H k P k [3] . It can be proved that, with this choice, Ht+l is the solution to the
minimization problem rain IIH~ 1 - BII F on the set of all matrices B that fulfill the secant condition

Bpk = q~, (6)

see [81. (11" IIF denotes the Frobenius norm.)
By a similar argument, minimizing IIHk - HIIF where H is an element of the set of all matrices

that fulfill the following form of the secant condition

Hqk = pk, (7)

one obtains the choice fk = qk, which is also called Broyden's "bad" method (BBM). Obviously
from the name, this variant often does not perform as well as GBM.

These are the best known choices for fk . There are, however, a few other interesting choices. For
the special case of a Hermitian matrix A, a Hermitian update for Hk is needed, which yields the
choice f k = P~ - Hkq~. The interesting aspect of this method is that it finds an approximation Hk of
the inverse of A, which is corrected during each iteration by a rank-one update in such a way that
Hk+lqi = Pi, i ~ k for k + 1 points qi = Api, i = 0 k. Then, Broyden's method will terminate
within at most n steps, since the algorithm constructs a better approximation H k tO A -1 on each
iteration, until finally Hn = A -1, if fiHqi -¢ 0, i = 0 n - 1 (see also [18]). Unfortunately, this is
not the case if A is nonsymmetric, and finite termination within n steps is no longer guaranteed for
this choice of fg.

In order to get the same effect as in Broyden's method with Hermitian updates for the nonsymmetric
case and preserve termination within n steps, one needs to choose fk to be orthogonal to q~, i =
0 k. One obvious choice for fk that fixes the above problem but also increases the amount of
work per iteration significantly is

k - I

- H E ~ f k = zk - ~ qi kqi,
i=o

(8)

where zk g= 0 is some arbitrary vector in N n, q0 g/k-~ are an orthonormal basis of the space
spanned by qi, i = 0 k - 1. It turns out that the best choice for Zk is qk, since for this choice the
error matrix Ek+l = I - AHk+I can be determined through the product of Ek and a projection matrix,
and IIEkll does not increase with increasing k.

Note, that the choice

290 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

k - I

f k = H~ P k - fiiHPkfii , (9)
i--0

where/~o Pk-1 form an orthonormal basis of the space spanned by Pi, i = 0 k - 1, will also
lead to termination within n steps.

This method was developed independently by Gay and Schnabel [17] who call it Broyden's method
with projected updates.

There is another choice of fk that leads to a version that is equivalent to the general conjugate
residual method (GCR) [13] or GMRES with the initial vector YCo = Xo + Horo and consequently
terminates within n steps [31]. For this method we choose f k = (I - A H k) H (I - AHk)qk. Its
convergence behavior is similar to that of GCR or GMRES.

We will focus in our experiments on GBM and BBM, since the Hermitian update is of no interest
for general nonsymmetric systems and Broyden's method with projected updates is related to GCR
and GMRES (see Section 4), which have a lower computationally complexity.

Let us now turn our attention to the second undetermined parameter, crk. The most obvious choice
for crk is 1. One can show that for this case Broyden's method terminates within at most 2n steps
[16] (see also Section 5). Nevertheless, this is not always a desirable choice. For example, Fig. 1
shows the convergence behavior of GBM (dashed curves) with H0 = c l for different choices of c,
where c = 1 for (1) , c = 1/Amax for (2) and c = 2/(Amax + Amin) for (3). The test problem is taken
from [28]. It is a nonsymmetric matrix of the form S D S -~, where D is a diagonal matrix with the
diagonal vector (1 , 2 , . . . , 50) 7, and

S ~ ' ' . .

We chose/3 = 0.9 and the order of the matrix to be 50.
Broyden suggested in [3] to choose crk, so that Ilrk+ ll < Ilrkll- He also states that this choice of

crk can lead to worse results than choosing an trk that does not necessarily fulfill Ilrk+ II < IIr ll, e.g.,
crk= 1.

Deuflhard et al. [11] propose

H
f~, rk (10)

O (k - - H
f~, qk

and they show that the best cr~ for a method depends on the choice of fk. Their experiments show
that this choice produces Broyden's methods that are competitive with GMRES. In our experiments,
this choice of trk will be used.

2.2. The fami ly o f EN-like methods

The EN method was first proposed by Eirola and Nevanlinna in [12]. The main idea is to
improve an approximation Hk to A -I via a rank-one update - H UkV~ on each iteration of the method

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317 291

while simultaneously improving an approximation xk to the solution of the linear system. The rank-
one update is chosen in such a way that the matrix Ek = I - AHk, which is an indicator of the
quality of Hk, is obtained by premultiplying Ek-! by a projector I - cc H, in order to guarantee
that the new approximation will not be worse than the old one. This can be achieved by choosing
~,~ = EpAr~k/IIAr~kll z. The best choice for fik would be fik = A-~Ekrk (where the residual rk is defined
by rk = b - A x k) , which would lead to rk+! = 0. Such a choice clearly begs the question of solving the
system of linear equations, so the best available approximation of A -1 is used to yield fik = HkEkrk.

The resulting algorithm is:

Algorithm 2 (EN method (original version)).

Initialization: x0, H0 arbitrary, ro = b - Axo, Eo = I - AHo.
For k = 0, 1 :

uk = HkEkrk
H ~ vk = Ek Auk

I[Z~kll 2
~ H

Hk+l = Hk + ukv k

Ek+l = I -- A H k + l

Xk+l = xk + Hk+~ rk

rk+ 1 : Ek+l rk

end

The EN method and the family of Broyden's methods are related. As a matter of fact, using this
relationship, it is possible to define a new family of EN-like methods.

Recalling the definitions of Pk and qk in Algorithm 1, we can rewrite the evaluation of Hk+L as

Hk+j = Hk + HkEkrkf~ (1 1)
f ~ A H k r k "

Setting fk H = E k AHkEkrk, we obtain

H H H H
Hk+l = Hk + HkEkrkrk Ek Hk A Ek, (12)

I lankEkrk l l 2

which looks just like Hk+l as evaluated in the EN method. Consequently, it is possible to derive a
family of methods with a general fk , just as can be done for Broyden's methods. The EN method is
a special case of this family. The new general form of the EN method is given by

Algorithm 3 (EN-like method) .
Initialization: Xo, Ho arbitrary, ro = b - Axo, Eo = I - AHo.
For k = 0 , 1 :

HkEkrkf~ Hk+j = Hk + (13)
f~AHkrk

292 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

Ek+ 1 = I - AHk+1 (14)

Xk+l = Xk + Hk+lrk (15)

rk+l = Ek+lrk (16)

end

where fk needs to be chosen in such a way, that f~AHkrk ~ O.
Algorithm 3 can also be written in a form that more closely resembles Broyden's methods as

follows:

Algorithm 4 (EN-like method).
Initialization: x0, H0 arbitrary, ro = b - Axo.
For k = 0 , 1 :

Pk = Hkrk (17)

qk = Ap~ (18)

(Pk -- nkqk) f~
H~+I = H~ + (19)

f~qk
/~k = H~+l r~ (20)

qk = A/~k (21)

Xk+l = X~ + Pk (22)

rk+l = rk -- qk (23)

end

where f~ needs to be chosen in such a way, that f~qk ~ O.
So, in some way, Broyden's method is to the EN-like method what the Jacobi method is to the

Gauss-Seidel method. Whereas the direction vector for Broyden's method is evaluated using Hk,
for the EN-like method the new approximation Hk+l to A -1 is used, which can lead to a faster
convergence.

Fig. 1 shows that the EN-like method (solid lines) with fk = HHpk, which we will call GEN
method converges about twice as fast as GBM (dashed lines) for our test problem. This leads to
a comparable sparse matrix-vector multiplication count for both methods, since the EN-like method
has a higher computational complexity per iteration step. We also see that the disturbing increase of
the residual in Broyden's method that occurs for case (1) is significantly increased for the EN-like
method.

The similarity of two steps of Broyden and one step of the corresponding EN-like method are
examined in the following lemma.

Lemma 1. One iteration step of an EN-like method can be decomposed in the following way:

YCk+1 = Xk + Hkrk, (24)

rk+l = rk -- AHkrk, (25)

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317 293

10 3°

I 0 ~s

10 ~

1015

"~ 101o

"5
E 105

10 °

10 5

10 "1¢

10

\
x

\

(3) (2) (1)

J t

2'0 4~0 60 80
number of iterations

\

\

\

\
\

\

(1)

i

100 120

Fig. 1. Broyden's "good" method (GBM) versus corresponding EN-like method (GEN).

Xk+l = Xk+l + akHk?k+l, (26)

where

H
f k rk

ak - f H q .

The proof is straightforward and can be found in [19]. This lemma shows that one step of an
EN-like method can be considered as an iteration step of the corresponding Broyden's method with
ce~ = 1 followed by an iteration step of Broyden's method using the optimal line search principle of
[11] without updating the approximation to A -l .

In our experiments in Section 7, we will focus our attention specifically on EN, GEN and the
EN-like method with fk = qk, which we will call BEN.

2.3. Scaling invariance

We will consider now the influence of scaling the linear system on the iterative solver.

Definition 2. An iterative method is called scaling invariant, if xk = 2k, where x~ is the kth iterate
generated by applying the iterative solver to A x = b, and YCk is the kth iterate generated by applying
the iterative solver to p A x = p b for any p 4: 0.

In general, neither Broyden's method nor the EN-like method is scaling invariant. This is also
indicated by the experiments in Fig. 1, where we chose H0 = c l . They are equivalent to applying the
solvers to the linear system (1 / c) A x = (1 / c) b .

294 u. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995)287-317

One way of fixing this problem is to premultiply H0 by a scaling parameter in the initialization
phase. We will denote the methods that are generated this way through a prefix "s" (e.g. sEN for the
scaling invariant version of the EN method).

Theorem 3. Define for a Broyden or EN-like method Ho = yM, where

(Az)Hz (A M z)Hz

~ ' - [IZz112 or 3 / - 11AMz112 ' (27)

z an arbitrary vector with Az ~ 0 and M a nonsingular matrix. I f eek = grk for Broyden's method
and fk = g (p) f k f o r a function g : C --, C (where 6~k and fk are generated by applying the method
to the scaled system p A x = pb) , then the method is scaling invariant.

An induction-based proof can be found in [19]. Even though an arbitrary z theoretically guarantees
scaling invariance, its choice is important practical matter. An unfortunate choice of z might make
no difference or even degrade the convergence of the method, whereas a well-chosen z might lead
to an improvement in the number of iterations. An example of this can be found in Fig. 1, where for
case (1) z is the eigenvector belonging to the eigenvalue 1 and for case (2) the one belonging to
the largest eigenvalue Am~x.

Vuik and van der Vorst [31] suggest another scaling invariant version of the EN method, which
we will call the SEN method. While examining the error matrix

Ek+ 1 = (I - ckc~) " " (I - CoCr~)Eo, (28)

they realized that the scaling invariance was caused by the factor I - AHo, and they suggested to
introduce a scaling parameter 7k, leading to the product (I - CiCnk) . . . (I -- CoCno)(I -- YkAHo). 7k is
determined by minimizing the vector (I - ykAHo) rk, which leads to

(AHork)Hrk

y k = iiAHorkll2 . (29)

The SEN method is slightly more expensive and requires two more dotproducts per iteration. Both
dotproducts can be performed simultaneously.

3. Efficiency considerations

3.1. Formulations o f higher efficiency

One of the disadvantages of the methods we have considered so far is their computational com-
plexity. Whereas A is in general a sparse matrix, Hk is in general dense and therefore would require
O(n 2) number of operations, compared to O(n) for A. One can develop more efficient versions for
all these methods by avoiding the actual computation of Hk+l.

If we replace Ht+l by its definition, we get

U. Meier Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995) 287-317

H f k x ,
Hk+lx = H k x + ¢--O-~,o, tpk -- Hkqk)

d g *l~

k f",x
= .ox + Z (pi- Hiqi).

i--o f i q

Using this, we can rewrite Broyden 's method in the following form (see also [11]).

A lgo r i t hm 5 (B r o y d e n ' s m e t h o d) .

Initialization: Xo, H0 arbitrary, ro = b - Axo, Po = Horo, qo = Apo,

For k = O, 1 :

(k H
= fk qk

k-1 f ~ q k
tk = Hoqk + ~ - ~ i Zi

i--O

zk = Pk - tk

Xk+l = xk + akpk

Y k + l : Yk - - akqk
H f k rk

Pk+l = (1 -- Ozk)pk + ---~-tZk

qk+l = Apk+l

end

The general EN-like method can be rewritten as follows:

A lgo r i t hm 6 (EN- l i ke m e t h o d) .

Initialization: Xo, H0 arbitrary, ro = b - Axo,
For k = 0, 1 :

k-1 finrk
Pk = Hork + ~ - - ~ i Zi

i=O

qk = Apk
(k n

= f k qk

t~ = rk -- qk
k - 1 ~H
~ - ~ J i t k

Zk = Hotk + 2 - , - - - - ' ~ Z i

i=O ~

H
f k rk

s t = Pk -k- ~ Zk

Xk+l = Xk + Sk

?'k+l : rk -- Ask

end

295

296 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

For Broyden's "bad" method (BBM) and for the corresponding EN-like method (BEN), one only
needs to replace fk with qk. Similarly, for Broyden's projected method, set f k = qk -- ~ 0 1 gl'n, qkgli.
Broyden's "good" method (GBM) and GEN, however, or any other member of the families for which
the evaluation of f~ involves H~, such as the original EN method, requires further modification.
Fortunately, for GBM and GEN, those can be performed without significantly increasing the number
of operations or the storage needed, if one chooses the order of computations carefully. Unfortunately,
the evaluation is highly recursive and leads to a decrease in parallelism. The complete algorithms are
given in [19] For the EN and the SEN method, where fk H • = E~ Ekqk, it is possible to make use of
the orthogonality of some vectors and so avoid the decrease in parallelism we encountered for GBM
and GEN. Since the evaluation of fk is more complicated than for GEN or BEN, the number of
operations is however increased. For detail see [12,19,31].

If we do not require the evaluation of xk+l in each iteration step, it is possible to achieve further
savings in EN and SEN by avoiding the evaluation of the updates for xk+l in each iterations step and
accumulating the coefficients instead. Such an approach has been used for GCR in [9]. These new
even more efficient versions, which we will call eEN, eSEN and eGCR can be found in [19].

Even the efficient versions are computationally expensive, since the gradual increase of the un-
derlying subspace leads to an increase of both operation count and memory requirement with each
iteration step. We will therefore also consider their restarted and truncated versions. An overview of
restarted and truncated algorithms can be found in [23].

The methods can be restarted after m + 1 iterations by using Xm+~ as the new starting guess x0. We
truncate these methods by including only updates of the last m iterations. We will denote the restarted
methods with Method(m) and the truncated versions with tMethod(m). One would expect the latter
approach to lead to better convergence, since more information is being kept. We will see in Section
7 that this is not always true. In fact, Deuflhard, Freund and Walter [11] saw in their experiments
that for Broyden's methods this approach in general is worse than restarting. Our experiments will
however show that this result does not necessarily transfer to the EN-like methods. It is also possible
to use more sophisticated truncated schemes, which can lead to better convergence (see [10,30]).
The application of these to the family of EN-like methods is left as future work.

Most of the efficient versions we have mentioned here truncate easily. The truncation of eEN, eSEN
and eGCR is far more complicated. Since the actual computational complexity of truncated eEN, eSEN
and eGCR is not superior to truncated EN, SEN and GCR (which is also called ORTHOMIN), we
will not consider them here.

One of the disadvantages of restarted and truncated methods is the fact that a new parameter m is
introduced. It is unclear how to choose it, since a small m might lead to extremely slow convergence
or possibly divergence, and a large m leads to a high number of operations per iteration step. We have
developed adaptive versions, which gradually increase the subspace depending on the convergence
rate observed. These versions are considered in some detail in Section 6.

3.2. Complexi ty

In order to compare the methods with each other as well as with existing methods, it is necessary
to develop a model. There are different issues that need to be considered.

• the total operation count,
• the type of operations,

U. Meier Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995) 287-317 297

• and the memory requirements.
Since we are dealing with iterative methods, the total operation count consists of the number of
operations per iteration step, which we consider in this section and the number of iterations required
to achieve a certain accuracy. The second aspect is considered in more detail in Section 5.

It is important to consider the type of operations involved, since the performance of computational
primitives can differ significantly from one another and depends strongly on the type of machine.
This is particularly true for parallel computers, our target architectures, which perform operations
such as dense matrix-vector multiplications more efficiently than e.g. general sparse matrix-vector
multiplications.

In Table 1 the types and number of operations are given for a variety of methods. We have included
GCR and the equivalent GMRES [24] here since they are related to the considered methods (see next
section), and CGS [26] and BiCGSTAB [27] since they are very popular solvers. For Broyden's
methods, only the operation counts for optimal line search according to [11] are given. Those
for GBM or BBM with a~ = 1 would be slightly lower. "dmv" stands here for dense matrix-vector
multiplication. There are two types of dense matrix-vector operations included, first any computations
of dotproducts of the form c~x, i = 0 k - 1 can also be performed as the multiplication of the
vector x with the matrix (Co ck-l) of order n × k, and second, the operation ~ik~ l aici can be
performed as a multiplication of the matrix (Co ck-1) with the vector (a0 OLk_l) H. Both
matrix-vector multiplications take about 2kn flops. We also consider the following vector operations:
the inner product of two vectors ("dp"), the vector operation x = x + a y ("daxpy") , and plain vector
additions, subtractions or multiplications of a vector with a scalar (+ , - , ,) . Another important part
of each algorithm are multiplications of the sparse matrix A with a vector ("smv"). The flop counts
depend strongly on the linear system we are considering. They can be small for a very sparse matrix
and require little time if the matrix is also well structured, such as banded. They can be large, if the
matrix is fairly dense or even given in implicit form. Another unknown factor is the preconditioning
step ("prec"), which also strongly depends on the preconditioner used. For a diagonal preconditioner,
e.g., the cost is almost negligible, for an incomplete LU preconditioner, however, it can be quite
expensive due to its potentially low degree of parallelism.

Note that for GMRES and the efficient versions eGCR, eEN and eSEN a postprocessing step that
consists of one "dmv" (2ran flops after m iterations) is required in order to get the actual solution and
an additional "dmv" for GMRES if one needs to get the residual vector as is necessary for restarted
GMRES.

Note that the "dmv"s here are actually k dotproducts or k daxpys that can be performed simul-
taneously. Consequently, methods with "dmvs" such as BBM, GCR, BEN, EN, etc. have a higher
degree of parallelism than methods such as GMRES in its usual implementation with modified
Gram-Schmidt, GBM and GEN, which have to perform these dotproducts and daxpys recursively. It
is possible to use the classical Gram-Schmidt algorithm for GMRES to increase its parallelism. In
this case its operation count as given in Table 1 is identical to that of eGCR. Since it also can lead
to instability, it has been suggested to use the classical Gram-Schmidt algorithm twice I16].

In order to get an idea of the actual computational complexity in terms of flops, in Tables 3.2 and
3.2 the number of flops per iteration step for the truncated and restarted versions are given. We use
the notation "tMethod(m)" for the truncated versions and "Method(m)" for the restarted versions.
Note that tGCR(m) is better known as ORTHOMIN(m). Those numbers are straightforward for the
truncated methods assuming that one uses a window of m vectors and neglects the startup. For the

298 U. Meier Yang, K.A. GaUivan /Applied Numerical Mathematics 19 (1995) 287-317

Table 1
Number and types of operations for various methods in kth iteration step

Method dmv dp daxpy +, - , * smv prec

Operation count 2kn 2n 2n n

BBM 2 2 3 1 1 1
GBM k+2 k+3 1 1 1
GCR 3 2 2 1 1
eGCR 2 2 1 1 1
GMRES k+2 k 1 1
BEN 4 2 1 3 2 2
GEN 2k+2 2k+ 1 2 2 2
EN 6 2 2 2 2 2
eEN 4 2 1 2 2 2
SEN 6 4 3 2 2 2
eSEN 4 4 3 2 2 2
CGS 2 5 1 2 2
BiCGSTAB 4 6 2 2

Table 2
Computational complexities for truncated versions

Method Number of operations per iteration

tBBM(m)
tGBM(m)
ORTHOMIN (m)
tBEN(m)
tGEN(m)
tEN(m)
tSEN(m)
CGS
BiCGSTAB

(4m+ll)n + 1 smv + 1 prec
(4m+ll)n + 1 smv + 1 prec
(6m+8)n + 1 smv + 1 prec
(8m+9)n + 2 smv + 2 prec
(8m+9)n + 2 smv + 2 prec
(12m+10)n + 2 smv + 2 prec
(12m+16)n + 2 smv + 2 prec
15n + 2 smv + 2 prec
20n + 2 smv + 2 prec

restarted methods, one can only give the average number of iterations per iteration step, since the
actual number is continually changing due to the changing size of the window. Note that it is possible
here to use the more efficient versions eGCR, eEN and eSEN. The averaged operation count also
takes into account the previously ment ioned postprocessing step for the efficient methods. Clearly,
using restarted methods leads to lower operation counts per iteration step, consequently the use of
truncated methods will only pay off if the number of iterations is significantly lower. We will consider

this aspect in more detail in Section 7.
Also, clearly, methods like GBM, BBM, G C R and G M R E S have the advantage of using only one

" s m v " and one "prec" per iteration step, which in case of an expensive " s m v " and "prec" will make
the other methods only attractive if they converge at least twice as fast.

Our final complexi ty criterion is the m em or y required. Table 3.2 lists the amount of m e m o r y in
terms of vector e lements required in addition to the matrix and the right-hand side. We ignore m e m o r y
requirements of order k or k 2, since we assume that k is in general small compared to n.

It is possible to save a substantial amount of storage for G B M (see [11,19]). This change requires
however an additional k daxpys per iteration step if o~ i ~ 1. Unfortunately, it is not possible to use a
similar trick for GEN.

U. Meier Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995) 287-317 299

Table 3
Computational complexities for restarted versions

Method Average number of operations per iteration

BBM(m)
GBM(m)
eGCR(m)
GMRES(m+I)
BEN(m)
GEN(m)
eEN(m)
eSEN(m)

(2m+ll)n + 1 smv + 1 prec
(2m+ll)n + 1 smv + 1 prec
(2m+8)n + 1 smv + I prec
(2m+8)n + 1 smv + 1 prec
(4m+9)n + 2 smv + 2 prec
(4m+9)n + 2 smv + 2 prec
(4m+10)n + 2 smv + 2 prec
(4m+16)n + 2 smv + 2 prec

Table 4
Additional work vectors required

Method Memory required

(t)BBM(m) 2m+5
(t)GBM(m) 2m+5 or m+6
(t)GCR(m), eGCR(m) 2m+4
(t)BEN(m) 2m+6
(t)GEN(m) 2m+6
(t)EN(m), eEN(m) 2m+4
(t)SEN(m), eSEN(m) 2m+4
GMRES(m+I) m+4
CGS 8
BiCGSTAB 8

We see here that unless m is small, CGS and BiCGSTAB require less m e m o r y than the other

methods. All the other methods require approximately the same amount of memory , except for

G M R E S and GBM, which use about half the amount of memory.

4. Relationships between methods

In the previous sections, we have indicated that Broyden 's methods and the EN-l ike methods
are related to various other known methods, particularly GCR. In this section, we summar ize these
relationships.

As ment ioned in [12] and proved in [31], one can derive GCR from the EN method by replacing

fit = H, Ekrk through

uk = H, rk. (30)

A more thorough investigation shows that GCR and O R T H O M I N are related to SEN and tSEN.

L e m m a 4. I f the scaling parameter y~ in (29) equals O, the SEN iteration step is reduced to a GCR
iteration step.

Since Yk = (AHor,)Hrk/[[AHor,]] 2, this situation can occur only when AHo is not positive definite.

Moreover, when Yk = 0, the algori thm stagnates.

300 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

Comparing GCR(k) (or ORTHOMIN(k)) and SEN(k) (or tSEN(k)) , one finds the following
equivalence for the special case k = 0 for which restarted and truncated versions are equivalent:

Lemma 5. Two steps of GCR(0) is equivalent to one step of SEN(0), i.e., given the same initial
vector x0,

GCR(0) SEN(0) (31)
X2k ~ X k •

The proofs are straightforward.
We have also mentioned that Broyden's method with fk n = Ek Ekqk is equivalent to GCR using the

initial vector Xo + Horo. This is equivalent to applying one step of Richardson's method to the linear
system HoAx = Hob with the initial vector x0 and applying GCR to the so obtained iterate. Note that
even though GCR is scaling invariant, Broyden's method with fk H -- E k Ekq k is not, since Richardson's
method is not.

Since the projected Broyden's method also terminates within n steps and generates orthogonal
vectors, it is reasonable to suspect that it is also related to GCR. The following lemma relates the f k

generated in the projected Broyden's method to the Krylov subspace generated by GCR.

Lemma 6. For the projected Broyden's method, fk = qk -- ~ J FtHqk{li is orthogonal to the kth
Krylov space [AHoro (AHo)kro] = Kk(AHo, AHoro).

The vectors q0 ?/k-~ form an orthonormal basis for Kk(AHo, AHoro). Moreover, defining

k-1

?k = rk -- ~ 77"i rkFli,
i---o

where ?k+~ = ?k - g/k, one obtains a sequence of "residuals" with the property

rk 3_ Kk(AHo, AHoro).

(32)

(33)

Implicitly, residuals for GCR applied to AHo(Holx) = b are generated.
Since the EN-like method generates an approximation Hk tO A -l , a relationship to matrix iterations

that compute the inverse of a matrix is also likely. Such a method can be found in [25].
Choose arbitrary X0,

Xk+l = Xk(2I -- AXk).

This method is based on Newton's method and possesses quadratic convergence in the sense that

I - AXk+I = (I - A X k) 2.

Investigating one step of the EN-like method, one can show

Theorem 7. For the EN-like method, the direction v e c t o r Hk+lr k can be presented in the following
way:

N r (34) Hk+trk = (1 -- tok)Hkrk + tokHk+ 1 ~:

U. Meier Yang, K.A. GaUivan /Appl ied Numerical Mathematics 19 (1995) 287-317 301

where

N H~+ l = H~(2I - AHk)

and

(35)

f•rk
w k - f~qk" (36)

The interesting part of this presentation is that for w~ = 0, we have Broyden's method, for
wk = 1 we have a much faster converging but far more costly method based on Newton's method
for approximating the inverse. Of course, in general wk would be neither 0 nor 1, since it strongly
depends on the vectors fk, qk and rk. However, local convergence considerations show that for some
choices of fk, o~k converges towards 1, when H0 is a good approximation for A -1, and in this case
H~+I acts on r~ in a manner similar to the Newton iterate [19].

5. Convergence theory

As mentioned in Section 3.2, the EN-like methods need to converge at least twice as fast as the
Broyden methods, in order to be competitive. We will show here that theoretically this is often the
case. In Section 7, we will show that in practice they often perform significantly better.

One of the amazing, unexpected properties of Broyden's method is its finite termination property,
which occurs for ce~ = 1. Gay showed that Broyden's method terminates within at most 2n steps
[16]. Recently, O'Leary [20] characterized the vectors that cause the finite termination.

Now, due to the relationship between Broyden's method and the EN-like method, it is also possible
to prove finite termination for the EN-like method (see [19]).

Theorem 8. I f fHq~ 4= 0, k = 0, I the EN-like method converges within at most n steps.

The finite termination property is more of theoretical than of practical interest. Therefore, it is
important to examine the convergence behavior of the methods.

Due to space limitation, we present the following theorems in condensed form. Most of the results
for GBM and BBM can also be found in [11]. The proofs for the results for the EN-like methods
and the additional results for the Broyden methods can be found in [19].

The following theorem characterizes convergence for BBM, BEN, EN and the projected Broyden's
method.

Theorem 9. Assume that f k = qk, f k = H Ek Ekqk, or f k = qk - - E i k ~ 1 gTni qkcli, and for Broyden's method
= H r H cek 1 or ak = qk k/ qk qk. Assume additionally that liE011 ~ < 1.

The following inequalities then hold:

Ilrk+, II ~< ~llr~ll (37)

for Broyden's method and

[Irk+. [[~< 6Zllrkll (38)

302 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

for the EN-like method, and the methods converge.
Assume for Broyden's method that f t H H H = E k Ekqk, and ~k = f~ r , / f k q,. Assume additionally that

liE011 ~ 8 < v ~ - 1.
Then,

Ilrk+, 1[~ 8(8 + 2)[Ir, ll, (39)

and the method converges.
Additionally, for all methods considered above, the convergence is q-superlinear, i.e., there exists

a sequence ck with 0 <<. ck < 1 and l i m k ~ ck = 0, so that

IIr~+,l[~ c, llr,[[. (40)

There is a similar theorem for GBM, GEN, and a few other methods with f , as defined below.
For the following theorem, we define the matrices

/~k := I - A - I H ~ I. (41)

Theorem 10. Assume that fk = H HkHEk~HEkpk,~ HkH (Pk H k p~, or .fk = or for Broyden's method fk = -
~ 1 fiiHpkfii), and one of the following choices of cek for Broyden's method:

(i) cek = 1,
H H (ii) a~ = p~ Pk/Pk Hkqk,
H H H (iii) cek = Pk Hkqk/ qk Hk H~qk,
~ 2 H ~ H ~ H (iv) , ~ = IIE~p~II /p~ Ek ~ kq~, or
H - H - ~ 2 (v) a~ = p~ Ek Eknkqk/llEknkq~ll •

I for Broyden's Assume additionally that HkA is nonsingular, and I1~011 ~< 8, where 8 < ~ method with

cek = 1, 6 < ~l for Broyden's method with the other choices for ak and 8 < x/~ - 1 for the EN-like
method.

The following inequalities then hold:

8
Ile,+,[[~< 1 _---L~[le,[[(42)

for Broyden's method with ak = 1,

28
Ile,+,[[~< l_---S~llekll (43)

for Broyden's method with choices (i i) - (v) for ok, and

282
Ilek+, II ~< (1 - 8)2 Ile,II (44)

for the EN-like method (where ek = xk - x denotes the actual error) and the methods converge.
Additionally, the convergence is q-superlinear, i.e., there exists a sequence ck with 0 <<. c, < 1 and

l i m , ~ ck = 0, so that

Ilek+,ll ~< c~llekll (45)

for Broyden's method with choices (i) - (i i i) f o r a, and the EN-like method.

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995)287-317 303

These theorems show that, under the above assumptions, the EN-like methods converge twice as
fast as the corresponding Broyden methods, and the upper limits of the convergence rate for the EN-
like methods are approximately squared compared to those of the corresponding Broyden methods, a
fact that is useful for the development of the adaptive methods (see Section 6).

Now let us examine restarted and truncated versions of these methods. Certainly, those versions do
not possess the finite termination property. The local convergence behavior of the restarted methods
is, however, characterized by Theorems 9 and 10, except that one can no longer prove q-superlinear
but only q-linear convergence.

For truncated methods, it is far more difficult to derive any convergence results. It is however
possible for one of the methods considered to prove convergence using an argument similar to that
used for ORTHOMIN [13,14]. Let us investigate the tSEN method for a real linear system Ax = b.
Since one can prove convergence for the full SEN method and the restarted method SEN(m) in the
same way, we summarize the result in the following theorem.

Theorem 11. Assume, that the symmetric part M of AHo is symmetric positive definite, R is the
skew-symmetric part of AHo, ~7i the angle between ci and AHork, and {rk} the sequence of residuals
generated by SEN, SEN(m), or tSEN(m), then

k - I

Ilrk+,ll (1 - C O S 2 r] i) ' / 2 (1 - - /[rnax(i_~oATAno))l/211r~ll, (46)
i=¢(m)

and

k - 1

Ilrk+,ll (1 - ~ cos2r/ i) ' /2(1- A~in(M)
Amin(M)Amax(M) + [hmax(R)12)l/2llrkll' (47)

i=(a (m)

where ¢ (m) = O for SEN and SEN(m), and ¢(m) = k - m for tSEN(m), and the method converges.

If we recall the equivalent estimate for ORTHOMIN [13,14]

A~n(AH0)
[Irk+,[I ~< (1 - Ama~(t~oATAHo))}lrkll, (48)

we see that the main difference between the two estimates is the factor

k-1

1 - ~ cos e~i,
i = k - m + l

which equals 1 only when AHork is orthogonal to all ci, i = k - m + 1 k - 1. In all other cases,
the estimate is better. It is optimal, when AHork is parallel to one of the ci.

6. Precondi t ioning

The convergence theory has shown that, in general, it is desirable to start these methods with an
H0 that is already a fairly good approximation of the inverse of the matrix of the linear system

304 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

to be solved. A possible choice would be a good preconditioner. In this section, we consider two
different ways of preconditioning: preconditioning with an inner iterative method, and the use of an
ILU factorization with numerical dropping.

6.1. Precondi t ion ing with iterative me thods

The idea of using an inner iterative method as a preconditioner can be found in the CGT method
introduced by Rutishauser [21] who used the Chebyshev method as inner method to precondition
the conjugate gradient method, an approach equivalent to Chebyshev polynomial preconditioning.

For the nonsymmetric case, there are various other methods, such as FGMRES [22] with GMRES
as the outer method, or GMRESR [29] with GCR as the outer method and GMRES as the inner
method, and others we consider further in this and the following section. If the inner method is a
polynomial method, i.e., the residuals can be expressed in terms of a polynomial in A applied to the
original residual r0 (which is the case for all the methods considered here), this approach can also
be considered as a type of polynomial preconditioning.

Now, this type of preconditioning is defined by evaluating any occurrences of the form z = Hoy

by applying m + 1 iterations of an inner iterative method to the linear system A z = y. If the inner
method is a polynomial method, this can also be expressed as

z = Pm.kY. (49)

Consequently, since the coefficients of the polynomials in general depend on the original residual used
in the iterative process, which in turn depends on the vector y, we encounter a different preconditioner
in each iteration step of the outer method.

Since this approach is possible for any of the methods considered in the previous sections, one can
come up with a large variety of methods. We consider the performance of some of these methods,
which specifically involve GCR, GMRES and EN in further detail in Section 7.

A potential drawback of the inner/outer iteration schemes is that the generated Krylov space of
the outer iteration is ignored when applying the inner iterative method to A z = y. This drawback was
observed by de Sturler and Fokkema [10] for the case of GMRESR. The outer method generates
a minimal residual polynomial, which is ignored by the inner iteration, which searches for a new
minimal residual polynomial. They therefore suggest for the inner method to solve the following
equation

(I - C k _ l C ~ _ 1) A z = y, (5O)

where Ck_~ is the matrix consisting of the outer orthogonal vectors Co Ck-~. This approach keeps
the inner residual orthogonal to the outer Krylov subspace. It turns out that in many cases it leads
to far better convergence than GMRESR and in spite of a higher number of operations per iteration
step it often also decreases the solution time. The new method is called GCRO.

Since EN and SEN also generate orthogonal vectors Co ck_~, it is possible to use the same
approach with EN or SEN as outer method, i.e., for every occurrence of w = Hov, one can apply an
inner iterative method to (I - C k _ I C ~ _ I) A w = v. Due to space limitations, we will not pursue this
approach in this paper, but it is considered in [19].

U. Meier Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995)287-317 305

Initial drop tolerance r and desired accuracy e given
Do until (x~ is accepted):

if (LU(~-) exists) then
M ~ LU(z)
if (not converged or too slow) then

~" ~-- f l (~)
endif

else

endif
r ~ f 2 (r)

end

Fig. 2. PARASPAR.

6.2. PARASPAR

A hybrid software package called PARASPAR, which is based on Y12M [15,32] and combines
both iterative and direct methods, has been used as a framework for some of our experiments.
Direct methods, e.g., sparse Gauss elimination schemes, while achieving in general high accuracy, are
often too time consuming and have only a low level of parallelism. Iterative methods have far more
parallelism and, when converging, require a significantly lower computing time, but they lack the
robustness of direct methods. PARASPAR takes advantage of the desirable qualities of both groups,
while attempting to minimize their disadvantages.

One of PARASPAR's strengths is its robustness, which makes it a very promising code for those
linear systems that have shown to be problematic for many of the existing iterative solvers and
preconditioners. The elements of the package that lead to its robustness are an ILU preconditioner,
which uses numerical dropping and various pivoting strategies, a sophisticated stopping criterion
used for the iterative methods and an effective heuristic strategy to determine a good precondi-
tioner. During the evaluation of the preconditioner, elements are dropped when they are below the
given drop tolerance. After the user chooses an initial drop tolerance, the package will automati-
cally decrease the drop tolerance and reevaluate the preconditioner, if the chosen preconditioner or
iterative method fails, and try again, until eventually the solution has been obtained with the de-
sired accuracy. In the worst case, the drop tolerance will be zero, and a complete LU factorization
with a few steps of the iterative method is performed. The complete algorithm is given in Fig.
2.

One of the pivoting strategies is specifically designed for parallel computing. It performs a search
for parallel pivots and is consequently very effective on a parallel computer.

For further efficiency, PARASPAR also has a switch to dense matrix techniques, which is used
when the occuring sparse matrices become small enough or dense enough due to fill in so that
dense matrix techniques are more efficient than sparse matrix techniques on the target architec-
ture.

A more detailed description of PARASPAR, including the stopping criterion and the choice of the
drop tolerance can be found in [15,32].

306 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

6.3. Adaptive versions

All the methods under investigation have been added to PARASPAR. In the process of doing so,
we had to consider the following issues:

• the choice of stopping criteria,
• an adaptive procedure, which automatically alters the size of the underlying subspace of the

considered methods,
• criteria to detect and deal with failures of the methods (i.e., breakdown, divergence or stagna-

tion), and
• criteria to evaluate the quality of the preconditioner.

All the above points are closely related. Therefore, we treat them together in this section.
Our strategy varies somewhat for the different methods, however the overall concept is very similar.
The EN-like methods and Broyden methods naturally use a right preconditioner, as opposed to

the original implementation of PARASPAR, which uses a left preconditioner for all of its iterative
methods. Consequently, the vector rk that is evaluated in each method is the actual residual and
not the preconditioned residual. Therefore, it appeared to be reasonable to replace the sophisticated
stopping criterion that PARASPAR uses with the simpler one

(51)
llr0ll

In order to avoid that loss of accuracy during the evaluation of the rk of each algorithm leads to
false convergence, we explicitly evaluate b - Axk when the above criterion indicates convergence and
restart the algorithm with x0 = xk when b - Axk does not fulfill the stopping criterion.

In order to determine when to increase the subspace, we monitored the convergence rate

:= Ilrk+ ll (52)
Hr, H

assuming that this is also a good estimate for the convergence rate

:= Ilek+ ll (53)
Ilekll

for GBM and GEN, since Aek = rk.
We increased the subspace by one if either

o r

P~+1 > Pk (54)

pk/> c (55)

where c was determined empirically. The value c = 0.8 seems to be a good choice for the EN-like
methods and c = 0.9 for the Broyden methods and GCR. Note that the optimal c for the Broyden
methods is approximately the square of the optimal c for the EN-like methods, which is in accordance
with the convergence theory in Section 5.

There are several possibilities for failure of the methods such as breakdowns, caused by division
by a near zero value, stagnation or divergence. Due to space limitation we do not present these

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995)287-317 307

here. There are however several characteristics of the considered methods that are very useful in
the context of PARASPAR. The first is the drastic divergence of some of the methods, when facing
an ill-conditioned problem. This can be detected easily and save useless iterations (see Section
7.5). Another characteristic is the availability, at no extra cost, of parameters, that are indicators for
the quality of the preconditioner. The latter characteristic can lead to a significant improvement in
efficiency, when the iterative method fails due to a low quality preconditioner, but does not diverge
drastically. A detailed discussion can be found in [19].

7. Numerical experiments

In this section, we illustrate some of the properties of the algorithms described in the previous
sections with numerical experiments. For our experiments, we use several matrices derived from partial
differential equations as well as a few test matrices from the Harwell-Boeing collection. All runs were
performed on an Alliant FX/80, a parallel computer with 8 vector processors, using vectorization and
parallelization. For the stopping criterion, we chose e = 10 -8. Note that the implementation of GMRES
here uses classical Gram-Schmidt and is therefore more efficient than the usual implementation with
modified Gram-Schmidt. For the problems considered here the use of classical Gram-Schmidt did
not effect the stability. The first three matrices were obtained through a standard five point finite
difference discretization of the following two-dimensional partial differential equation, which was
taken from [29],

- -Uxx - - Uyy "~- / 3 (U x "~ Uy) = f on g2 (56)

with Dirichlet boundary conditions

u = c onOs2, (57)

where ~ = [0, 1] x [0, 1].
We chose step size h = 0.01, which leads to a matrix of order 9801.

Z1. Problem 1

For our first problem we chose/3 = 1. This is an example for which CGS and BiCGSTAB converge
fairly quickly. Since their computational complexity per iteration step and memory requirements are
low, they are hard to beat in such a case. On the other hand, GMRES(k+I) converges very slowly
for this case even for an optimal (with regard to time) k. We were interested to see the performance
of the Broyden and EN-like methods for this example. The timings in Table 5, which were optimal
for limited storage (i.e., k smaller than 17, which corresponds for GMRES to k smaller than 34)
show that whereas GEN, GBM and BBM are not competitive here, restarted EN, SEN and BEN are
about 50 percent faster than GMRES. This is due to a significant reduction in additional flops, i.e.,
dmvs, daxpys and dotproducts, which also offsets the increase in sparse matrix-vector multiplications
for restarted EN and SEN. If we include truncated versions, we see that tGEN, tGBM, tBBM as well
as ORTHOMIN fail. However, tEN, tSEN and tBEN work very well and are only about 50 percent
slower than CGS and BiCGSTAB. The decrease in additional flops for tBEN is caused here by the
smaller computational complexity per iteration step of tBEN compared to that of tEN and tSEN.

308 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

Table 5
Times for Problem 1

Method Time Number of iterations Number of smvs Additional flops/n

CGS 13.5 246 492 3690
BiCGSTAB 13.7 236 472 4720
GMRES(33) 45.7 838 838 60336
eEN(8) 31.9 460 920 19320
eSEN (4) 29.0 466 932 14912
BEN(12) 28.7 346 692 19722
GEN (16) 60.7 603 1206 44019
GBM (8) 61.0 1375 1375 37125
BBM(12) 78.4 1673 1673 58555
tEN(3) 21.2 271 542 12466
tSEN(3) 20.3 256 512 13312
tBEN(3) 18.8 263 526 8679
tGEN, tGBM diverge
ORTHOMIN, tBBM stagnate

Since memory requirement can be crucial for GMRES, the Broyden and EN-like methods, times
are plotted versus k in Fig. 3. These results are interesting, since now we see that if we have only a
limited amount of memory available, the EN-like methods become even more attractive in comparison
to GMRES. Consider for example the case k = 4, i.e., about 12 memory vectors, SEN(4) is more
than three times faster than GMRES(9). Since these times are of course machine dependent and
those results can vary significantly on different architectures, we also show the number of sparse
matrix-vector multiplications versus k in Fig. 4 and the number of additional flops/n versus k in Fig.
5 for GMRES, BEN, eSEN and tSEN. We used tSEN as an example for the truncated method since
it is here overall (i.e., for almost all k) the best performing of the truncated methods. In Fig. 4, we
see that, for k = 4, GMRES(9) needs about three times as many sparse matrix-vector multiplications
as eSEN(4) and six times as many as tSEN(4). With increasing k the difference decreases. Whereas
overall with increasing k the number of sparse matrix-vector multiplications decreases, this is not
the case for the additional operations. For GMRES, the number of flops is high overall, for the other
methods, it increases steadily with the strongest increase for the truncated method tSEN.

7.2. Problem 2

Even though CGS and BiCGSTAB are the fastest for the previous problem and require little storage,
their robustness can be a problem. This is evident in Problem 2, where we chose fl = 500.

For this example, BEN and GEN fail. They both run into the situation we have also observed in Fig.
1, which leads to extremely large residuals and failure. However, use of the scaling invariant versions
described in Section 2.3 with z = (1 1) a turns out to be successful, see Table 6. Truncation
leads to slower convergence and is consequently not competitive with the restarted methods.

For this example, GMRES converges very quickly. As a matter of fact, it converges best for small
k. Under these circumstances, GMRES is difficult to beat. Nevertheless, the times for eSEN with
comparable memory requirement, and sBEN and eEN with a slightly larger memory requirement are
competitive. Among the truncated methods, tEN is only about 30 percent slower.

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995)287-317 309

16(3

14C

12C

~ 10C

c:

2C

• BBM(k)

GMRES(2k+I)

GEN k) ' - - : - -

BEN(k) . --.-~ - - -

'eEN(k) ~ " " ~ . _ ~ _ _ _ _ _ ~ . _ "

e S E N (k) 1'0 1; 210 215 3=0

k

Fig. 3. Times for restarted methods with varying k.

3000

2500

£

~ .200C
"3
E

~ 1500

x

E

500

- GMRES(2k+I)

BEN(k)

. eSEN(k)

. . . . ~ 3~
5 10 15 20 2

k

Fig. 4. Number of matrix-vector operations for several methods with varying k.

7.3. Problem 3

The first two problems illustrated cases where BiCGSTAB and CGS do very well and GMRES
very poorly and vice versa. In the first case members of the family of EN-like methods were far
better than GMRES and only 50 percent slower than BiCGSTAB and CGS, in the second case some
EN-like methods were competitive with the better method, GMRES. For Problem 3 , we chose

310 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

8

7

6

10"

. . - : : : . i i ¸
/ , # ~ • " / i I

/ /
. / j /

/ /
/) -

i
5 110 15

GMRES(2k+I)

. B E N (k)

. eSEN(k)

. . . . tSEN(k)

Table 6
Times for Problem 2

Fig. 5. Number of additional flops/n for several methods with varying k.

Method Time Number of iterations Number of smvs Additional flops/n

CGS diverges
BiCGSTAB false convergence
GMRES(3) 9.6 338 338 4056
eEN (2) 9.6 171 342 3078
eSEN(1) 10.0 177 354 3540
sBEN(2) 10.5 170 340 3234
sGEN(8) 14.9 191 382 8217
GBM(10) 14.1 295 295 9145
sGBM(2) 12.1 331 331 5631
BBM(1) 28.3 825 825 10725
tEN(2) 12.7 181 362 6154
tSEN(1) 13.7 205 410 5740
tsBEN(2) 16.8 236 472 6476
tsGEN(2) 21.8 326 652 8806
ORTHOMIN, tBBM stagnate
tGBM diverges

1, if (x , y) E [0.4, 0.6] x [0.4, 0 .6] ,
/3(x, y) = 500, elsewhere. (58)

This is an example where eEN wins. Both CGS and BiCGSTAB fail as in the previous example,
see Table 7, and GMRES converges only slowly. The truncated methods are not competitive here.
However, sBEN is competitive with GMRES with a larger memory requirement. Both eSEN and eEN
have superior convergence with comparable memory requirement. GMRES(17) is about 50 percent
slower than eEN(8) .

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995)287-317

Table 7
Times for Problem 3

311

Method Time Number of iterations Number of smvs Additional flops/n

CGS diverges
BiCGSTAB false convergence
GMRES (17) 47.9 1166
eEN(8) 31.5 459
eSEN(8) 41.0 578
sBEN(4) 48.8 730
GBM(8) 76.9 1722
tEN(8) 60.4 554
ORTHOMIN, tBBM stagnate
tGBM diverges

1166 46640
918 19278

1156 27744
1460 19714
1722 46494
1108 58724

7.4. Testing the adaptive schemes

The following example has been taken from the Harwell-Boeing collection. SHERMAN3 is a
matrix of order 5005 with 20033 nonzeroes. We preconditioned it with the incomplete LU factorization
of PARASPAR using a drop tolerance of 0.0625 (plLU(0.0625)). For this example, we tested the
previously mentioned adaptive versions of the methods. Fig. 6 shows the number of sparse matrix-
vector multiplications versus the norm of the residuals. We see here that the best method is the
adaptive ORTHOMIN, closely followed by the adaptive tEN. BiCGSTAB and GMRES(53) need
about twice as many sparse matrix-vector multiplications. If we consider the solution times achieved
on the Alliant FX/80, which are given in Table 8 (note that the time it took to generate the
preconditioner (5.6 seconds) is not included) we see that the adaptive tEN is actually the fastest. It
is followed by the adaptive tBEN, which here, in spite of a very similar memory requirement and
iteration count as tSEN, is more than 10 percent faster than tSEN. We see here the influence of the
larger computational complexity of tSEN. ORTHOMIN, in spite of its small smv count, is about
20 percent slower than the adaptive tEN. This is due to the fact that ORTHOMIN requires almost
twice as many additional work vectors, and consequently its operation count for dense matrix-vector
operations is significantly higher than for the EN-like methods.

For this example, ORTHOMIN and tSEN have a tendency to stagnate. The smallest k for which
ORTHOMIN(k) does not stagnate is k = 48, for tSEN it is k = 30. Note that in both cases the
adaptive version finds a k close to these values.

To compare these methods further, we restricted the memory requirement for the adaptive OR-
THOMIN to that of the optimal adaptive tEN, which is a maximum of k = 26. The results for
these experiments can be seen in Fig. 7. As mentioned above, ORTHOMIN(k) fails for k ~ 26. The
adaptive scheme, however, converges, even though it is four times as slow as the optimal adaptive OR-
THOMIN, which requires far more memory. The peak in the curve for the adaptive ORTHOMIN(26)
is caused by false convergence. The residual seems to indicate convergence where the actual error
stagnates, see Fig. 7. In order to overcome this problem, we reevaluated the residual by rk = b - Axk

and restarted at this point with the new residual, which finally leads to convergence. We also in-
cluded eGCR(26) in this experiment, since the adaptive ORTHOMIN is a hybrid of a truncated and
a restarted method with the emphasis on truncation, eGCR(26) converges slower than the adaptive
ORTHOMIN(26), see Fig. 7, but is actually somewhat faster with regard to time here, since its

312 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

10 "~

10 .2

10 .3

104

-~ 10 "s

u)

or0
E

10 r

10 ~

10 .9

10 -lo

10 "~

, , i i , r

... t .\

1
G : GMRES(53) ' G

0 E B S Bi

2'0 ,'0 ~0 8'0 10o 1~o
n u m b e r of sparse matr ix vector mul t ip l icat ions

140

Fig. 6. Residuals for SHERMAN3 with pILU(0.0625).

Table 8
Solution times for various methods for SHERMAN3 with plLU(0.0625)

Method Time Number of iterations Number of smvs Maximal k

ad. ORTHOMIN 5.9 68 68 46
ad. tEN 4.9 35 70 26
ad. tBEN 5.5 42 84 30
ad. tSEN 6.4 43 86 30
BiCGSTAB 5.7 57 114
GMRES(53) 9.4 135 135 52
eEN(26) 9.5 81 162 26
tEN(26) 5.8 39 78 26
ORTHOMIN(48) 9.5 94 94 48
eGCR(26) 18.8 319 319 26
ORTHOMIN (26) stagnates 26
ad. ORTHOMIN(26) 20.5 269 269 26

number of additional flops is lower. This is not true anymore, if we choose k = 25 or k = 27, for
which the adaptive O R T H O M I N (k) is faster than e G C R (k) (adaptive O R T H O M I N (2 5) : 15.2 secs.,
e G C R (2 5) : 19.3 secs., adaptive O R T H O M I N (2 7) : 15.3 secs., e G C R (2 7) : 27.4 secs.) , or choose a
lower accuracy for the stopping criterion (e.g., e = 10 -6, for which the adaptive O R T H O M I N (2 6)
takes 12.7 and e G C R (2 6) 14.2 seconds) .

The results above show that here the adaptive methods are very efficient and superior to the
restarted and truncated methods. The overall fastest method is here the adaptive tEN.

U. Meier Yang, K.A. Gallivan/Applied Numerical Mathematics 19 (1995) 287-317 313

10 "1

10 -2

10 .3

10 -4

-o 10-s

"6
E 10 ~5

10 ̀7

10 "8

10 ̀9

10"

A: ad. Oft(46)

B: Oft(48)

C: ad. Ort(26)

D: GCR(26)

(26)

liE
D

I0 i i i i
5 100 150 200 250 300

number of sparse matrix vector multiplications
350

Fig. 7. Adaptive versus truncated ORTHOMIN for SHERMAN3 with plLU(0.0625).

7.5. Testing the methods inside PARASPAR

The following example is LNS_3937 from the Harwell-Boeing collection, a matrix of order 3937
with 25407 nonzeroes. Many standard preconditioners fail for this matrix. We use this example to
demonstrate the influence of the characteristics of the various methods on the solution time in the
context of PARASPAR. We use as initial drop tolerance 0.05. The resulting preconditioner is not good
enough to solve the problem. Table 9 shows the reaction of the various methods to this situation.
Here, the time to evaluate the preconditioners is included. Both CGS and BiCGSTAB iterate until the
maximum number of iterations is reached. CGS shows a very erratic convergence behavior, which is
typical for CGS with extreme peaks and is still far from the solution after 300 iterations. BiCGSTAB
converges more smoothly with less serious peaks and reaches llrkll ~ 10 -5 after 300 iterations.
The adaptive tEN, tBEN, tGEN and tGBM encounter a significant increase in Ilrkll for increasing k
from the very beginning, which clearly indicates divergence, and consequently the need for a new
preconditioner can be detected quickly. Both the adaptive ORTHOMIN, tSEN and tBBM take far
longer to determine their failure, since for these methods Ilr~ll cannot increase theoretically, a bad
preconditioner very likely will lead to stagnation or extreme slow convergence, which takes far longer
to detect, since we do not want to terminate the iteration process if there is still hope for convergence.
We see that tGEN and tBBM do not even converge with the second preconditioner pILU(1.56e - 3)
and a third preconditioner evaluation is necessary, which leads to p ILU(4 .88e - 5).

This example shows that in the context of PARASPAR the disastrous behavior of many of the
EN-like methods when facing an ill-conditioned problem is of advantage, since one wastes no time
in useless iterations.

In practice, PARASPAR is often used to determine a preconditioner by this adaptive procedure,
which is then used for related matrices. In this case, the rapid adaptation to determine the preconditiner
is not of interest, while the time to solve a system using the final preconditioner is of great interest.

314 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

Table 9
Times for LNS_3937 with plLU(0.05) in the first trial

Total t ime Number of Number of iterations Last run

Method trials Trial 1 Trial 2 Trial 3 Solution time

CGS 42.4 2 300 22 3.1
BiCGSTAB 43.5 2 300 19 2.6
ad. tEN 17.5 2 7 15 2.3 9
ad. tBEN 18.6 2 10 21 3.2 12
ad. tSEN 35.5 2 122 19 3.0 13
ad. tGEN 37.7 3 7 37 3 0.6 2
ad. ORTHOMIN 25.5 2 115 30 2.4 15
ad. tGBM 24.6 2 13 97 9.3 50
ad. tBBM 40.6 3 59 64 15 1.8 12

We have therefore included the times of the last run and largest k used. Once again, a member of the
EN-like family is preferred. With plLU(1.56e - 3), the adaptive tEN is the fastest method.

7.6. Precondit ioning with iterative methods

Finally, we present a few experiments with regard to the use of iterative methods as inner methods.
We use Problem 1, and consider two types of experiments. For the first we run some combinations
of EN and GCR or GMRES, respectively, with a fixed number of inner iterations m, but the full
method outside. Whereas those combinations are fa i ry competitive with regard to time, there is a
significant difference with regard to memory requirement clearly favoring those involving EN, see
Table 10. Note also that these times are below those achieved when we apply unpreconditioned CGS
and BiCGSTAB to this problem, see Table 5.

The second type of experiment chooses a fixed memory requirement of 20 additional memory
vectors and runs different combinations (both restarted and truncated) of the above methods, see
Table 10. For comparison we have added GMRES(17) and eEN(8), which have the same memory
requirement. For combinations with restarted outer methods, those involving eEN are faster than
eGCR(5) /GMRES(5) , which is a form of GMRESR, or the unpreconditioned GMRES(17) and,
with one exception, eEN (8). For combinations with truncated outer methods, those with ORTHOMIN
(tGCR) as outer method (which includes tGMRESR) fail, whereas those with tEN as outer method
achieve the best times and lowest sparse matrix-vector operation counts.

Overall, the results show that the use of EN in the context of inner/outer iteration schemes is
competitive with GMRESR and superior when memory is limited. See [19] for a more detailed
discussion, including the orthogonality preserving methods, which were mentioned in Section 6.1.

8. Conclusions and future work

We introduced a new family of methods, the EN-like methods. Its complexity, relationships to
other methods and convergence behavior were examined. We also considered restarted, truncated and
adaptive versions. Additionally, their use in the context of inner/outer iterative methods as well as
PARASPAR, a robust software package, was investigated.

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

Table 10
Times for inner/outer methods

315

Method Time Iterations smv Additional Memory
Inner/Outer flops/n vectors

GMRESR (6) 12.5 48 331 8640 107
eEN/GMRES(6) 12.6 27 368 7290 65
eGCR/eEN(5) 10.9 27 351 4860 70
eEN/eEN(5) 11.8 15 390 4590 46
eGCR (5)/GMRES (5) 37.2 203 1215 15834 20

eEN(5)/GMRES(5) 24.2 66 792 9900 20
eGCR (2) / eEN (5) 29.0 77 1001 I 0164 20
eGCR(5)/eEN(2) 35.2 187 1307 11220 20
eEN (2)/eEN (5) 22.1 30 770 7740 20
eEN(5)/eEN(2) 18.8 50 700 5700 20
tGMRESR, tGCR/eEN stagnate 20

tEN (5) /GMRES (5) 15.5 40 476 7600 20
tEN(2)/eEN(5) 16.8 23 580 6302 20
tEN (5)/eEN (2) 17.3 43 602 6622 20
GMRES(17) 67.7 1652 1652 66080 20

eEN (8) 31.9 460 920 19320 20

The work shows that several members (particularly EN, SEN and to some degree BEN) of the
family of EN-like methods are certainly competitive and in many cases better than other existing
methods. Even though methods like CGS and BiCGSTAB may converge faster for many prob-
lems, EN-like methods are in general more robust, since, like GMRES, they have the option of
increasing the Krylov subspaces. Additionally, they are often more efficient with regard to mem-
ory usage than GMRES or ORTHOMIN. Also, the experiments indicate that truncated EN-like
methods seem to be less prone to stagnation or divergence than ORTHOMIN or truncated Broy-
den methods. Nevertheless, we also encountered problems with the truncated versions. We have
dealt with these through developing an adaptive scheme, which automatically adjusts the dimen-
sion of the underlying subspace. This version will also restart the method when it encounters cer-
tain potentially fixable problems. Our experiments show that these versions work well in many
cases.

In the context of inner/outer methods, we found the new methods to be competitive with GMRESR
in terms of computational complexity and even superior when memory is limited.

The new methods appear to be very suitable for inclusion in a hybrid package such as PARASPAR,
since they evaluate the quality of the preconditioner and can respond quickly when the preconditioner
is not acceptable.

In summary, we found the new methods a viable option for large linear systems that need a fairly
robust solver when memory is restricted.

There are several possibilities for future work. We have seen the importance of using restarted
and truncated methods (or hybrids of the two approaches) to reduce computations and memory
requirements. However, the simple truncation used thus far can have difficulties. Therefore, we plan
to investigate further more sophisticated truncation schemes--possibly exploiting application-specific
information--in the context of an adaptive hybrid of restarted and truncated methods.

Additionally, due to the connection of EN-like methods to Broyden methods, they can also be used

316 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317

as nonl inear solvers [1 9] , which m a y also be significant for some applicat ions. This is also under
investigation.

References

[I] M. Arioli, I. Duff and D. Ruiz, Stopping criteria for iterative solvers, Tech. Rept., CERFACS, Toulouse (1992).
[2] S. Ashby, M. Holst, T. Manteuffel and E Saylor, The role of the inner product in stopping criteria for conjugate

gradient iterations, Tech. Rept., Lawrence Livermore National Laboratory (1992).
[3] C. Broyden, A new method of solving nonlinear simultaneous equations, Comput. J. 12 (1969) 94-99.
[4] C. Broyden, The convergence of single-rank quasi-Newton methods, Math. Comput. 24 (1970) 365-382.
15] C. Broyden, J. Dennis and J. More, On the local and superlinear convergence of quasi-Newton methods, J. Inst. Math.

Appl. 12 (1973) 223-245.
[6] J. Demmel, M. Heath and H. van der Vorst, Parallel numerical linear algebra, Acta Numer. (1993) 111-197.
[7] J. Dennis Jr and J. More, Quasi-Newton methods, motivation and theory, SIAM Rev. 1 (1977) 46-89.
[8] J. Dennis Jr and R. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations (Prentice-

Hall, Englewood Cliffs, NJ, 1983).
[9] E. de Sturler, Nested Krylov methods based on GCR, Tech. Rept. 93-50, Faculty of Technical Mathematics and

lnformatics, Delft University of Technology, Delft (t993); also: J. Comput. Appl. Math. (to appear).
[10] E. de Sturler and D. Fokkema, Nested Krylov methods and preserving the orthogonality, in: T. Manteuffel and S.

McCormick, eds., Proceedings of the Sixth Copper Mountain Multigrid Conference on Multigrid Methods, VA (1993).
[11] E Deuflhard, R. Freund and A. Walter, Fast secant methods for the iterative solution of large nonsymmetric linear

systems, Impact Comput. Sci. Engrg. 2 (1990) 244-276.
[12] T. Eirola and O. Nevanlinna, Accelerating with rank-one updates, Linear Algebra Appl. 121 (1989) 511-520.
[13] S. Eisenstat, H. Elman and M. Schultz, Variational iterative methods for nonsymmetric systems of linear equations,

SIAM J. Numer. Anal, (1983) 345-357.
[14] H. Elman, Iterative methods for large, sparse, nonsymmetric systems of linear equations, Res. Rept. 229, Yale

University, New Haven, CT (1982).
[15] K. Gallivan, A. Sameh and Z. Zlatev, A parallel hybrid sparse linear system solver, Comput. Systems Engrg. 1 (1990)

183-195.
[16] D. Gay, Some convergence properties of Broyden's method, SIAM J. Numer. Anal 16 (1979) 623-630.
[17] D. Gay and R. Schnabel, Solving systems of nonlinear equations by Broyden's method with projected updates, in: O.

L. Mangasarian, R. Meyer and S. Robinson, eds., Nonlitlear Programming Vol. 3 (Academic Press, New York, 1978)
245-281.

[18] D. Luenberger, Linear and Nonlinear Programming (Addison-Wesley, Reading, MA, 1984).
[19] U. Meier Yang, A family of preconditioned iterative solvers for sparse linear systems, Ph.D. Thesis, Report UIUCDCS-

R-95-1904, Department of Computer Science, University of Illinois, Urbana, IL (1995) (also available as CSRD-
Report 1408 through anonymous ftp to sp2.csrd.uiuc.edu in directory CSRD_Info/reports).

[20] D. O'Leary, Why Broyden's nonsymmetric method terminates on linear equations, Tech. Rept. CS-TR-3045, University
of Maryland, College Park, MD (1993); also: SIAM J. Optim. (to appear).

[21] H. Rutishauser, Theory of gradient methods, Mitt. Inst. Angew. Math. 8 (1959) 24-29.
[22] Y. Saad, A flexible inner-outer preconditioned GMRES algorithm, Tech. Rept., Computer Science Department and

MSI, University of Minnesota, Minneapolis, MN (1991).
[23] Y. Saad and M. Schultz, Conjugate gradient-like algorithms for solving nonsymmetric linear systems, Math. Comput.

44 (1985) 417-424.
[24] Y. Saad and M. Schultz, GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear system,

SIAM J. Sci. Statist. Comput. 7 (1986) 856-869.
[25] G. Schultz, Iterative Berechnung der reziproken Matrix, Z Angew. Math. Mech. 13 (1933) 57-59.
[26] E Sonneveld, CGS, a fast Lanczos-type solver for nonsymmetric linear systems, SIAM J. Sci. Statist. Comput. 10

(1989) 36-52.
[27] H. van der Vorst, BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetric

linear systems, SIAM J. Sci. Statist. Comput. 13 (1992) 631-644.

U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317 317

[28] H. van der Vorst, Conjugate gradient type methods for nonsymmetric linear systems, in: R. Beauwens and E de Groen,
eds., Iterative Methods in Linear Algebra (North-Holland, Amsterdam, 1992) 67-76.

[29] H. van der Vorst and C. Vuik, GMRESR: A family of nested GMRES methods, Numer. Linear Algebra Appl. (to
appear).

[30] C. Vuik, Further experiences with GMRESR, Tech. Rept. 92-12, Delft University of Technology, Delft (1992).
[31] C. Vuik and H. van der Vorst, A comparison of some GMRES-like methods, Linear Algebra Appl. 160 (1992)

131-162.
[32] Z. Zlatev. Computational Methods for General Sparse Matrices (Kluwer Academic Publishers, Dordrecht, 1991).

