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Abstract  

A new family of iterative methods, the family of EN-like methods, is introduced, and its relationship to 
other methods is investigated. The complexity and convergence behavior of the new methods as well as their 
restarted and truncated versions are examined. The methods are also shown to be suitable in the context of 
inner/outer iteration schemes. Their adaptive versions are included into a robust software package PARASPAR, 
and numerical experiments are presented, which demonstrate the efficiency of several members of this new 
family in comparison with other known methods. 

I .  I n t r o d u c t i o n  

There still is a great need to find a robust parallel iterative solver and preconditioner for a general 
sparse linear system. A large number of iterative methods have been developed, which, when conver- 
gent, are efficient. Such methods, however, fail often, and the more robust methods available tend to 
converge too slowly. Many preconditioning techniques have been proposed with various restrictions 
on their applicability. The more general and robust ones tend to be costly in sequential terms and can 
have difficulty exploiting more than a moderate number of processors when implemented in parallel. 

In this paper, we investigate preconditioned iterative solvers based on rank-one updates for the 
nonsymmetric linear system A x  = b where A is a general sparse matrix. Our goal is to design and 
implement an efficient robust iterative solver for such systems. 

Specifically, two families of algorithms are considered: 
(i) the family of Broyden algorithms for nonsymmetric linear systems, 

(ii) the family of EN-like methods, a new family of methods, which includes a method proposed 
by Eirola and Nevanlinna [ 12]. 
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In the past, methods of family (i) had a bad reputation for solving linear systems, but recent 
efforts [ 11 ] have shown that different line search principles lead to versions that are competitive 
with GMRES [ 24]. Under certain assumptions, members of both families will terminate after a finite 
number of steps and have local superlinear convergence. As with other iterative methods such as 
GMRES, the full methods are too expensive, and restarted, truncated and adaptive versions must 
be considered. The computational complexity per iteration step of methods of family (ii) is almost 
twice as high as the corresponding methods of family (i) and GMRES. Whereas the full EN-like 
methods in many cases only converge about twice as fast, their restarted versions often converge 
significantly more than twice as fast as the corresponding Broyden methods and GMRES and are 
therefore more efficient. We will also see that they often require less memory than the corresponding 
Broyden methods and GMRES. 

Iterative methods in both families require, like most other methods, a good preconditioner in order 
to be robust. There are different ways to precondition iterative methods. We will consider here two 
different types of preconditioners, the use of an inner iterative method as a preconditioner similar to 
GMRESR [29] or FGMRES [22] and an incomplete LU factorization with numerical dropping. For 
the former type of preconditioning the new algorithms are considered as an inner as well as an outer 
method. The latter preconditioner is taken from PARASPAR, a robust parallel software package based 
on Y12M [ 15], which has many other interesting features. The new family of methods appears to 
be very suitable for the strategy used in PARASPAR that gives it its robustness. 

A more detailed discussion of the results of this paper as well as the proofs for the theorems and 
lemmas can be found in [19]. 

2. Two families of iterative linear solvers 

2.1. The fami ly  o f  Broyden methods 

An important class of methods based on rank-k updates are the quasi-Newton methods [7]. 
The purpose of quasi-Newton methods is to determine the zero of a function F or minimize a 
function G. They approximate the Jacobian of F or the Hessian of G, which is symmetric and often 
positive definite, or their inverses. There are a variety of effective quasi-Newton methods, such as 
the Fletcher-Powell-Davidon method and the BFGS method [7]. These methods, however, assume 
symmetric (and often positive definite) matrices, and we will not consider them here, since our goal 
is to solve nonsymmetric linear systems. Instead, we will focus on some variants of Broyden's method 
[ 3], a quasi-Newton method, which is suitable for solving nonsymmetric linear systems. F is defined 
here by F ( x )  = Ax  - b, and its Jacobian equals A. 

In its most general form, Broyden's method is given by 

Algorithm 1 ( Broyden's  method) .  
Initialization: Xo, Ho arbitrary, ro = b - Axo. 
For k = O, 1 . . . .  : 

Pk = Hkrk 

qk = Ap~ 

(1) 

(2) 
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Xk+l = Xk + olkpk 

r k +  1 = r k - -  Olkq k 

(p~ - Hkqt)  f ~  
Hk+l = H~ + 

fHqk 

end 

(3) 

(4) 

(5) 

where fk needs to be chosen in such a way, that f H q k  --# O. 

There are two undefined variables, fk  and ak, whose choice must be considered. 
For the original Broyden's method, which is also often called Broyden's "good" method (GBM),  

Broyden used f k H = H k P k  [3] .  It can be proved that, with this choice, Ht+l is the solution to the 
minimization problem rain IIH~ 1 - BII F on the set of all matrices B that fulfill the secant condition 

Bpk = q~, (6) 

see [81. (11" IIF denotes the Frobenius norm.) 
By a similar argument, minimizing IIHk - HIIF where H is an element of the set of all matrices 

that fulfill the following form of the secant condition 

Hqk = pk, (7) 

one obtains the choice fk = qk, which is also called Broyden's "bad" method (BBM).  Obviously 
from the name, this variant often does not perform as well as GBM. 

These are the best known choices for fk .  There are, however, a few other interesting choices. For 
the special case of a Hermitian matrix A, a Hermitian update for Hk is needed, which yields the 
choice f k  = P~ - Hkq~. The interesting aspect of this method is that it finds an approximation Hk of 
the inverse of A, which is corrected during each iteration by a rank-one update in such a way that 
Hk+lqi = Pi, i ~ k for k + 1 points qi = Api, i = 0 . . . . .  k. Then, Broyden's method will terminate 
within at most n steps, since the algorithm constructs a better approximation H k  tO A -1 on each 
iteration, until finally Hn = A -1, if fiHqi -¢ 0, i = 0 . . . . .  n - 1 (see also [ 18] ). Unfortunately, this is 
not the case if A is nonsymmetric, and finite termination within n steps is no longer guaranteed for 
this choice of fg. 

In order to get the same effect as in Broyden's method with Hermitian updates for the nonsymmetric 
case and preserve termination within n steps, one needs to choose fk  to be orthogonal to q~, i = 
0 . . . . .  k. One obvious choice for fk that fixes the above problem but also increases the amount of 
work per iteration significantly is 

k - I  

- H  E ~ f k = zk - ~ qi kqi, 
i=o 

(8) 

where zk g= 0 is some arbitrary vector in N n, q0 . . . . .  g/k-~ are an orthonormal basis of the space 
spanned by qi, i = 0 . . . . .  k - 1. It turns out that the best choice for Zk is qk, since for this choice the 
error matrix Ek+l = I - AHk+I can be determined through the product of Ek and a projection matrix, 
and IIEkll does not increase with increasing k. 

Note, that the choice 
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k - I  

f k  = H~ P k -  fiiHPkfii , (9) 
i--0 

where/~o . . . . .  Pk-1 form an orthonormal basis of the space spanned by Pi, i = 0 . . . . .  k - 1, will also 
lead to termination within n steps. 

This method was developed independently by Gay and Schnabel [ 17] who call it Broyden's method 
with projected updates. 

There is another choice of fk that leads to a version that is equivalent to the general conjugate 
residual method (GCR) [13] or GMRES with the initial vector YCo = Xo + Horo and consequently 
terminates within n steps [31]. For this method we choose f k  = ( I  - A H k ) H ( I  - AHk)qk.  Its 
convergence behavior is similar to that of GCR or GMRES. 

We will focus in our experiments on GBM and BBM, since the Hermitian update is of no interest 
for general nonsymmetric systems and Broyden's method with projected updates is related to GCR 
and GMRES (see Section 4), which have a lower computationally complexity. 

Let us now turn our attention to the second undetermined parameter, crk. The most obvious choice 
for crk is 1. One can show that for this case Broyden's method terminates within at most 2n steps 
[ 16] (see also Section 5). Nevertheless, this is not always a desirable choice. For example, Fig. 1 
shows the convergence behavior of GBM (dashed curves) with H0 = c l  for different choices of c, 
where c = 1 for (1) ,  c = 1/Amax for (2) and c = 2/(Amax + Amin) for (3).  The test problem is taken 
from [28]. It is a nonsymmetric matrix of the form S D S  -~, where D is a diagonal matrix with the 
diagonal vector ( 1 , 2 , . . . ,  50) 7, and 

S ~  ' ' .  . 

We chose/3 = 0.9 and the order of the matrix to be 50. 
Broyden suggested in [3] to choose crk, so that Ilrk+ ll < Ilrkll- He also states that this choice of 

crk can lead to worse results than choosing an trk that does not necessarily fulfill Ilrk+  II < IIr ll, e.g., 
crk= 1. 

Deuflhard et al. [ 11 ] propose 

H 
f~, rk (10) 

O ( k - -  H 
f~, qk 

and they show that the best cr~ for a method depends on the choice of fk. Their experiments show 
that this choice produces Broyden's methods that are competitive with GMRES. In our experiments, 
this choice of trk will be used. 

2.2. The fami ly  o f  EN-like methods 

The EN method was first proposed by Eirola and Nevanlinna in [12]. The main idea is to 
improve an approximation Hk to A -I via a rank-one update - H UkV~ on each iteration of the method 
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while simultaneously improving an approximation xk to the solution of the linear system. The rank- 
one update is chosen in such a way that the matrix Ek = I - AHk, which is an indicator of the 
quality of Hk, is obtained by premultiplying Ek-! by a projector I - cc H, in order to guarantee 
that the new approximation will not be worse than the old one. This can be achieved by choosing 
~,~ = EpAr~k/IIAr~kll z. The best choice for fik would be fik = A-~Ekrk (where the residual rk is defined 
by rk = b - A x k ) ,  which would lead to rk+! = 0. Such a choice clearly begs the question of solving the 
system of linear equations, so the best available approximation of A -1 is used to yield fik = HkEkrk. 

The resulting algorithm is: 

Algorithm 2 ( EN  method (original version) ). 

Initialization: x0, H0 arbitrary, ro = b -  Axo, Eo = I - AHo. 
For k = 0, 1 . . . .  : 

uk = HkEkrk 
H ~ vk = Ek Auk 

I[Z~kll 2 
~ H 

Hk+l = Hk + ukv k 

Ek+l = I --  A H k + l  

Xk+l = xk + Hk+~ rk 

rk+ 1 : Ek+l rk 

end 

The EN method and the family of Broyden's methods are related. As a matter of fact, using this 
relationship, it is possible to define a new family of EN-like methods. 

Recalling the definitions of Pk and qk in Algorithm 1, we can rewrite the evaluation of Hk+L as 

Hk+j = Hk + HkEkrkf~ ( 1 1 ) 
f ~ A H k r k  " 

Setting fk H = E k AHkEkrk, we obtain 

H H H H 
Hk+l = Hk + HkEkrkrk Ek Hk A Ek, (12)  

I lankEkrk l l  2 

which looks just like Hk+l as evaluated in the EN method. Consequently, it is possible to derive a 
family of methods with a general fk ,  just as can be done for Broyden's methods. The EN method is 
a special case of this family. The new general form of the EN method is given by 

Algorithm 3 ( EN-like method) .  
Initialization: Xo, Ho arbitrary, ro = b - Axo, Eo = I - AHo. 
For k = 0 ,  1 . . . .  : 

HkEkrkf~ Hk+j = Hk + (13) 
f~AHkrk  



292 U. Meier Yang, K.A. Gallivan /Applied Numerical Mathematics 19 (1995) 287-317 

Ek+ 1 = I - AHk+1 (14) 

Xk+l = Xk + Hk+lrk (15)  

rk+l = Ek+lrk (16) 

end 

where fk needs to be chosen in such a way, that f~AHkrk ~ O. 
Algorithm 3 can also be written in a form that more closely resembles Broyden's methods as 

follows: 

Algorithm 4 ( EN-like method). 
Initialization: x0, H0 arbitrary, ro = b -  Axo. 
For k = 0 , 1  . . . .  : 

Pk = Hkrk (17) 

qk = Ap~ (18) 

(Pk -- nkqk) f~  
H~+I = H~ + (19) 

f~qk 
/~k = H~+l r~ (20) 

qk = A/~k (21) 

Xk+l = X~ + Pk (22) 

rk+l = rk -- qk (23) 

end 

where f~ needs to be chosen in such a way, that f~qk ~ O. 
So, in some way, Broyden's method is to the EN-like method what the Jacobi method is to the 

Gauss-Seidel method. Whereas the direction vector for Broyden's method is evaluated using Hk, 
for the EN-like method the new approximation Hk+l to A -1 is used, which can lead to a faster 
convergence. 

Fig. 1 shows that the EN-like method (solid lines) with fk = HHpk, which we will call GEN 
method converges about twice as fast as GBM (dashed lines) for our test problem. This leads to 
a comparable sparse matrix-vector multiplication count for both methods, since the EN-like method 
has a higher computational complexity per iteration step. We also see that the disturbing increase of 
the residual in Broyden's method that occurs for case (1) is significantly increased for the EN-like 
method. 

The similarity of two steps of Broyden and one step of the corresponding EN-like method are 
examined in the following lemma. 

Lemma 1. One iteration step of an EN-like method can be decomposed in the following way: 

YCk+1 = Xk + Hkrk, (24) 

rk+l = rk -- AHkrk, (25) 
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Fig. 1. Broyden's "good" method (GBM) versus corresponding EN-like method (GEN). 

Xk+l = Xk+l + akHk?k+l, (26) 

where 

H 
f k  rk 

ak - f H q  . 

The proof is straightforward and can be found in [ 19]. This lemma shows that one step of  an 
EN-like method can be considered as an iteration step of  the corresponding Broyden's method with 
ce~ = 1 followed by an iteration step of  Broyden's method using the optimal line search principle of 
[ 11 ] without updating the approximation to A -l  . 

In our experiments in Section 7, we will focus our attention specifically on EN, GEN and the 
EN-like method with fk = qk, which we will call BEN. 

2.3. Scaling invariance 

We will consider now the influence of  scaling the linear system on the iterative solver. 

Definition 2. An iterative method is called scaling invariant, if xk = 2k, where x~ is the kth iterate 
generated by applying the iterative solver to A x  = b, and YCk is the kth iterate generated by applying 
the iterative solver to p A x  = p b  for any p 4: 0. 

In general, neither Broyden's method nor the EN-like method is scaling invariant. This is also 
indicated by the experiments in Fig. 1, where we chose H0 = c l .  They are equivalent to applying the 
solvers to the linear system ( 1 / c ) A x  = ( 1 / c ) b .  
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One way of fixing this problem is to premultiply H0 by a scaling parameter in the initialization 
phase. We will denote the methods that are generated this way through a prefix "s" (e.g. sEN for the 
scaling invariant version of the EN method). 

Theorem 3. Define for  a Broyden or EN-like method Ho = yM,  where 

( Az )Hz ( A M z  )Hz 

~ ' -  [IZz112 or 3 / -  11AMz112 ' (27) 

z an arbitrary vector with Az ~ 0 and M a nonsingular matrix. I f  eek = grk for  Broyden's method 
and fk  = g ( p )  f k f o r  a function g : C --, C (where 6~k and fk  are generated by applying the method 
to the scaled system p A x  = pb) ,  then the method is scaling invariant. 

An induction-based proof can be found in [ 19]. Even though an arbitrary z theoretically guarantees 
scaling invariance, its choice is important practical matter. An unfortunate choice of z might make 
no difference or even degrade the convergence of the method, whereas a well-chosen z might lead 
to an improvement in the number of iterations. An example of this can be found in Fig. 1, where for 
case (1) z is the eigenvector belonging to the eigenvalue 1 and for case (2) the one belonging to 
the largest eigenvalue Am~x. 

Vuik and van der Vorst [ 31 ] suggest another scaling invariant version of the EN method, which 
we will call the SEN method. While examining the error matrix 

Ek+ 1 = ( I  - ckc~) " " ( I  - CoCr~)Eo, (28) 

they realized that the scaling invariance was caused by the factor I - AHo, and they suggested to 
introduce a scaling parameter 7k, leading to the product ( I  - CiCnk) . . .  ( I  -- CoCno)(I -- YkAHo). 7k is 
determined by minimizing the vector ( I  - ykAHo) rk, which leads to 

(AHork)Hrk 

y k =  iiAHorkll2 . (29) 

The SEN method is slightly more expensive and requires two more dotproducts per iteration. Both 
dotproducts can be performed simultaneously. 

3. Efficiency considerations 

3.1. Formulations o f  higher efficiency 

One of the disadvantages of the methods we have considered so far is their computational com- 
plexity. Whereas A is in general a sparse matrix, Hk is in general dense and therefore would require 
O(n 2) number of operations, compared to O(n) for A. One can develop more efficient versions for 
all these methods by avoiding the actual computation of Hk+l. 

If we replace Ht+l by its definition, we get 
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H f k  x , 
Hk+lx  = H k x  + ¢--O-~,o, tpk  -- Hkqk)  

d g *l~ 

k f",x 
= .ox + Z  (pi- Hiqi). 

i--o f i  q 

Using this, we can rewrite Broyden 's  method in the following form (see also [ 11 ] ). 

A lgo r i t hm 5 ( B r o y d e n ' s  m e t h o d ) .  

Initialization: Xo, H0 arbitrary, ro = b - Axo,  Po = Horo, qo = Apo, 

For k = O, 1 . . . .  : 

(k H 
= fk qk 

k-1 f ~ q k  
tk = Hoqk + ~ - ~ i  Zi 

i--O 

zk = Pk - tk 

Xk+l = xk + akpk 

Y k + l  : Yk  - -  akqk 
H f k  rk 

Pk+l = (1 -- Ozk)pk + ---~-tZk 

qk+l = Apk+l 

end 

The general EN-like method can be rewritten as follows: 

A lgo r i t hm 6 ( EN- l i ke  m e t h o d ) .  

Initialization: Xo, H0 arbitrary, ro = b -  Axo,  
For k = 0, 1 . . . .  : 

k-1 finrk 
Pk = Hork + ~ - - ~ i  Zi 

i=O 

qk = Apk 
(k n 

= f k  qk 

t~ = rk -- qk 
k -  1 ~H 
~ - ~  J i  t k  

Zk = Hotk + 2 - ,  - - - - ' ~ Z i  

i=O ~ 

H 
f k  rk 

s t  = Pk -k- ~ Zk 

Xk+l = Xk + Sk 

?'k+l : rk -- Ask 

end 

295 
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For Broyden's "bad" method (BBM) and for the corresponding EN-like method (BEN), one only 
needs to replace fk with qk. Similarly, for Broyden's projected method, set f k  = qk -- ~ 0 1  gl'n, qkgli. 
Broyden's "good" method (GBM) and GEN, however, or any other member of the families for which 
the evaluation of f~ involves H~, such as the original EN method, requires further modification. 
Fortunately, for GBM and GEN, those can be performed without significantly increasing the number 
of operations or the storage needed, if one chooses the order of computations carefully. Unfortunately, 
the evaluation is highly recursive and leads to a decrease in parallelism. The complete algorithms are 
given in [ 19] For the EN and the SEN method, where fk H • = E~ Ekqk, it is possible to make use of 
the orthogonality of some vectors and so avoid the decrease in parallelism we encountered for GBM 
and GEN. Since the evaluation of fk is more complicated than for GEN or BEN, the number of 
operations is however increased. For detail see [ 12,19,31]. 

If we do not require the evaluation of xk+l in each iteration step, it is possible to achieve further 
savings in EN and SEN by avoiding the evaluation of the updates for xk+l in each iterations step and 
accumulating the coefficients instead. Such an approach has been used for GCR in [9]. These new 
even more efficient versions, which we will call eEN, eSEN and eGCR can be found in [ 19]. 

Even the efficient versions are computationally expensive, since the gradual increase of the un- 
derlying subspace leads to an increase of both operation count and memory requirement with each 
iteration step. We will therefore also consider their restarted and truncated versions. An overview of 
restarted and truncated algorithms can be found in [ 23 ]. 

The methods can be restarted after m + 1 iterations by using Xm+~ as the new starting guess x0. We 
truncate these methods by including only updates of the last m iterations. We will denote the restarted 
methods with Method(m) and the truncated versions with tMethod(m). One would expect the latter 
approach to lead to better convergence, since more information is being kept. We will see in Section 
7 that this is not always true. In fact, Deuflhard, Freund and Walter [ 11] saw in their experiments 
that for Broyden's methods this approach in general is worse than restarting. Our experiments will 
however show that this result does not necessarily transfer to the EN-like methods. It is also possible 
to use more sophisticated truncated schemes, which can lead to better convergence (see [10,30] ). 
The application of these to the family of EN-like methods is left as future work. 

Most of the efficient versions we have mentioned here truncate easily. The truncation of eEN, eSEN 
and eGCR is far more complicated. Since the actual computational complexity of truncated eEN, eSEN 
and eGCR is not superior to truncated EN, SEN and GCR (which is also called ORTHOMIN), we 
will not consider them here. 

One of the disadvantages of restarted and truncated methods is the fact that a new parameter m is 
introduced. It is unclear how to choose it, since a small m might lead to extremely slow convergence 
or possibly divergence, and a large m leads to a high number of operations per iteration step. We have 
developed adaptive versions, which gradually increase the subspace depending on the convergence 
rate observed. These versions are considered in some detail in Section 6. 

3.2. Complexi ty  

In order to compare the methods with each other as well as with existing methods, it is necessary 
to develop a model. There are different issues that need to be considered. 

• the total operation count, 
• the type of operations, 
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• and the memory requirements. 
Since we are dealing with iterative methods, the total operation count consists of the number of 
operations per iteration step, which we consider in this section and the number of iterations required 
to achieve a certain accuracy. The second aspect is considered in more detail in Section 5. 

It is important to consider the type of operations involved, since the performance of computational 
primitives can differ significantly from one another and depends strongly on the type of machine. 
This is particularly true for parallel computers, our target architectures, which perform operations 
such as dense matrix-vector multiplications more efficiently than e.g. general sparse matrix-vector 
multiplications. 

In Table 1 the types and number of operations are given for a variety of methods. We have included 
GCR and the equivalent GMRES [24] here since they are related to the considered methods (see next 
section), and CGS [26] and BiCGSTAB [27] since they are very popular solvers. For Broyden's 
methods, only the operation counts for optimal line search according to [11] are given. Those 
for GBM or BBM with a~ = 1 would be slightly lower. "dmv" stands here for dense matrix-vector 
multiplication. There are two types of dense matrix-vector operations included, first any computations 
of dotproducts of the form c~x, i = 0 . . . . .  k - 1 can also be performed as the multiplication of the 
vector x with the matrix (Co . . . . .  ck-l) of order n × k, and second, the operation ~ik~ l aici can be 
performed as a multiplication of the matrix (Co . . . . .  ck-1) with the vector (a0 . . . . .  OLk_l) H. Both 
matrix-vector multiplications take about 2kn flops. We also consider the following vector operations: 
the inner product of two vectors ("dp"), the vector operation x = x + a y  ("daxpy") ,  and plain vector 
additions, subtractions or multiplications of a vector with a scalar (+ ,  - ,  , ) .  Another important part 
of each algorithm are multiplications of the sparse matrix A with a vector ("smv").  The flop counts 
depend strongly on the linear system we are considering. They can be small for a very sparse matrix 
and require little time if the matrix is also well structured, such as banded. They can be large, if the 
matrix is fairly dense or even given in implicit form. Another unknown factor is the preconditioning 
step ("prec"), which also strongly depends on the preconditioner used. For a diagonal preconditioner, 
e.g., the cost is almost negligible, for an incomplete LU preconditioner, however, it can be quite 
expensive due to its potentially low degree of parallelism. 

Note that for GMRES and the efficient versions eGCR, eEN and eSEN a postprocessing step that 
consists of one "dmv" (2ran flops after m iterations) is required in order to get the actual solution and 
an additional "dmv" for GMRES if one needs to get the residual vector as is necessary for restarted 
GMRES. 

Note that the "dmv"s here are actually k dotproducts or k daxpys that can be performed simul- 
taneously. Consequently, methods with "dmvs" such as BBM, GCR, BEN, EN, etc. have a higher 
degree of parallelism than methods such as GMRES in its usual implementation with modified 
Gram-Schmidt, GBM and GEN, which have to perform these dotproducts and daxpys recursively. It 
is possible to use the classical Gram-Schmidt algorithm for GMRES to increase its parallelism. In 
this case its operation count as given in Table 1 is identical to that of eGCR. Since it also can lead 
to instability, it has been suggested to use the classical Gram-Schmidt algorithm twice I16]. 

In order to get an idea of the actual computational complexity in terms of flops, in Tables 3.2 and 
3.2 the number of flops per iteration step for the truncated and restarted versions are given. We use 
the notation "tMethod(m)" for the truncated versions and "Method(m)" for the restarted versions. 
Note that tGCR(m) is better known as ORTHOMIN(m). Those numbers are straightforward for the 
truncated methods assuming that one uses a window of m vectors and neglects the startup. For the 
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Table 1 
Number and types of operations for various methods in kth iteration step 

Method dmv dp daxpy +, - ,  * smv prec 

Operation count 2kn 2n 2n n 

BBM 2 2 3 1 1 1 
GBM k+2 k+3 1 1 1 
GCR 3 2 2 1 1 
eGCR 2 2 1 1 1 
GMRES k+2 k 1 1 
BEN 4 2 1 3 2 2 
GEN 2k+2 2k+ 1 2 2 2 
EN 6 2 2 2 2 2 
eEN 4 2 1 2 2 2 
SEN 6 4 3 2 2 2 
eSEN 4 4 3 2 2 2 
CGS 2 5 1 2 2 
BiCGSTAB 4 6 2 2 

Table 2 
Computational complexities for truncated versions 

Method Number of operations per iteration 

tBBM(m) 
tGBM(m) 
ORTHOMIN ( m ) 
tBEN(m) 
tGEN(m) 
tEN(m) 
tSEN(m) 
CGS 
BiCGSTAB 

(4m+ll )n  + 1 smv + 1 prec 
(4m+ll)n  + 1 smv + 1 prec 
(6m+8)n + 1 smv + 1 prec 
(8m+9)n + 2 smv + 2 prec 
(8m+9)n + 2 smv + 2 prec 
(12m+10)n + 2 smv + 2 prec 
(12m+16)n + 2 smv + 2 prec 
15n + 2 smv + 2 prec 
20n + 2 smv + 2 prec 

restarted methods,  one can only give the average number  of  iterations per iteration step, since the 
actual number  is continually changing due to the changing size of  the window. Note  that it is possible  
here to use the more  efficient versions eGCR, eEN and eSEN. The averaged operation count also 
takes into account  the previously ment ioned postprocessing step for the efficient methods.  Clearly, 
using restarted methods  leads to lower operation counts per iteration step, consequently the use of  
truncated methods  will only pay off  if  the number  of  iterations is significantly lower. We will consider  

this aspect  in more  detail in Section 7. 
Also, clearly, methods like GBM,  BBM, G C R  and G M R E S  have the advantage of  using only one 

" s m v "  and one "prec"  per iteration step, which in case of  an expensive " s m v "  and "prec"  will make  
the other methods  only attractive if they converge at least twice as fast. 

Our final complexi ty  criterion is the m em or y  required. Table 3.2 lists the amount  of  m e m o r y  in 
terms of  vector  e lements  required in addition to the matrix and the right-hand side. We ignore m e m o r y  
requirements of  order k or k 2, since we assume that k is in general small compared  to n. 

It is possible  to save a substantial amount  of  storage for G B M  (see  [ 11,19] ). This change requires 
however  an additional k daxpys  per iteration step if o~ i ~ 1. Unfortunately, it is not possible  to use a 
similar  trick for GEN.  
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Table 3 
Computational complexities for restarted versions 

Method Average number of operations per iteration 

BBM(m) 
GBM(m) 
eGCR(m) 
GMRES(m+I ) 
BEN(m) 
GEN(m) 
eEN(m) 
eSEN(m) 

(2m+ll)n  + 1 smv + 1 prec 
(2m+ll)n  + 1 smv + 1 prec 
(2m+8)n + 1 smv + I prec 
(2m+8)n + 1 smv + 1 prec 
(4m+9)n + 2 smv + 2 prec 
(4m+9)n + 2 smv + 2 prec 
(4m+10)n + 2 smv + 2 prec 
(4m+16)n + 2 smv + 2 prec 

Table 4 
Additional work vectors required 

Method Memory required 

(t)BBM(m) 2m+5 
(t)GBM(m) 2m+5 or m+6 
(t)GCR(m), eGCR(m) 2m+4 
(t)BEN(m) 2m+6 
(t)GEN(m) 2m+6 
(t)EN(m), eEN(m) 2m+4 
(t)SEN(m), eSEN(m) 2m+4 
GMRES(m+I ) m+4 
CGS 8 
BiCGSTAB 8 

We see here that unless m is small, CGS and BiCGSTAB require less m e m o r y  than the other 

methods.  All the other methods require approximately  the same amount  of  memory ,  except for 

G M R E S  and GBM,  which use about half  the amount  of  memory.  

4. Relationships between methods 

In the previous sections, we have indicated that Broyden 's  methods and the EN-l ike  methods  
are related to various other known methods,  particularly GCR. In this section, we summar ize  these 
relationships.  

As ment ioned in [ 12] and proved in [31 ], one can derive GCR from the EN method by replacing 

fit = H,  Ekrk through 

uk = H,  rk. (30)  

A more  thorough investigation shows that GCR and O R T H O M I N  are related to SEN and tSEN. 

L e m m a  4. I f  the scaling parameter y~ in (29)  equals O, the SEN iteration step is reduced to a GCR 
iteration step. 

Since Yk = (AHor,)Hrk/[[AHor,]] 2, this situation can occur only when AHo is not positive definite. 

Moreover,  when Yk = 0, the algori thm stagnates. 
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Comparing GCR(k) (or ORTHOMIN(k)) and SEN(k) (or tSEN(k)) ,  one finds the following 
equivalence for the special case k = 0 for which restarted and truncated versions are equivalent: 

Lemma 5. Two steps of  GCR(0) is equivalent to one step of  SEN(0),  i.e., given the same initial 
vector x0, 

GCR(0) SEN(0) (31 ) 
X2k ~ X k • 

The proofs are straightforward. 
We have also mentioned that Broyden's method with fk  n = Ek Ekqk is equivalent to GCR using the 

initial vector Xo + Horo. This is equivalent to applying one step of Richardson's method to the linear 
system HoAx = Hob with the initial vector x0 and applying GCR to the so obtained iterate. Note that 
even though GCR is scaling invariant, Broyden's method with fk H -- E k Ekq  k is not, since Richardson's 
method is not. 

Since the projected Broyden's method also terminates within n steps and generates orthogonal 
vectors, it is reasonable to suspect that it is also related to GCR. The following lemma relates the f k  

generated in the projected Broyden's method to the Krylov subspace generated by GCR. 

Lemma 6. For the projected Broyden's method, fk = qk -- ~ J  FtHqk{li is orthogonal to the kth 
Krylov space [ AHoro . . . . .  ( AHo)kro] = Kk( AHo, AHoro). 

The vectors q0 . . . . .  ?/k-~ form an orthonormal basis for Kk(AHo, AHoro). Moreover, defining 

k-1 

?k = rk -- ~ 77"i rkFli, 
i---o 

where ?k+~ = ?k - g/k, one obtains a sequence of "residuals" with the property 

rk 3_ Kk( AHo, AHoro). 

(32) 

(33) 

Implicitly, residuals for GCR applied to AHo(Holx )  = b are generated. 
Since the EN-like method generates an approximation Hk tO A -l ,  a relationship to matrix iterations 

that compute the inverse of a matrix is also likely. Such a method can be found in [ 25 ]. 
Choose arbitrary X0, 

Xk+l = Xk(2I  -- AXk).  

This method is based on Newton's method and possesses quadratic convergence in the sense that 

I - AXk+I = ( I  - A X k )  2. 

Investigating one step of the EN-like method, one can show 

Theorem 7. For the EN-like method, the direction v e c t o r  Hk+lr k can be presented in the following 
way: 

N r (34) Hk+trk = (1 -- tok)Hkrk + tokHk+ 1 ~: 
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where 

N H~+ l = H~(2I - AHk) 

and 

(35) 

f•rk 
w k -  f~qk" (36) 

The interesting part of this presentation is that for w~ = 0, we have Broyden's method, for 
wk = 1 we have a much faster converging but far more costly method based on Newton's method 
for approximating the inverse. Of course, in general wk would be neither 0 nor 1, since it strongly 
depends on the vectors fk, qk and rk. However, local convergence considerations show that for some 
choices of fk, o~k converges towards 1, when H0 is a good approximation for A -1, and in this case 
H~+I acts on r~ in a manner similar to the Newton iterate [ 19]. 

5. Convergence theory 

As mentioned in Section 3.2, the EN-like methods need to converge at least twice as fast as the 
Broyden methods, in order to be competitive. We will show here that theoretically this is often the 
case. In Section 7, we will show that in practice they often perform significantly better. 

One of the amazing, unexpected properties of Broyden's method is its finite termination property, 
which occurs for ce~ = 1. Gay showed that Broyden's method terminates within at most 2n steps 
[16]. Recently, O'Leary [20] characterized the vectors that cause the finite termination. 

Now, due to the relationship between Broyden's method and the EN-like method, it is also possible 
to prove finite termination for the EN-like method (see [ 19]). 

Theorem 8. I f  fHq~ 4= 0, k = 0, I . . . . .  the EN-like method converges within at most n steps. 

The finite termination property is more of theoretical than of practical interest. Therefore, it is 
important to examine the convergence behavior of the methods. 

Due to space limitation, we present the following theorems in condensed form. Most of the results 
for GBM and BBM can also be found in [11]. The proofs for the results for the EN-like methods 
and the additional results for the Broyden methods can be found in [19]. 

The following theorem characterizes convergence for BBM, BEN, EN and the projected Broyden's 
method. 

Theorem 9. Assume that f k = qk, f k = H Ek Ekqk, or f k = qk - -  E i k ~  1 gTni qkcli, and for  Broyden's method 
= H r H cek 1 or ak = qk k/ qk qk. Assume additionally that liE011 ~ < 1. 

The following inequalities then hold: 

Ilrk+, II ~< ~llr~ll (37) 

for  Broyden's method and 

[Irk+. [[ ~< 6Zllrkll (38) 
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for  the EN-like method, and the methods converge. 
Assume for  Broyden's method that f t H H H = E k Ekqk, and ~k = f~ r , / f k  q,. Assume additionally that 

liE011 ~ 8 < v ~ -  1. 
Then, 

Ilrk+, 1[ ~ 8(8 + 2)[Ir, ll, (39) 

and the method converges. 
Additionally, for  all methods considered above, the convergence is q-superlinear, i.e., there exists 

a sequence ck with 0 <<. ck < 1 and l i m k ~  ck = 0, so that 

IIr~+,l[ ~ c, llr,[[. (40) 

There is a similar theorem for GBM, GEN, and a few other methods with f ,  as defined below. 
For the following theorem, we define the matrices 

/~k := I - A - I H ~  I. (41) 

Theorem 10. Assume that fk  = H HkHEk~HEkpk,~ HkH (Pk H k p~, or .fk = or for  Broyden's method fk  = - 
~ 1  fiiHpkfii), and one of  the following choices of  cek for  Broyden's method: 

(i) cek = 1, 
H H (ii) a~ = p~ Pk/Pk Hkqk, 
H H H (iii) cek = Pk Hkqk/ qk Hk H~qk, 
~ 2 H ~ H ~  H ( iv)  , ~  = IIE~p~II /p~ Ek ~ kq~, or 
H - H -  ~ 2 (v)  a~ = p~ Ek Eknkqk/llEknkq~ll • 

I for  Broyden's Assume additionally that HkA is nonsingular, and I1~011 ~< 8, where 8 < ~ method with 

cek = 1, 6 < ~l for  Broyden's method with the other choices for  ak and 8 < x/~ - 1 for  the EN-like 
method. 

The following inequalities then hold: 

8 
Ile,+,[[ ~< 1 _---L~[le,[[ (42) 

for  Broyden's method with ak = 1, 

28 
Ile,+,[[ ~< l_---S~llekll (43) 

for  Broyden's method with choices ( i i ) - (v )  for  ok, and 

282 
Ilek+, II ~< (1 - 8)2 Ile,II (44) 

for  the EN-like method (where ek = xk - x denotes the actual error) and the methods converge. 
Additionally, the convergence is q-superlinear, i.e., there exists a sequence ck with 0 <<. c, < 1 and 

l i m , ~  ck = 0, so that 

Ilek+,ll ~< c~llekll (45) 

for  Broyden's method with choices ( i ) - ( i i i ) f o r  a,  and the EN-like method. 
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These theorems show that, under the above assumptions, the EN-like methods converge twice as 
fast as the corresponding Broyden methods, and the upper limits of the convergence rate for the EN- 
like methods are approximately squared compared to those of the corresponding Broyden methods, a 
fact that is useful for the development of the adaptive methods (see Section 6). 

Now let us examine restarted and truncated versions of these methods. Certainly, those versions do 
not possess the finite termination property. The local convergence behavior of the restarted methods 
is, however, characterized by Theorems 9 and 10, except that one can no longer prove q-superlinear 
but only q-linear convergence. 

For truncated methods, it is far more difficult to derive any convergence results. It is however 
possible for one of the methods considered to prove convergence using an argument similar to that 
used for ORTHOMIN [ 13,14]. Let us investigate the tSEN method for a real linear system Ax = b. 
Since one can prove convergence for the full SEN method and the restarted method SEN(m) in the 
same way, we summarize the result in the following theorem. 

Theorem 11. Assume, that the symmetric part M of AHo is symmetric positive definite, R is the 
skew-symmetric part of  AHo, ~7i the angle between ci and AHork, and {rk} the sequence of  residuals 
generated by SEN, SEN(m),  or tSEN(m), then 

k - I  

Ilrk+,ll (1 - C O S 2 r ] i ) ' / 2 ( 1  - -  /[rnax(i_~oATAno ))l/211r~ll, (46)  
i=¢(m) 

and 

k - 1  

Ilrk+,ll ( 1 -  ~ cos2r/ i) ' /2(1-  A~in(M) 
Amin(M)Amax(M) + [hmax(R)12 )l/2llrkll' (47) 

i=(a ( m ) 

where ¢ (m)  = O for SEN and SEN(m),  and ¢(m)  = k - m  for tSEN(m),  and the method converges. 

If we recall the equivalent estimate for ORTHOMIN [ 13,14] 

A~n(AH0) 
[Irk+,[I ~< (1 - Ama~(t~oATAHo) )}lrkll, (48) 

we see that the main difference between the two estimates is the factor 

k-1 

1 - ~ cos e~i,  
i = k - m + l  

which equals 1 only when AHork is orthogonal to all ci, i = k - m + 1 . . . . .  k - 1. In all other cases, 
the estimate is better. It is optimal, when AHork is parallel to one of the ci. 

6. Precondi t ioning  

The convergence theory has shown that, in general, it is desirable to start these methods with an 
H0 that is already a fairly good approximation of the inverse of the matrix of the linear system 
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to be solved. A possible choice would be a good preconditioner. In this section, we consider two 
different ways of preconditioning: preconditioning with an inner iterative method, and the use of an 
ILU factorization with numerical dropping. 

6.1. Precondi t ion ing  with iterative me thods  

The idea of using an inner iterative method as a preconditioner can be found in the CGT method 
introduced by Rutishauser [21] who used the Chebyshev method as inner method to precondition 
the conjugate gradient method, an approach equivalent to Chebyshev polynomial preconditioning. 

For the nonsymmetric case, there are various other methods, such as FGMRES [22] with GMRES 
as the outer method, or GMRESR [29] with GCR as the outer method and GMRES as the inner 
method, and others we consider further in this and the following section. If the inner method is a 
polynomial method, i.e., the residuals can be expressed in terms of a polynomial in A applied to the 
original residual r0 (which is the case for all the methods considered here), this approach can also 
be considered as a type of polynomial preconditioning. 

Now, this type of preconditioning is defined by evaluating any occurrences of the form z = Hoy  

by applying m + 1 iterations of an inner iterative method to the linear system A z  = y. If the inner 
method is a polynomial method, this can also be expressed as 

z = Pm.kY. (49) 

Consequently, since the coefficients of the polynomials in general depend on the original residual used 
in the iterative process, which in turn depends on the vector y, we encounter a different preconditioner 
in each iteration step of the outer method. 

Since this approach is possible for any of the methods considered in the previous sections, one can 
come up with a large variety of methods. We consider the performance of some of these methods, 
which specifically involve GCR, GMRES and EN in further detail in Section 7. 

A potential drawback of the inner/outer iteration schemes is that the generated Krylov space of 
the outer iteration is ignored when applying the inner iterative method to A z  = y. This drawback was 
observed by de Sturler and Fokkema [ 10] for the case of GMRESR. The outer method generates 
a minimal residual polynomial, which is ignored by the inner iteration, which searches for a new 
minimal residual polynomial. They therefore suggest for the inner method to solve the following 
equation 

( I  - C k _ l C ~ _  1 ) A z  = y, (5O) 

where Ck_~ is the matrix consisting of the outer orthogonal vectors Co . . . . .  Ck-~. This approach keeps 
the inner residual orthogonal to the outer Krylov subspace. It turns out that in many cases it leads 
to far better convergence than GMRESR and in spite of a higher number of operations per iteration 
step it often also decreases the solution time. The new method is called GCRO. 

Since EN and SEN also generate orthogonal vectors Co . . . . .  ck_~, it is possible to use the same 
approach with EN or SEN as outer method, i.e., for every occurrence of w = Hov, one can apply an 
inner iterative method to ( I  - C k _ I C ~ _ I ) A w  = v. Due to space limitations, we will not pursue this 
approach in this paper, but it is considered in [ 19]. 
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Initial drop tolerance r and desired accuracy e given 
Do until (x~ is accepted): 

if (LU(~-) exists) then 
M ~ LU(z)  
if (not converged or too slow) then 

~" ~-- f l  (~) 
endif 

else 

endif 
r ~ f 2 ( r )  

end 

Fig. 2. PARASPAR. 

6.2. PARASPAR 

A hybrid software package called PARASPAR, which is based on Y12M [15,32] and combines 
both iterative and direct methods, has been used as a framework for some of our experiments. 
Direct methods, e.g., sparse Gauss elimination schemes, while achieving in general high accuracy, are 
often too time consuming and have only a low level of parallelism. Iterative methods have far more 
parallelism and, when converging, require a significantly lower computing time, but they lack the 
robustness of direct methods. PARASPAR takes advantage of the desirable qualities of both groups, 
while attempting to minimize their disadvantages. 

One of PARASPAR's strengths is its robustness, which makes it a very promising code for those 
linear systems that have shown to be problematic for many of the existing iterative solvers and 
preconditioners. The elements of the package that lead to its robustness are an ILU preconditioner, 
which uses numerical dropping and various pivoting strategies, a sophisticated stopping criterion 
used for the iterative methods and an effective heuristic strategy to determine a good precondi- 
tioner. During the evaluation of the preconditioner, elements are dropped when they are below the 
given drop tolerance. After the user chooses an initial drop tolerance, the package will automati- 
cally decrease the drop tolerance and reevaluate the preconditioner, if the chosen preconditioner or 
iterative method fails, and try again, until eventually the solution has been obtained with the de- 
sired accuracy. In the worst case, the drop tolerance will be zero, and a complete LU factorization 
with a few steps of the iterative method is performed. The complete algorithm is given in Fig. 
2. 

One of the pivoting strategies is specifically designed for parallel computing. It performs a search 
for parallel pivots and is consequently very effective on a parallel computer. 

For further efficiency, PARASPAR also has a switch to dense matrix techniques, which is used 
when the occuring sparse matrices become small enough or dense enough due to fill in so that 
dense matrix techniques are more efficient than sparse matrix techniques on the target architec- 
ture. 

A more detailed description of PARASPAR, including the stopping criterion and the choice of the 
drop tolerance can be found in [ 15,32]. 
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6.3. Adaptive versions 

All the methods under investigation have been added to PARASPAR. In the process of doing so, 
we had to consider the following issues: 

• the choice of stopping criteria, 
• an adaptive procedure, which automatically alters the size of the underlying subspace of the 

considered methods, 
• criteria to detect and deal with failures of the methods (i.e., breakdown, divergence or stagna- 

tion), and 
• criteria to evaluate the quality of the preconditioner. 

All the above points are closely related. Therefore, we treat them together in this section. 
Our strategy varies somewhat for the different methods, however the overall concept is very similar. 
The EN-like methods and Broyden methods naturally use a right preconditioner, as opposed to 

the original implementation of PARASPAR, which uses a left preconditioner for all of its iterative 
methods. Consequently, the vector rk that is evaluated in each method is the actual residual and 
not the preconditioned residual. Therefore, it appeared to be reasonable to replace the sophisticated 
stopping criterion that PARASPAR uses with the simpler one 

(51) 
llr0ll 

In order to avoid that loss of accuracy during the evaluation of the rk of each algorithm leads to 
false convergence, we explicitly evaluate b -  Axk when the above criterion indicates convergence and 
restart the algorithm with x0 = xk when b -  Axk does not fulfill the stopping criterion. 

In order to determine when to increase the subspace, we monitored the convergence rate 

:= Ilrk+ ll (52) 
Hr, H 

assuming that this is also a good estimate for the convergence rate 

:= Ilek+ ll (53) 
Ilekll 

for GBM and GEN, since Aek = rk. 
We increased the subspace by one if either 

o r  

P~+1 > Pk (54) 

pk/> c (55) 

where c was determined empirically. The value c = 0.8 seems to be a good choice for the EN-like 
methods and c = 0.9 for the Broyden methods and GCR. Note that the optimal c for the Broyden 
methods is approximately the square of the optimal c for the EN-like methods, which is in accordance 
with the convergence theory in Section 5. 

There are several possibilities for failure of the methods such as breakdowns, caused by division 
by a near zero value, stagnation or divergence. Due to space limitation we do not present these 
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here. There are however several characteristics of the considered methods that are very useful in 
the context of PARASPAR. The first is the drastic divergence of some of the methods, when facing 
an ill-conditioned problem. This can be detected easily and save useless iterations (see Section 
7.5). Another characteristic is the availability, at no extra cost, of parameters, that are indicators for 
the quality of the preconditioner. The latter characteristic can lead to a significant improvement in 
efficiency, when the iterative method fails due to a low quality preconditioner, but does not diverge 
drastically. A detailed discussion can be found in [19]. 

7. Numerical experiments 

In this section, we illustrate some of the properties of the algorithms described in the previous 
sections with numerical experiments. For our experiments, we use several matrices derived from partial 
differential equations as well as a few test matrices from the Harwell-Boeing collection. All runs were 
performed on an Alliant FX/80, a parallel computer with 8 vector processors, using vectorization and 
parallelization. For the stopping criterion, we chose e = 10 -8. Note that the implementation of GMRES 
here uses classical Gram-Schmidt and is therefore more efficient than the usual implementation with 
modified Gram-Schmidt. For the problems considered here the use of classical Gram-Schmidt did 
not effect the stability. The first three matrices were obtained through a standard five point finite 
difference discretization of the following two-dimensional partial differential equation, which was 
taken from [ 29], 

- -Uxx  - -  Uyy "~- / 3 ( U  x "~ Uy) = f on g2 (56) 

with Dirichlet boundary conditions 

u = c  onOs2, (57) 

where ~ = [0, 1] x [0, 1]. 
We chose step size h = 0.01, which leads to a matrix of order 9801. 

Z1. Problem 1 

For our first problem we chose/3 = 1. This is an example for which CGS and BiCGSTAB converge 
fairly quickly. Since their computational complexity per iteration step and memory requirements are 
low, they are hard to beat in such a case. On the other hand, GMRES(k+I )  converges very slowly 
for this case even for an optimal (with regard to time) k. We were interested to see the performance 
of the Broyden and EN-like methods for this example. The timings in Table 5, which were optimal 
for limited storage (i.e., k smaller than 17, which corresponds for GMRES to k smaller than 34) 
show that whereas GEN, GBM and BBM are not competitive here, restarted EN, SEN and BEN are 
about 50 percent faster than GMRES. This is due to a significant reduction in additional flops, i.e., 
dmvs, daxpys and dotproducts, which also offsets the increase in sparse matrix-vector multiplications 
for restarted EN and SEN. If we include truncated versions, we see that tGEN, tGBM, tBBM as well 
as ORTHOMIN fail. However, tEN, tSEN and tBEN work very well and are only about 50 percent 
slower than CGS and BiCGSTAB. The decrease in additional flops for tBEN is caused here by the 
smaller computational complexity per iteration step of tBEN compared to that of tEN and tSEN. 
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Table 5 
Times for Problem 1 

Method Time Number of iterations Number of smvs Additional flops/n 

CGS 13.5 246 492 3690 
BiCGSTAB 13.7 236 472 4720 
GMRES(33) 45.7 838 838 60336 
eEN(8) 31.9 460 920 19320 
eSEN (4) 29.0 466 932 14912 
BEN(12) 28.7 346 692 19722 
GEN (16) 60.7 603 1206 44019 
GBM (8) 61.0 1375 1375 37125 
BBM(12) 78.4 1673 1673 58555 
tEN(3) 21.2 271 542 12466 
tSEN(3) 20.3 256 512 13312 
tBEN(3) 18.8 263 526 8679 
tGEN, tGBM diverge 
ORTHOMIN, tBBM stagnate 

Since memory requirement can be crucial for GMRES, the Broyden and EN-like methods, times 
are plotted versus k in Fig. 3. These results are interesting, since now we see that if we have only a 
limited amount of memory available, the EN-like methods become even more attractive in comparison 
to GMRES. Consider for example the case k = 4, i.e., about 12 memory vectors, SEN(4) is more 
than three times faster than GMRES(9). Since these times are of course machine dependent and 
those results can vary significantly on different architectures, we also show the number of sparse 
matrix-vector multiplications versus k in Fig. 4 and the number of additional flops/n versus k in Fig. 
5 for GMRES, BEN, eSEN and tSEN. We used tSEN as an example for the truncated method since 
it is here overall (i.e., for almost all k) the best performing of the truncated methods. In Fig. 4, we 
see that, for k = 4, GMRES(9) needs about three times as many sparse matrix-vector multiplications 
as eSEN(4) and six times as many as tSEN(4). With increasing k the difference decreases. Whereas 
overall with increasing k the number of sparse matrix-vector multiplications decreases, this is not 
the case for the additional operations. For GMRES, the number of flops is high overall, for the other 
methods, it increases steadily with the strongest increase for the truncated method tSEN. 

7.2. Problem 2 

Even though CGS and BiCGSTAB are the fastest for the previous problem and require little storage, 
their robustness can be a problem. This is evident in Problem 2, where we chose fl = 500. 

For this example, BEN and GEN fail. They both run into the situation we have also observed in Fig. 
1, which leads to extremely large residuals and failure. However, use of the scaling invariant versions 
described in Section 2.3 with z = (1 . . . . .  1) a turns out to be successful, see Table 6. Truncation 
leads to slower convergence and is consequently not competitive with the restarted methods. 

For this example, GMRES converges very quickly. As a matter of fact, it converges best for small 
k. Under these circumstances, GMRES is difficult to beat. Nevertheless, the times for eSEN with 
comparable memory requirement, and sBEN and eEN with a slightly larger memory requirement are 
competitive. Among the truncated methods, tEN is only about 30 percent slower. 
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7.3. Problem 3 

The first two problems illustrated cases where BiCGSTAB and CGS do very well and GMRES 
very poorly and vice versa. In the first case members of the family of EN-like methods were far 
better than GMRES and only 50 percent slower than BiCGSTAB and CGS, in the second case some 
EN-like methods were competitive with the better method, GMRES. For Problem 3 ,  we chose 
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Fig. 5. Number of additional flops/n for several methods with varying k. 

Method Time Number of iterations Number of smvs Additional flops/n 

CGS diverges 
BiCGSTAB false convergence 
GMRES(3) 9.6 338 338 4056 
eEN (2) 9.6 171 342 3078 
eSEN( 1 ) 10.0 177 354 3540 
sBEN(2) 10.5 170 340 3234 
sGEN(8) 14.9 191 382 8217 
GBM(10) 14.1 295 295 9145 
sGBM(2) 12.1 331 331 5631 
BBM( 1 ) 28.3 825 825 10725 
tEN(2) 12.7 181 362 6154 
tSEN( 1 ) 13.7 205 410 5740 
tsBEN(2) 16.8 236 472 6476 
tsGEN(2) 21.8 326 652 8806 
ORTHOMIN, tBBM stagnate 
tGBM diverges 

1, if ( x , y )  E [0.4, 0.6] x [0.4, 0 .6] ,  
/3(x, y) = 500, elsewhere. (58) 

This is an example where eEN wins. Both CGS and BiCGSTAB fail as in the previous example, 
see Table 7, and GMRES converges only slowly. The truncated methods are not competitive here. 
However, sBEN is competitive with GMRES with a larger memory requirement. Both eSEN and eEN 
have superior convergence with comparable memory requirement. GMRES(17)  is about 50 percent 
slower than eEN(8) .  
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Table 7 
Times for Problem 3 
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Method Time Number of iterations Number of smvs Additional flops/n 

CGS diverges 
BiCGSTAB false convergence 
GMRES (17) 47.9 1166 
eEN(8) 31.5 459 
eSEN(8) 41.0 578 
sBEN(4) 48.8 730 
GBM(8) 76.9 1722 
tEN(8) 60.4 554 
ORTHOMIN, tBBM stagnate 
tGBM diverges 

1166 46640 
918 19278 

1156 27744 
1460 19714 
1722 46494 
1108 58724 

7.4. Testing the adaptive schemes 

The following example has been taken from the Harwell-Boeing collection. SHERMAN3 is a 
matrix of order 5005 with 20033 nonzeroes. We preconditioned it with the incomplete LU factorization 
of PARASPAR using a drop tolerance of 0.0625 (plLU(0.0625)).  For this example, we tested the 
previously mentioned adaptive versions of the methods. Fig. 6 shows the number of sparse matrix- 
vector multiplications versus the norm of the residuals. We see here that the best method is the 
adaptive ORTHOMIN, closely followed by the adaptive tEN. BiCGSTAB and GMRES(53) need 
about twice as many sparse matrix-vector multiplications. If we consider the solution times achieved 
on the Alliant FX/80, which are given in Table 8 (note that the time it took to generate the 
preconditioner (5.6 seconds) is not included) we see that the adaptive tEN is actually the fastest. It 
is followed by the adaptive tBEN, which here, in spite of a very similar memory requirement and 
iteration count as tSEN, is more than 10 percent faster than tSEN. We see here the influence of the 
larger computational complexity of tSEN. ORTHOMIN, in spite of its small smv count, is about 
20 percent slower than the adaptive tEN. This is due to the fact that ORTHOMIN requires almost 
twice as many additional work vectors, and consequently its operation count for dense matrix-vector 
operations is significantly higher than for the EN-like methods. 

For this example, ORTHOMIN and tSEN have a tendency to stagnate. The smallest k for which 
ORTHOMIN(k) does not stagnate is k = 48, for tSEN it is k = 30. Note that in both cases the 
adaptive version finds a k close to these values. 

To compare these methods further, we restricted the memory requirement for the adaptive OR- 
THOMIN to that of the optimal adaptive tEN, which is a maximum of k = 26. The results for 
these experiments can be seen in Fig. 7. As mentioned above, ORTHOMIN(k) fails for k ~ 26. The 
adaptive scheme, however, converges, even though it is four times as slow as the optimal adaptive OR- 
THOMIN, which requires far more memory. The peak in the curve for the adaptive ORTHOMIN(26) 
is caused by false convergence. The residual seems to indicate convergence where the actual error 
stagnates, see Fig. 7. In order to overcome this problem, we reevaluated the residual by rk = b - Axk 

and restarted at this point with the new residual, which finally leads to convergence. We also in- 
cluded eGCR(26) in this experiment, since the adaptive ORTHOMIN is a hybrid of a truncated and 
a restarted method with the emphasis on truncation, eGCR(26) converges slower than the adaptive 
ORTHOMIN(26), see Fig. 7, but is actually somewhat faster with regard to time here, since its 
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Fig. 6. Residuals for SHERMAN3 with pILU(0.0625). 

Table 8 
Solution times for various methods for SHERMAN3 with plLU(0.0625) 

Method Time Number of iterations Number of smvs Maximal k 

ad. ORTHOMIN 5.9 68 68 46 
ad. tEN 4.9 35 70 26 
ad. tBEN 5.5 42 84 30 
ad. tSEN 6.4 43 86 30 
BiCGSTAB 5.7 57 114 
GMRES(53) 9.4 135 135 52 
eEN(26) 9.5 81 162 26 
tEN(26) 5.8 39 78 26 
ORTHOMIN(48) 9.5 94 94 48 
eGCR(26) 18.8 319 319 26 
ORTHOMIN (26) stagnates 26 
ad. ORTHOMIN(26) 20.5 269 269 26 

number  of  additional flops is lower. This is not true anymore,  if  we choose k = 25 or k = 27, for 
which the adaptive O R T H O M I N ( k )  is faster than e G C R ( k )  (adaptive O R T H O M I N ( 2 5 ) :  15.2 secs., 
e G C R ( 2 5 ) :  19.3 secs., adaptive O R T H O M I N ( 2 7 ) :  15.3 secs., e G C R ( 2 7 ) :  27.4 secs.) ,  or choose a 
lower accuracy for the stopping criterion (e.g., e = 10 -6, for which the adaptive O R T H O M I N ( 2 6 )  
takes 12.7 and e G C R ( 2 6 )  14.2 seconds) .  

The results above show that here the adaptive methods are very efficient and superior to the 
restarted and truncated methods.  The overall fastest method is here the adaptive tEN. 
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7.5. Testing the methods inside PARASPAR 

The following example is LNS_3937 from the Harwell-Boeing collection, a matrix of order 3937 
with 25407 nonzeroes. Many standard preconditioners fail for this matrix. We use this example to 
demonstrate the influence of the characteristics of the various methods on the solution time in the 
context of PARASPAR. We use as initial drop tolerance 0.05. The resulting preconditioner is not good 
enough to solve the problem. Table 9 shows the reaction of the various methods to this situation. 
Here, the time to evaluate the preconditioners is included. Both CGS and BiCGSTAB iterate until the 
maximum number of iterations is reached. CGS shows a very erratic convergence behavior, which is 
typical for CGS with extreme peaks and is still far from the solution after 300 iterations. BiCGSTAB 
converges more smoothly with less serious peaks and reaches llrkll ~ 10 -5 after 300 iterations. 
The adaptive tEN, tBEN, tGEN and tGBM encounter a significant increase in Ilrkll for increasing k 
from the very beginning, which clearly indicates divergence, and consequently the need for a new 
preconditioner can be detected quickly. Both the adaptive ORTHOMIN, tSEN and tBBM take far 
longer to determine their failure, since for these methods Ilr~ll cannot increase theoretically, a bad 
preconditioner very likely will lead to stagnation or extreme slow convergence, which takes far longer 
to detect, since we do not want to terminate the iteration process if there is still hope for convergence. 
We see that tGEN and tBBM do not even converge with the second preconditioner pILU( 1.56e - 3) 
and a third preconditioner evaluation is necessary, which leads to p ILU(4 .88e -  5). 

This example shows that in the context of PARASPAR the disastrous behavior of many of the 
EN-like methods when facing an ill-conditioned problem is of advantage, since one wastes no time 
in useless iterations. 

In practice, PARASPAR is often used to determine a preconditioner by this adaptive procedure, 
which is then used for related matrices. In this case, the rapid adaptation to determine the preconditiner 
is not of interest, while the time to solve a system using the final preconditioner is of great interest. 
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Table 9 
Times for LNS_3937 with plLU(0.05) in the first trial 

Total t ime  Number of Number of iterations Last run 

Method trials Trial 1 Trial 2 Trial 3 Solution time 

CGS 42.4 2 300 22 3.1 
BiCGSTAB 43.5 2 300 19 2.6 
ad. tEN 17.5 2 7 15 2.3 9 
ad. tBEN 18.6 2 10 21 3.2 12 
ad. tSEN 35.5 2 122 19 3.0 13 
ad. tGEN 37.7 3 7 37 3 0.6 2 
ad. ORTHOMIN 25.5 2 115 30 2.4 15 
ad. tGBM 24.6 2 13 97 9.3 50 
ad. tBBM 40.6 3 59 64 15 1.8 12 

We have therefore included the times of the last run and largest k used. Once again, a member of the 
EN-like family is preferred. With plLU( 1.56e - 3), the adaptive tEN is the fastest method. 

7.6. Precondit ioning with iterative methods 

Finally, we present a few experiments with regard to the use of iterative methods as inner methods. 
We use Problem 1, and consider two types of experiments. For the first we run some combinations 
of EN and GCR or GMRES, respectively, with a fixed number of inner iterations m, but the full 
method outside. Whereas those combinations are fa i ry  competitive with regard to time, there is a 
significant difference with regard to memory requirement clearly favoring those involving EN, see 
Table 10. Note also that these times are below those achieved when we apply unpreconditioned CGS 
and BiCGSTAB to this problem, see Table 5. 

The second type of experiment chooses a fixed memory requirement of 20 additional memory 
vectors and runs different combinations (both restarted and truncated) of the above methods, see 
Table 10. For comparison we have added GMRES(17) and eEN(8), which have the same memory 
requirement. For combinations with restarted outer methods, those involving eEN are faster than 
eGCR(5) /GMRES(5) ,  which is a form of GMRESR, or the unpreconditioned GMRES(17) and, 
with one exception, eEN (8). For combinations with truncated outer methods, those with ORTHOMIN 
(tGCR) as outer method (which includes tGMRESR) fail, whereas those with tEN as outer method 
achieve the best times and lowest sparse matrix-vector operation counts. 

Overall, the results show that the use of EN in the context of inner/outer iteration schemes is 
competitive with GMRESR and superior when memory is limited. See [19] for a more detailed 
discussion, including the orthogonality preserving methods, which were mentioned in Section 6.1. 

8. Conclusions and future work 

We introduced a new family of methods, the EN-like methods. Its complexity, relationships to 
other methods and convergence behavior were examined. We also considered restarted, truncated and 
adaptive versions. Additionally, their use in the context of inner/outer iterative methods as well as 
PARASPAR, a robust software package, was investigated. 
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Table 10 
Times for inner/outer methods 
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Method Time Iterations smv Additional Memory 
Inner/Outer flops/n vectors 

GMRESR (6) 12.5 48 331 8640 107 
eEN/GMRES(6) 12.6 27 368 7290 65 
eGCR/eEN(5) 10.9 27 351 4860 70 
eEN/eEN(5) 11.8 15 390 4590 46 
eGCR ( 5 )/GMRES (5) 37.2 203 1215 15834 20 

eEN(5)/GMRES(5) 24.2 66 792 9900 20 
eGCR (2) / eEN ( 5 ) 29.0 77 1001 I 0164 20 
eGCR(5)/eEN(2) 35.2 187 1307 11220 20 
eEN (2)/eEN ( 5 ) 22.1 30 770 7740 20 
eEN(5)/eEN(2) 18.8 50 700 5700 20 
tGMRESR, tGCR/eEN stagnate 20 

tEN ( 5 ) /GMRES ( 5 ) 15.5 40 476 7600 20 
tEN(2)/eEN(5) 16.8 23 580 6302 20 
tEN ( 5 )/eEN (2) 17.3 43 602 6622 20 
GMRES(17) 67.7 1652 1652 66080 20 

eEN ( 8 ) 31.9 460 920 19320 20 

The work shows that several members (particularly EN, SEN and to some degree BEN) of the 
family of EN-like methods are certainly competitive and in many cases better than other existing 
methods. Even though methods like CGS and BiCGSTAB may converge faster for many prob- 
lems, EN-like methods are in general more robust, since, like GMRES, they have the option of 
increasing the Krylov subspaces. Additionally, they are often more efficient with regard to mem- 
ory usage than GMRES or ORTHOMIN. Also, the experiments indicate that truncated EN-like 
methods seem to be less prone to stagnation or divergence than ORTHOMIN or truncated Broy- 
den methods. Nevertheless, we also encountered problems with the truncated versions. We have 
dealt with these through developing an adaptive scheme, which automatically adjusts the dimen- 
sion of the underlying subspace. This version will also restart the method when it encounters cer- 
tain potentially fixable problems. Our experiments show that these versions work well in many 
cases. 

In the context of inner/outer methods, we found the new methods to be competitive with GMRESR 
in terms of computational complexity and even superior when memory is limited. 

The new methods appear to be very suitable for inclusion in a hybrid package such as PARASPAR, 
since they evaluate the quality of the preconditioner and can respond quickly when the preconditioner 
is not acceptable. 

In summary, we found the new methods a viable option for large linear systems that need a fairly 
robust solver when memory is restricted. 

There are several possibilities for future work. We have seen the importance of using restarted 
and truncated methods (or hybrids of the two approaches) to reduce computations and memory 
requirements. However, the simple truncation used thus far can have difficulties. Therefore, we plan 
to investigate further more sophisticated truncation schemes--possibly exploiting application-specific 
information--in the context of an adaptive hybrid of restarted and truncated methods. 

Additionally, due to the connection of EN-like methods to Broyden methods, they can also be used 
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as nonl inear  solvers [ 1 9 ] ,  which  m a y  also be significant for  some  applicat ions.  This  is also under  
investigation.  
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