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Abstract

A new family of iterative block methods, the family of block EN-like methods, is introduced. Efficient versions
are presented and computational complexity, memory requirements and convergence properties are investigated.
Finally, leading evidence of the potential of the new family is demonstrated via a comparison of numerical results
and performance to other block methods. 1999 Elsevier Science B.V. and IMACS. All rights reserved.
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1. Introduction

Large sparse linear systems with multiple right-hand sides occur in many applications, such as
electromagnetics (see [7] for a review), and there is a need for efficient solvers. A variety of methods
have been introduced in the last twenty years, such as block CG and block BiCG [5], block GMRES
[11], single-seed methods [7], a hybrid block GMRES scheme [8] and block Quasi-Newton methods [6].
This paper generalizes a new family of iterative solvers for linear systems with single right-hand sides,
the family of EN-like methods [3,4], to solve systems with multiple right-hand sides. This new family of
block EN-like methods uses an approximationHk of the inverse of the matrixA of the linear system to
be solved and updates it with rank-s updates during each iteration step, wheres is the number of right-
hand sides. The block versions have an increased data locality compared to the single right-hand side
versions. The methods have theoretically finite termination, but in order to reduce memory requirements
and computational complexity we will also consider their restarted and truncated versions. The new
family is shown to have potential via numerical experiments comparing it to other block methods such
as block GMRES, block Broyden methods and a new hybrid version of block GMRES.

We introduce the family of block EN-like methods in Section 2, focus on one of its members, the
block EN method, in Section 3. Section 4 describes more efficient versions of the methods, including an
efficient version of block GCR, which can be shown to be related to block EN, and presents computational
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complexities as well as memory requirements. In Section 5, convergence properties of the block EN-like
methods are examined. Finally, in Section 6, numerical results are presented.

Throughout this paper, we assumes right-hand sides and a systemAX = B of order n, and we
use large Roman letters to denoten × s-matrices, large Greek letters denotes × s-matrices and large
calligraphic type style letters denoten × n-matrices, e.g., the matrixA of the linear systems or the
approximationHk of A−1.

2. The family of block EN-like methods

In [3,4], a new family of iterative methods was introduced: the family of EN-like methods. In order to
solve the linear system withs right-hand sides

AX =B, (1)

we propose block versions of the EN-like methods that are based on a generalization of the single right-
hand side methods. Instead of updatingHk, the approximation toA−1 via a rank-one update, the block
methods use a rank-s update, while simultaneously improving an approximationXk to the solution of the
linear system by adding the estimate of the error,Hk+1Rk, whereRk := B −AXk is the block residual.
The choice of the actual rank-s update is motivated by Broyden’s method.

The general block EN-like method is given by Algorithm 1.

Algorithm 1. Block EN-like method
Initialization: X0,H0 arbitrary,R0=B −AX0, E0= I −AH0.
For k = 0,1, . . . :

Ũk =HkEkRk,
Vk = Fk(FHk AHkRk)−H ,
Hk+1=Hk + ŨkV H

k ,

Ek+1= I −AHk+1,

Xk+1=Xk +Hk+1Rk,

Rk+1= Ek+1Rk

end.

HereFk needs to be chosen so thatFHk AHkRk is nonsingular.
The family of block EN-like methods is related to the family of block Broyden methods recently

introduced by O’Leary and Yeremin [6]. The block Broyden method can be defined in two ways, through
approximatingA by a matrixBk or through approximatingA−1 by a matrixHk. We concentrate here on
the second approach.

Algorithm 2. Block Broyden method (withHk approximatingA−1)
Initialization: X0,H0 arbitrary,R0=B −AX0.
For k = 0,1, . . . :

Pk =HkRk,



U. Meier Yang, K.A. Gallivan / Applied Numerical Mathematics 30 (1999) 155–173 157

Qk =APk,
Xk+1=Xk +PkΦk,
Rk+1=Rk −PkΦk,
Hk+1=Hk + (Pk −HkQk)

(
FHk Qk

)−1
FHk

end.

HereFk needs to be chosen so thatFHk Qk is nonsingular.
There are several possibilities from which to choose thes × s-parameter matrixΦk . The simplest, and

typically poorly performing, choice is thes×s-unity matrixIs . A better choice isΦk = (FHk Qk)
−1FHk Rk,

which is a generalization of the optimal line search principle suggested in [1] for Broyden’s method for
linear systems with a single right-hand side.

Algorithm 1a rewrites Algorithm 1 to resemble Algorithm 2 more closely.

Algorithm 1a. Block EN-like method
Initialization: X0,H0 arbitrary,R0=B −AX0.

For k = 0,1, . . . :

Pk =HkRk,
Qk =APk,
Hk+1=Hk + (Pk −HkQk)

(
FHk Qk

)−1
FHk ,

P̃k =Hk+1Rk,

Q̃k =AP̃k,
Xk+1=Xk + P̃k,
Rk+1=Rk − Q̃k

end.

HereFk needs to be chosen so thatFHk Qk is nonsingular.
This form of the block EN-like method clearly shows that the block EN-like method is related to the

block Broyden method as the Gauss–Seidel method is to the Jacobi method. The new approximation,
Hk+1, is used in the evaluation ofXk+1 instead ofHk as is in the block Broyden method. Additionally,
one can show the following relationship between one step of the block EN-like method and two steps of
the block Broyden method.

Lemma 1. One step of an EN-like method can be expressed:

X̃k+1=Xk +HkRk, (2)

R̃k+1=Rk −AHkRk, (3)

Xk+1= X̃k+1+HkR̃k+1Ψk, (4)

where

Ψk = (FHk Qk

)−1
FHk Rk.
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Proof. The proof is straightforward. 2
Lemma 1 shows that one step of a block EN-like method can be considered as a step of the

corresponding block Broyden method withΦk = Is followed by a step of the block version of Broyden’s
method using the optimal line search principle of [1] without updating the approximation toA−1. Note
also the following relationships for the block EN-like method, that is of importance in Section 5:

P̃k = Pk(Is +Ψk)−HkQkΨk (5)

and

Q̃k =Qk + EkQkΨk. (6)

One question that immediately arises concerning the block EN-like method is how to chooseFk . There
are two categories of choices forFk , the first is inspired by the version of the block Broyden method that
approximatesA−1 as in Algorithm 2, the second is inspired by the version of the block Broyden method
that approximates the matrixA. For each member of the first category, there is a dual member in the
second category. We will focus here only on a few choices.

The block EN-like method withFk =Qk is called block BEN method since the corresponding Broyden
method fors = 1 is often called Broyden’s ‘bad’ method. The block GEN method, whereFk =HHk Pk , is
its dual and the corresponding Broyden method fors = 1 is called Broyden’s ‘good’ method. The choice
Fk = (I −∑ks

i=1 q̂i q̂
H
i )Qk, whereq̂i , i = 1, . . . , ks, are an orthonormal basis of the space spanned by the

columns ofQi, i = 0, . . . , k − 1, yields the block PEN method, named so after Broyden’s method with
projected updates. Finally, the choiceFk = EHk EkQk yields the block version of the original EN method.
We will consider the properties of this method in more detail in the following section.

3. The block EN method and some of its properties

The EN method was first proposed by Eirola and Nevanlinna [2]. Their particular choice ofŨk andVk
can be motivated as follows: The rank-s update, denoted̃UkV H

k , is chosen so that thekth approximation
of the inverse,Hk, is no worse than the(k − 1)st approximationHk−1. If we quantify the quality of the
approximation by defining the error matrix

Ek := I −AHk,
the constraints on the rank-s update can be achieved by first choosing

Vk = EHk AŨk
(
ŨH
k AHAŨk

)−1
,

and then considering̃Uk. If we define the residualRk := B −AXk, the best choice is

Ũk =A−1EkRk,
which yields toRk+1 = 0. Of course, such a choice clearly begs the question of solving the system of
linear equations. Therefore, we useHk, the best available approximation ofA−1, and set

Ũk =HkEkRk.
This method has several interesting properties, some of which we consider later in the context of the

more general class of EN-like methods. Theorem 1 summarizes a few of the basic characteristics of the
block EN method.
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Theorem 1. Assume thatAŨk is of full rank. DecomposeAŨk into the orthogonaln× s-matrixCk and
the upper triangulars × s-matrixΣ . Define the following matrix:

Uk := ŨkΣ−1
k .

Then, the block EN method has the following properties:
(i) Ek+1= (I −CkCHk )Ek,
(ii) CHi Cj =∆ij (orthogonality),
(iii) UH

i AHAUj =∆ij (AHA-conjugacy),
(iv) CHi Rj+1= 0, j > i,
(v) the individual singular values ofEk do not increase with increasingks,

where

∆ij =
{
Is for i = j,
0 for i 6= j .

Proof. (i):

Ek+1= I −AHk+1= I −AHk −AŨk(ŨH
k AHAŨk

)−1
ŨH
k AHEk

= Ek −CkΣk

(
ΣH
k C

H
k CkΣk

)−1
ΣH
k C

H
k Ek =

(
I −CkCHk

)
Ek.

(ii) For i = j , CHi Ci = Is according to its definition. If we defineQi :=AHiRi , then we have

Ci =AŨiΣ−1
i = EiQiΣ

−1
i .

It is easy to see that

Ek+1Qk = (I −CkCHk )EkQk = (I −CkCHk )CkΣk = 0,

and using induction and (i), we get forj > 0

Ek+jQk = 0.

We proveCHi Cj = 0 for j > i, using induction. Certainly,

CH0 C1=Σ−H0 QH
0 EH0 E1Q1Σ

−1
1 =Σ−H0 QH

0 EH0
(
I −C0C

H
0

)
E0Q1Σ

−1
1

=Σ−H0 QH
0 EH1 E0Q1Σ

−1
1 = 0.

We assume forj > i

CHi Cj = 0.

Since the multiplication ofI − VVH andI −WWH is commutative, ifV HW = 0, we have

CHi Cj+1=Σ−Hi QH
i EHi EHj+1Qj+1Σ

−1
j+1=Σ−Hi QH

i EHi
(
I −CjCHj

) · · · (I −CiCHi )EiQj+1Σ
−1
j+1

=Σ−Hi QH
i EHj+1EiQj+1Σ

−1
j+1= 0.

(iii) follows from (ii) sinceCi =AUi .
(iv) Using (i), we have

CHi Ri+1=CHi Ei+1Ri =CHi
(
I −CiCHi

)
EiRi = 0.
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(v) can be proved using (i) and [9, Theorem 5.9]. Since the singular values ofEk are the square roots
of the eigenvalues of the Hermitian matrixEHk Ek , the following relationship is valid:

σi(Ek+1)= min
dim(S)=i max

x∈S\{0}
‖Ek+1x‖2
‖x‖2 = min

dim(S)=i max
x∈S\{0}

‖(I −CkCHk )Ekx‖2
‖x‖2

6 min
dim(S)=i max

x∈S\{0}
‖Ekx‖2
‖x‖2 = σi(Ek). 2

4. Reduced complexity versions

One of the disadvantages of the methods considered so far is their computational complexity. WhileA
is sparse,Hk is, in general, dense and therefore its multiplication with ann× s-matrix requires O(sn2)
operations compared to O(sn) for the multiplication ofA with the matrix. More efficient versions of the
methods avoid the explicit computation ofHk and use onlyH0, the original approximation ofA−1, that
is, in general, sparse or at least its application to a vector can be done in a manner of low complexity. If
we replaceHk+1 with its definition, we get

Hk+1X=HkX+ (Pk −HkQk)
(
FHk Qk

)−1(
FHk X

)=H0X+
k∑
i=0

(Pi −HiQi)
(
FHi Qi

)−1(
FHi X

)
.

Using the definition

Zk =Pk −HkQk, (7)

the general block EN-like method can be written as follows.

Algorithm 3. Block EN-like method (efficient version)
Initialization: X0,H0 arbitrary,R0=B −AX0.
For k = 0,1, . . . :

Pk =H0Rk +
k−1∑
i=0

ZiF
H
i Rk,

Qk =APk,
Σk = FHk Qk,

Tk =Rk −Qk,

Zk =
(
H0Tk +

k−1∑
i=0

ZiF
H
i Tk

)
Σ−1
k ,

Sk = Pk +ZkFHk Rk,
Xk+1=Xk + Sk,
Rk+1=Rk −ASk

end.

SettingFi =Qi yields block BEN. Block GEN, however, requires further transformation, since the
evaluation ofFk involvesHHk . The new version of block GEN contains the matrixFHi Qk = PHi HiQk .
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Therefore, one needs to determine

T
(i)
k =HiQk. (8)

This can be evaluated without increasing the number of operations or the storage needed, but the
evaluation is highly recursive and leads to a decrease in parallelism. The efficient version for block
GEN is:

Algorithm 4. Block GEN method (Fk =HHk Pk)
Initialization: X0,H0 arbitrary,R0=B −AX0,
For k = 0,1, . . . :

P
(0)
k =H0Rk,

P
(i)
k = P (i−1)

k +Zi−1
(
P
(i−1)
i−1

)H
P
(i−1)
k , i = 1, . . . , k,

Qk =AP (k)k ,

T
(0)
k =H0Qk,

T
(i)
k = T (i−1)

k +Zi−1
(
P
(i−1)
i−1

)H
T
(i−1)
k , i = 1, . . . , k,

Σk = (P (k)k

)H
T
(k)
k ,

Zk = (P (k)k − T (k)k

)
Σ−1
k ,

Sk = P (k)k +Zk
(
P
(k)
k

)H
P
(k)
k ,

Xk+1=Xk + Sk,
Rk+1=Rk −ASk

end.

For both block BEN and block GEN,Rk+1 can also be evaluated through

Rk+1=B −AXk+1

without increasing the number of operations. In some cases, this approach appears to be more stable (see
Section 6).

SettingFk = EHk EkQk yields the block EN method. We use

C̃k = EkQk, Ũk =HkEkRk
and the orthogonality of the columns of theCi , see Theorem 1, to develop the efficient version below.
[Q,Σ] =GS(C) denotes the application of the (modified or classical) Gram–Schmidt algorithm to the
n× s-matrixC, which generates the orthogonaln× s-matrixQ and the upper triangulars× s-matrixΣ .

Algorithm 5. Block EN method
Initialization: X0,H0 arbitrary,R0=B −AX0,
For k = 0,1, . . . :

Ψi =CHi AH0Rk, i = 0, . . . , k− 1,

Pk =H0Rk −
k−1∑
i=0

UiΨi,
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Tk =Rk −AH0Rk +
k−1∑
i=0

CiΨi,

Φi =CHi AH0Tk, i = 0, . . . , k − 1,

Ũk =H0Tk −
k−1∑
i=0

UiΦi,

C̃k =AH0Tk −
k−1∑
i=0

CiΦi,

[Ck,Σk] =GS
(
C̃k
)
,

Uk = ŨkΣ−1
k ,

∆k =CHk Tk,
Xk+1=Xk +Pk +Uk∆k,

Rk+1= Tk −Ck∆k

end.

An alternative approach is possible when evaluatingTk andC̃k through

Tk =Rk −APk, C̃k =AŨk.
If A is very sparse andk large, this approach saves a significant number of operations. However, to find
the most efficient implementation, one needs to consider also how fast the multiplication of two dense
matrices can be performed in comparison to the multiplication of a sparse matrix with a dense matrix on
the target computer.

As in the case of a single right-hand side, it is possible to derive a scaling-invariant block EN method
[12,3]. This method, called block SEN, can be obtained from the previous algorithm by introducing an
s × s-matrixΓk :

Γk = [(AH0Rk)
HAH0Rk

]−1
(AH0Rk)

HRk (9)

and replacing the evaluations ofΨi , Pk andTk in Algorithm 5 with

Ψi =CHi AH0RkΓk, i = 0, . . . , k − 1,

Pk =H0RkΓk −
k−1∑
i=0

UiΨi,

Tk =Rk −AH0RkΓk +
k−1∑
i=0

CiΨi.

It is easy to show that for the block SEN method‖Rk+1‖ cannot be larger than‖Rk‖.
We also include the block GCR method which is interesting in this context because of its relationship

to block EN and its equivalence to block GMRES.
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Algorithm 6. Block GCR
Initialization: X0,H0 arbitrary,R0=B −AX0.
For k = 0,1, . . . :

Φi =CHi AH0Rk, i = 0, . . . , k− 1,

Ũk =H0Rk −
k−1∑
i=0

UiΦi,

C̃k =AH0Rk −
k−1∑
i=0

CiΦi,

[Ck,Σk] =GS
(
C̃k
)
,

Uk = ŨkΣ−1
k ,

∆k =CHk Rk,
Xk+1=Xk +Uk∆k,

Rk+1=Rk −Ck∆k

end.

As for block EN,C̃k can be evaluated here asC̃k =AŨk.
If we do not require the evaluation ofXk+1 at each iteration step, it is possible to achieve further

savings in block GCR and block EN by avoiding the evaluation ofUk. Only the coefficients need to be
saved. Such an approach has been used in [10] for single right-hand side GCR. The block version of this
implementation of GCR is

Algorithm 7. Block eGCR
Initialization: X0,H0 arbitrary,R0=B −AX0, X̃0=X0.
For k = 0,1, . . . ,m:

Ûk =H0Rk,

Φi,k =CHi AÛk, i = 0, . . . , k− 1,

C̃k =AÛk −
k−1∑
i=0

CiΦi,k,

[Ck,Σk] =GS
(
C̃k
)
,

∆k =CHk Rk,
Rk+1=Rk −Ck∆k

end.
Xm+1=X0+UmF

−1
m Dm, where

Dm = (10, . . . ,1m)
H , Um = (Û0, . . . , Ûm), Fm =


Σ0 Φ0,1 · · · Φ0,m

Σ1
. . .

...
. . . Φm−1,m

Σm

 .
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Using the same approach, one can generate a more efficient version for block EN.

Algorithm 8. Block eEN method
Initialization: X0,H0 arbitrary,R0=B −AX0, X̃0=X0.
For k = 0,1, . . . ,m:

Ψi,k =CHi AH0Rk, i = 0, . . . , k− 1,

Tk =Rk −AH0Rk +
k−1∑
i=0

CiΨi,k,

Ûk =H0Tk,

Φi,k =CHi AH0Tk, i = 0, . . . , k− 1,

C̃k =AH0Tk −
k−1∑
i=0

CiΦi,k,

[Ck,Σk] =GS(C̃k),
∆k =CHk Tk,
X̃k+1= X̃k +H0Rk,

Rk+1= Tk −Ck∆k

end.
Xm+1= X̃m+1+UmF

−1
m (Dm−GmE), whereFm andDm are defined as above, and

Um = (Û0, . . . , Ûm
)
, E = (Is, Is, . . . , Is)H , Gm =


0 Ψ0,1 . . . Ψ0,m

0
. . .

...
. . . Ψm−1,m

0

 .
Even though these new versions avoid the multiplication with a denseHk , they are still computationally

expensive due to an increase in both operation count and memory requirement with each iteration. It is
possible to save memory and operations per step by developing restarted or truncated versions.

Tables 1–4 show the type and number of operations, and the amount of memory required for the
methods. Only operations and storage of ordern is considered, since we assume thatm ands are small
compared ton. The methods are denoted by the abbreviations given earlier with an initial “B” appended
indicating a block version as opposed to the single right-hand sided version. The truncated version of any
method is indicated by the inclusion of a “t”. However, block Orthomin is used for the truncated version
of block GCR since it is known by that name in the literature. The notes “opt.” and “alt. appr.” indicate
the use of the optimal line search principal and the alternate evaluations ofTk andC̃k discussed earlier.
The primitive labeled “dmxm1” refers to dense matrix multiplications of ann× ks with a ks × s matrix
or aks × n with ann× s matrix and “dmxm2” refers to dense matrix multiplications of ann× s with
an s × s matrix or ans × n with an n × s matrix. The column labeled+,−,∗ counts the number of
vector operations involvings vectors of lengthn. The total operation count for each of these primitives is
included at the top of each column. The primitives “spmv” and “precond” refer to the product of a sparse
matrix and a vector of lengthn, and a preconditioner operation involving a sparse matrix operating
implicitly or explicitly on a vector of lengthn. Their operation counts depend on the matrix and are
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Table 1
Number and types of operations for various block methods inkth iteration step

Primitive/operations

dmxm1 dmxm2 +,−,∗ spmv precond

Method 2ks2n 2s2n sn

BBBM, Φk = Is 2 3 3 s s

BBBM, opt. 2 5 1 s s

BGBM,Φk = Is − 2k+ 3 3 s s

BGBM, opt. − 2k+ 5 1 s s

BGCR 3 5 − s s

BGCR, alt. appr. 2 5 − 2s s

BeGCR 2 4 − s s

BGMRES 2 4 − s s

BBEN 4 3 3 2s 2s

BGEN − 4k+ 3 3 2s 2s

BEN 6 5 2 2s 2s

BEN, alt. appr. 4 5 2 4s 2s

BeEN 4 4 2 2s 2s

BSEN 6 8 1 2s 2s

BSEN, alt. appr. 4 8 1 4s 2s

BeSEN 4 7 1 2s 2s

therefore not listed. Note that it is possible to decrease the additional work vectors required for block
(t)GBM(m) to (m+ 6)s with an increase of its computational complexity, see [1].

5. Convergence theory

Both the block Broyden methods as well as the block EN-like methods possess a finite termination
property. A proof for the block Broyden methods can be found in [6].

To simplify the presentation, we use the following definitions:

Vk := Fk(FHk Qk

)−H
, (10)

P(0)k := EkEk−1 · · ·E0, (11)

and

Pk := EkEk−1 · · ·E1. (12)
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Table 2
Computational complexities for truncated block versions

Method Number of operations per iteration

BtBBM(m),Φk = Is [(4m+ 6)s2+ 3s]n + s spmv+ s prec

BtBBM(m), opt. [(4m+ 10)s2+s]n + s spmv+ s prec

BtGBM(m),Φk = Is [(4m+ 6)s2+3s]n + s spmv+ s prec

BtGBM(m), opt. [(4m+ 10)s2+ s]n + s spmv+ s prec

block Orthomin(m) [(6m+ 10)s2]n + s spmv+ s prec

block Orthomin(m), alt. appr. [(4m+ 10)s2]n + 2s spmv+ s prec

BtBEN(m) [(8m+ 6)s2+ 3s]n + 2s spmv+ 2s prec

BtGEN(m) [(8m+ 6)s2+ 3s]n + 2s spmv+ 2s prec

BtEN(m) [(12m+ 10)s2+ 2s]n + 2s spmv+ 2s prec

BtEN(m), alt. appr. [(8m+ 10)s2+ 2s]n + 4s spmv+ 2s prec

BtSEN(m) [(12m+ 16)s2+ s]n + 2s spmv+ 2s prec

BtSEN(m), alt. appr. [(8m+ 16)s2+ s]n + 4s spmv+ 2s prec

Table 3
Computational complexities for restarted versions

Method Average number of operations per iteration

BBBM(m),Φk = Is [(2m+ 6)s2+ 3s]n + s spmv+ s prec

BBBM(m), opt. [(2m+ 10)s2+ s]n + s spmv+ s prec

BGBM(m),Φk = Is [(2m+ 6)s2+ 3s]n + s spmv+ s prec

BGBM(m), opt. [(2m+ 10)s2+ s]n + s spmv+ s prec

BeGCR(m) [(2m+ 8)s2]n + s spmv+ s prec

BGMRES(m+ 1) [(2m+ 8)s2]n + s spmv+ s prec

BBEN(m) [(4m+ 6)s2+ 3s]n + 2s spmv+ 2s prec

BGEN(m) [(4m+ 6)s2+ 3s]n + 2s spmv+ 2s prec

BeEN(m) [(4m+ 8)s2+ 2s]n + 2s spmv+ 2s prec

BeSEN(m) [(4m+ 14)s2+ s]n + 2s spmv+ 2s prec

Lemma 2. AssumeV H
j Qj−1, j = 1, . . . , k, has no zero columns, andQk has full rank. LetV0 be of full

rank and in the range ofEH0 , andk 6 2n/s be odd.
Define the sequence ofn× s-matrices

ZH1 E1= 0, ZHi Ei =ZHi−2, i = 3,5, . . . , k.
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Table 4
Additional work vectors of lengthn required

Method Memory required

B(t)BBM(m) (2m+ 5)s

B(t)GBM(m) (2m+ 5)s

B(t)GCR(m), block eGCR(m) (2m+ 4)s

BGMRES(m+ 1) (m+ 5)s

B(t)BEN(m) (2m+ 6)s

B(t)GEN(m) (2m+ 6)s

B(t)EN(m), block eEN(m) (2m+ 4)s

B(t)SEN(m), block eSEN(m) (2m+ 4)s

Then,Zi, i = 1,3, . . . , k, exist and their columns are linearly independent. Additionally,

ZHi P
(0)
j = 0, j = i, . . . , k,

ZHi Rj = 0, j = i + 1, . . . , k.

Proof. See [6]. 2
Using the same approach, one can prove for the block EN-like methods:

Lemma 3. AssumeV H
j Qj−1, j = 1, . . . , k, has no zero columns, andQk has full rank. LetV0 be of full

rank and in the range ofEH0 , andk 6 n/s.
Define the sequence ofn× s-matrices

ZH1 E1= 0, ZHi Ei =ZHi−1, i = 2,3, . . . , k.

Then,Zi , i = 1,2, . . . , k, exist and their columns are linearly independent. Additionally,

ZHi Pj = 0, j = i, . . . , k + 1,

ZHi Rj = 0, j = i + 1, . . . , k+ 1.

Proof. The lemma is proved by induction. Let us prove the above fork = 1.
DefineZ1 throughZH1 E0= V H

0 . This is possible, since we assumed thatV0 is in the range ofE0. Z1

has linearly independent columns, sinceV0 is of full rank. Then

ZH1 Ej =ZH1 E0
(
I −Q0V

H
0

) · · · (I −Qj−1V
H
j−1

)= 0, j = 1, . . . , k + 1.
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Consequently,

ZH1 Pj =ZH1 EjEj−1 · · ·E1= 0, j = 1, . . . , k+ 1,

ZH1 Rj =ZH1 PjR0= 0, j = 1, . . . , k+ 1,

ZH1 Q̃j =ZH1 Rj −ZH1 Rj+1= 0, j = 1, . . . , k,

ZH1 Qj =ZH1 Q̃j −ZH1 EjQjV
H
j Rj = 0, j = 1, . . . , k.

Now, assume thatZ1, . . . ,Zi−1 exist and have linearly independent columns fori 6 k, and

ZHi−1Rj =ZHi−1Pj = 0, j = i − 1, . . . , k+ 1,

ZHi−1Q̃j =ZHi−1Qj = 0, j = i − 1, . . . , k.

We defineZHi Ei =ZHi−1. SinceZHi−1Qi−1 has no zero columns and the columns ofQi−1 are the only null
vectors ofEi due to the assumption thatV H

i Qi−1 has no zero columns,Zi exists.
Also, we have the following equation:

ZHi Ej =ZHi Ei
(
I −QiV

H
i

) · · · (I −Qj−1V
H
j−1

)=ZHi−1

(
I −QiV

H
i

) · · · (I −Qj−1V
H
j−1

)=ZHi−1,

sinceZHi−1Ql = 0, l = i, . . . , j − 1, due to the assumption.
Assume the matricesZ1, . . . ,Zi have linearly dependent columns,z1, z2, . . . , zis, i.e., there existγj ,

j = 1, . . . , is, with γj 6= 0 for at least onej and

is∑
j=1

γjzj = 0. (13)

Consequently,

0=
is∑
j=1

γjz
H
j Ei =

is∑
j=s+1

γjz
H
j−s 6= 0,

sincez1, z2, . . . , z(i−1)s are linearly independent. This is a contradiction, and the vectorsz1, . . . , zis must
therefore be linearly independent.

We have, forj = i, . . . , k+ 1,

ZHi Pj =ZHi EjEj−1 · · ·E1=ZHi−1Ej−1 · · ·E1=ZHi−1Pj−1= 0.

This leads to

ZHi Rj =ZHi PjR0= 0, j = i, . . . , k+ 1,

ZHi Q̃j =ZHi Rj −ZHi Rj+1= 0, j = i, . . . , k,
ZHi Qj =ZHi Q̃j −ZHi EjQjV

H
j Rj =−ZHi−1QjV

H
j Rj = 0, j = i, . . . , k+ 1. 2

We can also show that the rank ofEk cannot increase, ask increases.

Lemma 4. Assume,Vk is of full rank.

rank(Ek)− s 6 rank(Ek+1)6 rank(Ek), (14)
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where

rank(Ek+1)= rank(Ek)− s (15)

if and only if there exists an× s-matrix Y of full rank withYHEk = V H
k .

Proof.

rank(Ek)= rank(EHk )=m. (16)

Consequently, there existzi , i = 1, . . . , n−m, with zHi Ek = 0. Now,

zHi Ek+1= zHi Ek
(
I −QkV

H
k

)= 0, i = 1, . . . , n−m. (17)

In order forrank(Ek+1) to be smaller thanrank(Ek), we needyl with yHl Ek = (v(k)l )H , wherev(k)l is
the lth column ofVk . 2
Theorem 2. For nonsingularFHk Qk , the block EN-like method converges within at mostn/s steps.

Proof. Using the results of Lemma 4, we can redefine a sequence ofZi without the restriction of
Lemma 3 thatVHj Qj−1 has no zero columns:

ForV H
i Qi−1 without zero columns, we chooseZHi Ei = Zi−1 as in the proof for Lemma 3. If thelth

columnv̂l of V H
i Qi−1 is a zero column, and there exists a vectoryl with yHl Ei = v̂Hl , we setz(i−1)s+l = yl .

If no suchyl exists, we choose az(i−1)s+l with zH(i−1)s+lEi = 0 and z(i−1)s+l linearly independent of
z1, . . . , z(i−1)s+l−1. Such a vector exists, since, ifV H

i Qi−1 has zero columns,rank(Ei ) is smaller than
rank(Ei−1).

Now, we can show, as in Lemma 3, that

ZHi Rj = 0, j = i, . . . , k+ 1,

for k 6 n/s, from which we conclude finite termination within at mostn/s steps. 2
Successive residual matrices of the block Broyden methods and the block EN-like methods have simple

relationships via the error matrixEk . These are summarized in Lemmas 5 and 6, respectively.

Lemma 5. For the block Broyden method,

Rk+1=Rk(Is −Φk)+ EkRkΦk, (18)

which forΦk = Is reduces to

Rk+1= EkRk. (19)

Proof. The proof is according to [1]. 2
Lemma 6. For the EN-like method,

Rk+1= Ek+1EkRk. (20)

Proof. UsingEk+1Qk = 0,

Rk+1= Ek+1Rk = Ek+1(Rk −Qk)= Ek+1EkRk. 2
Using this lemma, the following convergence theorem follows.
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Theorem 3. Assume that‖E0‖6 δ < 1, and‖Ek+1‖6 ‖Ek‖ for k > 0 for the block EN-like methods.
The following inequality then holds:

‖Rk+1‖6 δ2‖Rk‖6 δ2k+2‖R0‖, (21)

and the methods converge.

The first condition requires a good estimateH0 of A−1. In practice this could result from a good
preconditioner. The second condition is always satisfied for the block EN method (Fk = EHk EkQk),
the block BEN method (Fk =Qk) and the block PEN method (Fk =Qk −∑k−1

i=0 Q̂iQ̂
H
i Qk , where the

columns ofQ̂i , i = 0, . . . , k − 1, are an orthonormal basis of the space spanned by the columns ofQi ,
i = 0, . . . , k − 1).

6. Numerical results

We implemented the new block methods and others on an SGI Origin 200 with 4 processors using a
consistent set of dense and sparse computational primitives. The methods were tested on several matrices
from the Harwell–Boeing collection with multiple random right-hand side vectors. The results for two of
those matrices are discussed below.

Table 5 shows the results we obtained using the nonsymmetric matrix SHERMAN5. We ran the
following block schemes choosing a Krylov subspace ofk = 5: block GMRES (BG(k)), the hybrid block
GMRES (BG_H(k,m) wherem denotes the degree of the polynomial chosen), the block EN-like methods
BeEN, BBEN, BGEN and the truncated scheme BtEN and the block Broyden methods BGBM, BBBM
with optimal line search principle and BGBM1 and BBBM1 whereΦk = Is .

The labels ‘mgs’ and ‘cgs’ denotes whether modified or classical Gram–Schmidt was used for
orthogonalization. While the classical Gram–Schmidt performs significantly better for largers, modified
Gram–Schmidt is more stable and improves convergence for the block GMRES schemes in some cases.
We only report the numerical results for ‘mgs’ for those methods for which there was a significant change
in the number of sparse matrix vector multiplications. The use of MGS did not affect the convergence of
BeEN and BtEN.

For more than one right-hand side most of the block Broyden methods fail, only the ‘good’ block
Broyden method with optimal line search succeeds and is faster than block GMRES for less than 20
right-hand sides. As expected, the hybrid schemes are faster than block GMRES. Overall, the block EN-
like methods are the fastest for this problem, especially BeEN(4) which fors = 20 is almost twice as fast
as the hybrid scheme, almost five times as fast as block GMRES and almost six times as fast as block
GBM. For BBEN(4), the use ofRk = B−AXk was necessary fors = 12, since the other version diverges
for this case.

Since block GMRES requires less memory than the block Broyden and block EN-like methods, we
also ran block GMRES and the hybrid schemes with a Krylov subspace of dimension 8. In this case block
GMRES uses the same amount of memory as BeEN. As expected, the performance of block GMRES is
significantly increased, however BeEN is still faster by a factor of 1.5 to 2.

If the times achieved for one right-hand side are compared to those for multiple right-hand sides, it is
seen that the use of the block methods is, in general, significantly better than using the single right-hand
side methodss times. Mostly, this is due to two effects, an increase in data locality as well as a decrease
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Table 5
Times in seconds (number of spmv’s) for SHERMAN5 with ILU(0)

Methods 1 4 8 12 16 20

BG(5)(cgs) 1.2(205) 4.4(816) 8.1(1328) 10.1(1380) 12.5(1536) 9.7(1100)

BG(5)(mgs) 1.1(205) 5.2(864) 11.0(1304) 18.7(1524) 22.4(1456) 16.9(1020)

BG_H(5,1)(cgs) 0.9(182) 2.0(428) 1.5(280) 1.7(300) 2.8(464) 3.8(660)

BG_H(5,1)(mgs) 0.9(182) 2.2(428) 1.8(280) 2.2(300) 3.7(448) 4.6(620)

BG_H(5,2)(cgs) 1.2(255) 0.8(196) 1.0(232) 3.2(732) 6.5(1328) 9.6(2000)

BG_H(5,2)(mgs) 1.2(255) 1.0(196) 1.3(232) 2.3(420) 4.1(672) 6.1(1020)

BeEN(4)(cgs) 0.4(85) 0.9(172) 1.0(168) 1.6(252) 1.8(272) 2.1(300)

BBEN(4) 0.5(91) fail 1.7(280) 2.1(348) 2.0(304) 2.7(380)

BGEN(4) 0.5(81) 1.0(172) 1.1(184) 1.5(252) 2.3(368) 2.2(340)

BGBM(4) 1.1(117) 3.4(428) 6.2(736) 6.8(684) 9.8(912) 11.9(1120)

BtEN(4)(cgs) 0.5(109) 1.9(500) 1.9(456) 1.8(396) 1.9(400) 2.5(500)

BGBM1(4) 2.1(260) fail fail fail fail fail

BBBM(4) fail fail fail fail fail fail

BBBM1(4) 1.4(161) fail fail fail fail fail

BG(8)(cgs) 0.6(100) 1.5(256) 1.7(224) 2.2(264) 3.0(304) 3.9(360)

BG_H(8,1)(cgs) 0.6(100) 1.0(196) 1.5(216) 2.3(336) 3.2(480) 4.0(660)

BG_H(8,2)(cgs) 0.7(131) 0.9(176) 1.4(258) 2.5(456) 3.9(720) 5.5(1060)

in the number of iterations. For example, BeEN(4) takes only about 5 times as long fors = 20 than for
s = 1, i.e., it is about 4 times as fast to use BeEN(4) versus eEN(4) for 20 different linear systems.

The results for the symmetric, but very ill-conditioned, matrix SAYLR4 from the Harwell–Boeing
collection are given in Table 6. We used a Krylov subspace size of 8. Here, the use of ‘mgs’ improved the
times by about 20 percent for one right-hand side, but increases the times significantly for largers with
a comparable number of sparse matrix vector multiplications. For this example, the truncated methods
perform overall better than the restarted methods. The alternative implementations for BtEN and block
Orthomin were used, since they were somewhat faster on this particular machine. This results in the fairly
large number of spmv’s listed. For BtBEN(7), the use ofRk = B −AXk improved the convergence for
s = 4 by a factor of 1.4 and fors = 8 by a factor of 4. Except fors = 20, the fastest method overall is
BtEN(7). Fors = 20, BeEN(7) is the fastest method.

The times for BG(14) and the corresponding hybrid schemes are included, since the memory usage
of BG(14) is comparable to that of BeEN(7) and BtEN(7). Since the times for block GMRES using
a larger Krylov subspace are significantly improved fors > 1, the results for the hybrid schemes are
mixed.
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Table 6
Times in seconds (number of spmv’s) for SAYLR4 with ILU(0)

Methods 1 4 8 12 16 20

BG(8)(cgs) 5.5(822) 46.2(6204) 67.3(8072) 98.9(8760) 72.4(6480) 71.8(4920)

BG(8)(mgs) 4.7(919) 40.4(5396) 100.2(8200) 135.7(7428) 160.6(7008) 125.4(4860)

BG_H(8,1)(cgs) 3.2(540) 22.0(3056) 23.8(3208) 4.9(624) 5.7(816) 7.6(780)

BG_H(8,1)(mgs) 2.8(540) 22.4(3004) 22.9(2528) 7.0(624) 9.1(816) 12.8(780)

BG_H(8,2)(cgs) 4.0(705) 10.4(1944) 4.4(680) 3.5(528) 6.2(816) 11.9(1980)

BG_H(8,2)(mgs) 3.8(727) 11.9(1808) 5.1(680) 4.9(528) 8.5(816) 14.6(1180)

BeEN(7)(cgs) 5.1(665) 4.2(604) 3.8(456) 3.8(396) 4.8(496) 4.1(420)

BBEN(7) 4.6(625) fail fail 29.4(3060) 19.7(1808) 8.2(700)

BGEN(7) 8.3(923) fail fail fail fail 8.8(700)

BtEN(7) 1.1(177) 2.2(372) 2.4(424) 3.7(540) 4.5(656) 5.5(740)

BOrthomin(7) 2.4(357) 4.0(572) 5.7(712) 10.6(1284) 12.9(1264) fail

BtBEN(7) 1.2(125) 2.8(260) 5.4(440) 3.8(348) 4.6(400) 5.6(420)

BG(14)(cgs) 7.0(781) 7.3(744) 7.1(560) 7.3(528) 7.4(464) 7.6(440)

BG_H(14,1)(cgs) 3.1(369) 6.2(672) 3.9(376) 6.4(516) 8.2(704) 7.8(720)

BG_H(14,2)(cgs) 2.7(339) 3.5(432) 3.7(376) 6.8(660) 8.9(944) 8.8(1120)

7. Conclusions and future research

Overall, the results demonstrate the general superiority of the hybrid block GMRES and block EN-like
methods over block GMRES and block Broyden methods. The block EN-like methods are therefore a
very promising form of the block quasi-Newton approach to the problem. The relative performance of
the block EN-like methods and the block GMRES hybrid depends on the problem and both are effective
generally. Further work will be done on the parallel and memory efficiency of these methods, adapting
some of the hybrid techniques to the quasi-Newton block EN-like method setting and on the examination
of nonlinear block EN-like methods.
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