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Abstract

A new family of iterative block methods, the family of block EN-like methods, is introduced. Efficient versions
are presented and computational complexity, memory requirements and convergence properties are investigatec
Finally, leading evidence of the potential of the new family is demonstrated via a comparison of numerical results
and performance to other block methodsl999 Elsevier Science B.V. and IMACS. All rights reserved.
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1. Introduction

Large sparse linear systems with multiple right-hand sides occur in many applications, such as
electromagnetics (see [7] for a review), and there is a need for efficient solvers. A variety of methods
have been introduced in the last twenty years, such as block CG and block BiCG [5], block GMRES
[11], single-seed methods [7], a hybrid block GMRES scheme [8] and block Quasi-Newton methods [6].
This paper generalizes a new family of iterative solvers for linear systems with single right-hand sides,
the family of EN-like methods [3,4], to solve systems with multiple right-hand sides. This new family of
block EN-like methods uses an approximatibp of the inverse of the matrid of the linear system to
be solved and updates it with rankdpdates during each iteration step, wheis the number of right-
hand sides. The block versions have an increased data locality compared to the single right-hand side
versions. The methods have theoretically finite termination, but in order to reduce memory requirements
and computational complexity we will also consider their restarted and truncated versions. The new
family is shown to have potential via numerical experiments comparing it to other block methods such
as block GMRES, block Broyden methods and a new hybrid version of block GMRES.

We introduce the family of block EN-like methods in Section 2, focus on one of its members, the
block EN method, in Section 3. Section 4 describes more efficient versions of the methods, including an
efficient version of block GCR, which can be shown to be related to block EN, and presents computational
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complexities as well as memory requirements. In Section 5, convergence properties of the block EN-like
methods are examined. Finally, in Section 6, numerical results are presented.

Throughout this paper, we assumaight-hand sides and a systediX = B of ordern, and we
use large Roman letters to denatex s-matrices, large Greek letters denot& s-matrices and large
calligraphic type style letters denotex n-matrices, e.g., the matrix of the linear systems or the
approximatior?; of A1

2. The family of block EN-like methods

In [3,4], a new family of iterative methods was introduced: the family of EN-like methods. In order to
solve the linear system withright-hand sides

AX =B, 1)

we propose block versions of the EN-like methods that are based on a generalization of the single right-
hand side methods. Instead of updatitig, the approximation tod~* via a rank-one update, the block
methods use a rankupdate, while simultaneously improving an approximatigno the solution of the
linear system by adding the estimate of the ertgr, 1 R, whereR, := B — AX, is the block residual.
The choice of the actual rankupdate is motivated by Broyden’s method.

The general block EN-like method is given by Algorithm 1.

Algorithm 1. Block EN-like method

Initialization: Xo, Ho arbitrary,Ro = B — AXq, Eg =7 — AHo.

Fork=0,1,...:
U = Hi&i Ry,
Vi = F(F AH RO ™Y,
Hypr = He + OV,
Eir1=1 — AHpq1,
Xir1= Xi + His1 Ry,
Riy1=E1 Ry

end.

Here F; needs to be chosen so that AH, R, is nonsingular.

The family of block EN-like methods is related to the family of block Broyden methods recently
introduced by O’Leary and Yeremin [6]. The block Broyden method can be defined in two ways, through
approximatingA4 by a matrix3; or through approximatingl—! by a matrix,. We concentrate here on
the second approach.

Algorithm 2. Block Broyden method (with, approximating4—1)
Initialization: Xg, Ho arbitrary, Ro = B — AXo.
Fork=0,1,...:

Py = Hi Ry,
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Qr = AP,

Xir1= Xy + PPy,

Rii1= Ry — PPy,

Hyrr = Hy + (P — Hi Qi) (F Qk)_leH
end.

Here F; needs to be chosen so that Q; is nonsingular.

There are several possibilities from which to choosesthkes-parameter matrixp,. The simplest, and
typically poorly performing, choice is thex s-unity matrix ;. A better choice i®; = (F Q) 1F Ry,
which is a generalization of the optimal line search principle suggested in [1] for Broyden’s method for
linear systems with a single right-hand side.

Algorithm 1a rewrites Algorithm 1 to resemble Algorithm 2 more closely.

Algorithm 1a. Block EN-like method
Initialization: Xg, Ho arbitrary, Ro = B — AXo.

Fork=0,1,...:
Py =Hy Ry,
Qr = AP,
Hipr = Hi + (Pr — Hi Q) (F Qk)_leH,
Py =M1 Re,
O = AP,
X1 = Xi + Py,
Ris1=Re — Ok

end.

Here F; needs to be chosen so that Q; is nonsingular.

This form of the block EN-like method clearly shows that the block EN-like method is related to the
block Broyden method as the Gauss—Seidel method is to the Jacobi method. The new approximation,
Hy11, is used in the evaluation df, ., instead ofH, as is in the block Broyden method. Additionally,
one can show the following relationship between one step of the block EN-like method and two steps of
the block Broyden method.

Lemma 1. One step of an EN-like method can be expressed

Xir1= Xy + Hi Ry, (2

Riy1= Ry — AH Ry, )

Xi1 = Xi1 + Hi RisaW, (4)
where

W = (F Q) 'FIR,.
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Proof. The proof is straightforward. O

Lemma 1 shows that one step of a block EN-like method can be considered as a step of the
corresponding block Broyden method with = I followed by a step of the block version of Broyden’s
method using the optimal line search principle of [1] without updating the approximatigittoNote
also the following relationships for the block EN-like method, that is of importance in Section 5:

Py = P (I, + W) — Hi Qi Wi ©)
and

Or = O + & OV (6)

One question that immediately arises concerning the block EN-like method is how to dhod$ere
are two categories of choices fff, the first is inspired by the version of the block Broyden method that
approximates4~! as in Algorithm 2, the second is inspired by the version of the block Broyden method
that approximates the matrid. For each member of the first category, there is a dual member in the
second category. We will focus here only on a few choices.

The block EN-like method witlf, = Qy is called block BEN method since the corresponding Broyden
method fors = 1 is often called Broyden's ‘bad’ method. The block GEN method, wiigre H} P, is
its dual and the corresponding Broyden methodsferl is called Broyden’s ‘good’ method. The choice
Fo=U- Zfil g:9") O, whereg;, i =1, ..., ks, are an orthonormal basis of the space spanned by the
columns ofQ;,i =0,...,k — 1, yields the block PEN method, named so after Broyden’s method with
projected updates. Finally, the choige= £/ &, O, yields the block version of the original EN method.
We will consider the properties of this method in more detail in the following section.

3. The block EN method and some of its properties

The EN method was first proposed by Eirola and Nevanlinna [2]. Their particular choigeanfd v,
can be motivated as follows: The ramkipdate, denoted, v, is chosen so that theh approximation
of the inverseHy, is ho worse than thé — 1)st approximatiori,_;. If we quantify the quality of the
approximation by defining the error matrix

E =1 — AH,y,

the constraints on the rankupdate can be achieved by first choosing
Vi =EH AU (UF A% AT,) ™,

and then considerinﬁ'k. If we define the residuak;, := B — AXy, the best choice is
U= ARy,

which yields toR,; = 0. Of course, such a choice clearly begs the question of solving the system of
linear equations. Therefore, we Usg, the best available approximation df-*, and set

U, = HiEi Ry

This method has several interesting properties, some of which we consider later in the context of the
more general class of EN-like methods. Theorem 1 summarizes a few of the basic characteristics of the
block EN method.
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Theorem 1. Assume thatlU;, is of full rank. Decomposelﬁk into the orthogonah x s-matrix C;, and
the upper triangulars x s-matrix X'. Define the following matrix

U, = ﬁkE,:l.

Then, the block EN method has the following properties
() &E1=T - CCHE,
(i) ¢fc;= A, (orthogonality,
(i) UI-H.AH.AU]' =Aj; (AHA—Conjugacy,
(v) C'Rj41=0,j >,
(v) the individual singular values &, do not increase with increasins,

where
Iy fori=j,
Aff—{o fori # j.
Proof. (i):

Ei1=T — AHis1 =T — AH, — AU (UF A" AT, U AR E,
=& —-Cx(zfclc.x) sicle = (T - c.clE.
(ii) Fori = j, CHC; = I; according to its definition. If we defin@; := AH; R;, then we have
Ci=AUZ =60, 57
It is easy to see that
10k = (T —CCNEQ = (T — CC)Cix =0,
and using induction and (i), we get fgr> 0
& jOr=0.
We proveC}C; = 0 for j > i, using induction. Certainly,
ClCi=2"0bel 10,37 = 55" QU (I — CoCH) 00151
=0l g0, 57 =0.
We assume foj > i
cl'c;=0.
Since the multiplication of — VV# andl — WW# is commutative, if “ W = 0, we have

Cl'Cra= 27" Q1 €810 T = 271 Q' 1 (T - C;C1) - (T - CiC{)€1Q i T,
=z Qﬁgﬁrlgi Qj+12j_+11 =0.

(iii) follows from (ii) since C; = AU;.

(iv) Using (i), we have

C/'Riu=Cl'& R =C(I-CCTER =0.
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(v) can be proved using (i) and [9, Theorem 5.9]. Since the singular valugsas€ the square roots
of the eigenvalues of the Hermitian mat&i¥ &, the following relationship is valid:

: Er1x|? . T — CiCHHEx|?
6:(Eer) = min 1€+ l” ¢ kG EX|
dim(S)=i xeS\{0} || x||2 dim($)=i xS\ {0} llx |2
Ex|)?
o [ €xx]| —0i&). O

= dim(S)=i xes\(0} ||x |2

4. Reduced complexity versions

One of the disadvantages of the methods considered so far is their computational complexityd While
is sparseH; is, in general, dense and therefore its multiplication witman s-matrix requires Qu?)
operations compared to ) for the multiplication of A with the matrix. More efficient versions of the
methods avoid the explicit computation &f, and use onlyH,, the original approximation ofi~2, that
is, in general, sparse or at least its application to a vector can be done in a manner of low complexity. If
we replaceH;. 1 with its definition, we get

k
Hir1 X =HiX + (P — Hi Qi) (B Qk)_l(FkHX) =HoX + Z(Pi —H: Q) (F" Qi)_l(FiHX)-
i=0
Using the definition

Zi = Py — Hy Ok, (7)
the general block EN-like method can be written as follows.

Algorithm 3. Block EN-like method (efficient version)
Initialization: Xg, Ho arbitrary,Ro = B — AXJ.
Fork=0,1,...:
k—1
Pe=MHoRi+ > ZiF" Ry,
i=0

Qr = APy,
= Floy,
Tk = Ry — Ok,

k—1

Zp = (HoTk +> 7 Ff%) bohl
i=0

Sy = P+ ZyFI Ry,

Xip1= Xy + S,

Riy1= Ry — ASi

end.

Setting F; = Q; yields block BEN. Block GEN, however, requires further transformation, since the
evaluation ofF; involvesH}’. The new version of block GEN contains the matfi¥ O, = P*'H, O;.
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Therefore, one needs to determine
T =H, 0. ®)

This can be evaluated without increasing the number of operations or the storage needed, but the
evaluation is highly recursive and leads to a decrease in parallelism. The efficient version for block
GENi is:

Algorithm 4. Block GEN method {;, = H P,)
Initialization: Xq, Ho arbitrary, Ro = B — AXo,

Fork=0,1,...:
Pk(o) =HoRy,
PP =P+ Zi—l(Pi(iIl))HPki_l)’ i=1....k
Qr=AP",
1,0 = Ho O,
O =17 + (PPN i=1, Lk,

5= (7)1
Zi= (PO -1")z,
o= PO+ 2, (B) PO
Xi+1= Xi + Sk,
Riy1 =Ry — AS;

end.

For both block BEN and block GEMNg;; can also be evaluated through
Riy1=B — AXiq1
without increasing the number of operations. In some cases, this approach appears to be more stable (s¢
Section 6).
Setting F, = £ &, 0y yields the block EN method. We use
Cr = & Ok, Uy = Hi&i Ry

and the orthogonality of the columns of tidg, see Theorem 1, to develop the efficient version below.
[0, ¥]1=GS(C) denotes the application of the (modified or classical) Gram—-Schmidt algorithm to the
n x s-matrix C, which generates the orthogomak s-matrix Q and the upper triangularx s-matrix X

Algorithm 5. Block EN method
Initialization: Xg, Ho arbitrary,Ro = B — AXJ,
Fork=0,1,...:

W, =Cl AHoR,, i=0,....,k—1,

k-1
Pe=HoRy — Y U;¥;,
i=0
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k—1
Ti = R — AHoRc + Y _ CiW;,
i=0

@, =C'AHoT, i=0,...,k—1,

k-1
Up =HoTi — Y Ui ®;,
i=0

k-1
Ck - AHOTk - Zci¢iv
i=0

[Ci, £x1=GS(Cy),

Uy =Uc st

Ay =C{Ty,

Xi41 = Xk + Pr + U Ay,
Riy1 =T — Cr Ay

end.

An alternative approach is possible when evaluafipgndC; through
Ty =R — AP, Ci=AU,.

If Ais very sparse ankl large, this approach saves a significant number of operations. However, to find
the most efficient implementation, one needs to consider also how fast the multiplication of two dense
matrices can be performed in comparison to the multiplication of a sparse matrix with a dense matrix on
the target computer.

As in the case of a single right-hand side, it is possible to derive a scaling-invariant block EN method
[12,3]. This method, called block SEN, can be obtained from the previous algorithm by introducing an
s X s-matrix Iy:

I = [(AHoR)" AHoR] ™ (AHoRO Ry ©)
and replacing the evaluations &f, P, and T, in Algorithm 5 with

W, =CIT AHoR Tk, i=0,....,k—1,
k—1
Pe=HoRe T} — ) Ui,
i=0

k—1
Ti = Ry — AHoR( T + Y Ci¥.
i=0
It is easy to show that for the block SEN meth®l,_ .|| cannot be larger thaihRy||.
We also include the block GCR method which is interesting in this context because of its relationship
to block EN and its equivalence to block GMRES.
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Algorithm 6. Block GCR
Initialization: Xg, Ho arbitrary,Rp = B — AXo.
Fork=0,1,...:

&, =CHAHoR,, i=0,....k—1,
_ k-1
Ux=HoR = ) _Ui®;,

i=0

k-1
Ci = AHoRi =) C;®;,
i=0

[Ci, Zi] = GS(Cy),

Uy =Uc 27

Ay =ClI'Ry,

Xir1 = Xi + U Ay,

Rii1= Ry — Ci Ay
end.

As for block EN,C; can be evaluated here &g = AU,.
If we do not require the evaluation df,,, at each iteration step, it is possible to achieve further
savings in block GCR and block EN by avoiding the evaluatioafOnly the coefficients need to be

saved. Such an approach has been used in [10] for single right-hand side GCR. The block version of this
implementation of GCR is

Algorithm 7. Block eGCR N
Initialization: Xg, Hop arbitrary,Rp = B — AXg, Xo = Xo.
Fork=0,1,...,m:

Ur = HoRx,
dji,k:CiH-Al/J\ka i:O,--.,k—l,

k—1
Ck = AUk - Z Cidji,kv
i=0

[Cr. Zi] = GS(Cy),
Ay =ClI'Ry,
Riy1= Ry — Ci Ay

end. B
X1 = Xo+ U, F,D,, where

2o Po1 - Dom
> :

=)

Dm:(AOa---,Am)Ha vm:(UO,---, m)a Fm:

cDm—l,m
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Using the same approach, one can generate a more efficient version for block EN.

Algorithm 8. Block eEN method _
Initialization: Xg, Ho arbitrary,Ro = B — AXg, Xo = Xo.
Fork=01,...,m:

lI/iyk:C‘iH"All_{OIka i:O,...,k—l,
k-1
Ty = Ry — AHoR, + Y CiWiy,
i—0
Ui = HoTx,
q)i,k:CiH-AHOTk, iIO,...,k—l,
k-1
Ci = AHoTi — Z Ci®Dix,
i=0
Ak = C{{Tk,
Xi4+1 = Xx + HoRx.,
Rk+l = Tk — CkAk

end.
Xpi1= )?m-HL + UmF,;l(Dm - G, E), whereF,, andD,, are defined as above, and
0 4’0,1 e ll/o,m
U= O0....Un), E=UsI.... 0", Gn= 0
lj[/m—l,m
0

Even though these new versions avoid the multiplication with a dBpseaey are still computationally
expensive due to an increase in both operation count and memory requirement with each iteration. It is
possible to save memory and operations per step by developing restarted or truncated versions.

Tables 1-4 show the type and number of operations, and the amount of memory required for the
methods. Only operations and storage of ordés considered, since we assume thaands are small
compared ta:. The methods are denoted by the abbreviations given earlier with an initial “B” appended
indicating a block version as opposed to the single right-hand sided version. The truncated version of any
method is indicated by the inclusion of a “t”. However, block Orthomin is used for the truncated version
of block GCR since it is known by that name in the literature. The notes “opt.” and “alt. appr.” indicate
the use of the optimal line search principal and the alternate evaluatidfsaoid C, discussed earlier.

The primitive labeled “dmxm1” refers to dense matrix multiplications ohanks with aks x s matrix

or aks x n with ann x s matrix and “dmxm2” refers to dense matrix multiplications ofrar s with

ans x s matrix or ans x n with ann x s matrix. The column labeled-, —, x counts the number of
vector operations involving vectors of length:. The total operation count for each of these primitives is
included at the top of each column. The primitives “spmv” and “precond” refer to the product of a sparse
matrix and a vector of length, and a preconditioner operation involving a sparse matrix operating
implicitly or explicitly on a vector of length:. Their operation counts depend on the matrix and are
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Table 1
Number and types of operations for various block methodshnteration step

Primitive/operations

dmxml dmxm2 +, —, % spmv precond

Method Zs°n 25%n sn

BBBM, &, = I 2 3 3 s s
BBBM, opt. 2 5 1 s s
BGBM, &, = I — 2k+3 3 s K
BGBM, opt. — 2k+5 1 s s
BGCR 3 5 — s s
BGCR, alt. appr. 2 5 — 2s s
BeGCR 2 4 — s s
BGMRES 2 4 - s s
BBEN 4 3 3 2 2s
BGEN - 4k + 3 3 2 2s
BEN 6 5 2 2 2s
BEN, alt. appr. 4 5 4 2s
BeEN 4 4 2 2 2s
BSEN 6 8 1 2 2s
BSEN, alt. appr. 4 8 1 A 2s
BeSEN 4 7 1 2 2s

therefore not listed. Note that it is possible to decrease the additional work vectors required for block
() GBM(m) to (m + 6)s with an increase of its computational complexity, see [1].

5. Convergence theory

Both the block Broyden methods as well as the block EN-like methods possess a finite termination
property. A proof for the block Broyden methods can be found in [6].
To simplify the presentation, we use the following definitions:

Vi :=F(Fl o) ™", (10)

PO =& 1 &, (11)
and

Pri=EEr1--- & (12)
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Table 2

Computational complexities for truncated block versions
Method Number of operations per iteration
BtBBM(m), &k = I [(4m + 6)s2 + 3s]n + s SpMV+ s prec
BtBBM(m), opt. [(4m + 10)s%+s]n + s spmv+ s prec
BtGBM(m), & = I [(4m + 6)s2+3s]n + s SpMV+ s prec
BtGBM(m), opt. [(4m 4 10)s? + s]n + s Spmv+ s prec
block Orthominf) [(6m + 10)s%]n + s Spmv+ s prec
block Orthoming), alt. appr. [(4m + 10)s2]n + 2s spmv+ s prec
BtBEN(n) [(8m + 6)s2 + 3s]n + 25 Spmv+ 2s prec
BtGEN(n) [(8m + 6)s2 4 3s]n + 25 spmv+ 2s prec
BtEN(m) [(12m 4 10)s2 4 2s]n + 25 spmv+ 25 prec
BtEN(mn), alt. appr. [(8m 4 10)s2 + 25]n + 4s spmv+ 2s prec
BtSEN(n) [(12m + 16)s2 + s]n + 25 spmv+ 25 prec
BtSEN(n), alt. appr. [(8m + 16)s% + s]n + 4s spmv+ 2s prec

Table 3

Computational complexities for restarted versions
Method Average number of operations per iteration
BBBM(m), &) = I, [(2m + 6)s2 4 3s]n + s SpMv+ s prec
BBBM(m), opt. [(2m 4 10)s2 + s]n + s SpmMv+ s prec
BGBM(m), &y = I, [(2m + 6)s2 + 3s]n + s SpMV+ s prec
BGBM(m), opt. [(2m 4+ 10)s? + s]n + s Spmv+ s prec
BeGCR(n) [(2m 4 8)s2]n + s SpmMV+ s prec
BGMRES{ + 1) [(2m + 8)s?]n + s SpMV+ s prec
BBEN(n) [(4m + 6)s® 4 3s]n + 25 spmv+ 25 prec
BGEN(n) [(4m + 6)s2 4 3s]n + 25 sSpmv+ 2s prec
BeEN(n) [(4m + 8)s2 + 2s]n + 25 Spmv+ 2s prec
BeSEN(n) [(4m + 14)s? + s]n + 25 spmv+ 25 prec

Lemma 2. AssumerH Qj-1,j=1,...,k, has no zero columns, ar@, has full rank. LetV, be of full

rank and in the range Q‘fé’, andk < 2n/s be odd.
Define the sequence ofx s-matrices

Z7'& =0, zle, =z", i=35, ...,k



U. Meier Yang, K.A. Gallivan / Applied Numerical Mathematics 30 (1999) 155-173 167

Table 4

Additional work vectors of length required
Method Memory required
B(t)BBM(m) (@2m +5)s
B(t)GBM(m) (@2m 4+ 5)s
B(t)GCR(n), block eGCRf{x) 2m +4)s
BGMRES + 1) (m +5)s
B(t)BEN(m) (2m 4+ 6)s
B(t)GEN(n) (2m 4 6)s
B(t)EN(m), block eENgr) (2m + 4)s
B(t)SEN(n), block e SENfz) 2m +4)s

Then,Z;,i =1,3,...,k, exist and their columns are linearly independent. Additionally,
zZPP =0, j=i,... .k

Z'R;=0, j=i+1... k
Proof. See[6]. O
Using the same approach, one can prove for the block EN-like methods:
Lemma 3. AssumerH Qj-1,j=1,...,k, has no zero columns, ar@, has full rank. LetV, be of full

rank and in the range Q‘fé’, andk <n/s.
Define the sequence ofx s-matrices

Z7'& =0, zle =z",, i=23, ...k
Then,Z;,i =1,2,...,k, exist and their columns are linearly independent. Additionally,
ZI'P; =0, j=i,....k+1,

Z/R; =0, j=i+1,....k+1

Proof. The lemma is proved by induction. Let us prove the abové ferl.
Define Z; throughZ# &, = V{. This is possible, since we assumed thgis in the range of,. Z;
has linearly independent columns, siri¢gis of full rank. Then

Z7E=71&(T - QoVy') - (T—Q;-1V/1) =0, j=1....k+1
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Consequently,
ZIP; =Z{'€;€; 1+ £1=0, =1 k+1,
Z{R; =Z{'P;Ro=0, =1 k+1,
2{0;=7{R; - Z{'Rj;1=0, i=1...k

7210, =2{0,-7{'€;Q;V/'R; =0, j=1,... .k
Now, assume that,, ..., Z;_; exist and have linearly independent columnsifark, and
20,0,=2/,0;=0, j=i-1.. .k

We definez/&; =z . SinceZ ; 0;_1 has no zero columns and the columngf, are the only null
vectors of¢; due to the assumption th&}” Q;_; has no zero columng;; exists.
Also, we have the following equation:

Zle;=71'&(T - oiv) - (T -0V =2, (T -0V (T-0;.1V]) =21,

sinceZ{ilQ, =0,l=i,...,j—1, due to the assumption.
Assume the matrice8y, ..., Z; have linearly dependent columns, z», ..., zis, i.€., there exisy;,
j=1...,is, with y; # 0 for at least ong and

> yizj=0. (13)
j=1
Consequently,
0= Z )/jZ;]gi = Z )/jZ;]_S # 0,
j=1 Jj=s+1

sinceza, zo, ..., Zi—1)s are linearly independent. This is a contradiction, and the vegiors. , z;; must
therefore be linearly independent.
We have, forj =i,...,k+ 1,

Z/'Pi=2/1¢€ 1 &=2" & 1 &=2,P; 1 =0

This leads to
ZI'R;=Z"P;Ry=0, j=i ... k+1
zHQ;=7HR; —ZI'R; 11 =0, J=i,.. K,

z'0;=2z"0;-2z'"¢,0;V/'R;j=-2",0;V/'R; =0, j=i...k+1 O
We can also show that the rank&f cannot increase, asincreases.

Lemma 4. Assumey, is of full rank.
rank(&) —s <rank(& 1) < rank(&), (14)
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where
rank (1) =rank(&) — s (15)
if and only if there exists a x s-matrix Y of full rank withY #&, = V7.

Proof.

rank (&) = rank(E7) =m. (16)
Consequently, there exist, i =1, ...,n —m, with z/7&, = 0. Now,

P Ea=7"8T -V =0, i=1...,n—m. a7

In order forrank(&;41) to be smaller thamank (&), we needy, with y/ & = (v/")#, wherev™ is
thelth column ofV,. O

Theorem 2. For nonsingularF” Q,, the block EN-like method converges within at mogststeps.

Proof. Using the results of Lemma 4, we can redefine a sequencé afithout the restriction of
Lemma 3 that’/? Q;_; has no zero columns:

For vV, 0;_, without zero columns, we choos&’&; = Z;_; as in the proof for Lemma 3. If thith
columny; of V7 Q;_ is a zero column, and there exists a vegtawith y// &; = v/, we setz;_1y511 = y-
If no suchy, exists, we choose &;_1),4; With z{{_l)ma- = 0 andz;_1),4 linearly independent of
21, - -» Z(—1s+i—1- Such a vector exists, since, " Q;_; has zero columns;ank(&;) is smaller than

rank(&;_1).
Now, we can show, as in Lemma 3, that
ZI'R; =0, j=i,....k+1,

for k < n/s, from which we conclude finite termination within at masts steps. O

Successive residual matrices of the block Broyden methods and the block EN-like methods have simple
relationships via the error matr#. These are summarized in Lemmas 5 and 6, respectively.

Lemma 5. For the block Broyden method,

Rii1=Ry(Iy — D) + E R Py, (18)
which for @, = I, reduces to

Proof. The proof is according to [1]. O

Lemma 6. For the EN-like method,
Ri1 = Err1& Ry (20)

Proof. Using&,10: =0,
Rit1=E 1Ry = E1(Ry — Op) = Ex1&Ex Ry O

Using this lemma, the following convergence theorem follows.
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Theorem 3. Assume thal&|| <6 < 1, and||E1]l < ||1& |l for k > 0 for the block EN-like methods.
The following inequality then holds

I Risall < 82 R || < 8%2|| Rol, (21)

and the methods converge.

The first condition requires a good estimatg of A~1. In practice this could result from a good
preconditioner. The second condition is always satisfied for the block EN methog £ &, 0;),
the block BEN method i = Q,) and the block PEN method?{ = Q; — >*-3 0; 0¥ O\, where the
columns ofQ;, i =0,...,k — 1, are an orthonormal basis of the space spanned by the colunghs of
i=0,....,k—1).

6. Numerical results

We implemented the new block methods and others on an SGI Origin 200 with 4 processors using a
consistent set of dense and sparse computational primitives. The methods were tested on several matrice
from the Harwell-Boeing collection with multiple random right-hand side vectors. The results for two of
those matrices are discussed below.

Table 5 shows the results we obtained using the nonsymmetric matrix SHERMANS. We ran the
following block schemes choosing a Krylov subspacg ef5: block GMRES (BGK)), the hybrid block
GMRES (BG_Hk, m) wherem denotes the degree of the polynomial chosen), the block EN-like methods
BeEN, BBEN, BGEN and the truncated scheme BtEN and the block Broyden methods BGBM, BBBM
with optimal line search principle and BGBM1 and BBBM1 where= I;.

The labels ‘mgs’ and ‘cgs’ denotes whether modified or classical Gram—-Schmidt was used for
orthogonalization. While the classical Gram—Schmidt performs significantly better for langpedified
Gram-Schmidt is more stable and improves convergence for the block GMRES schemes in some cases
We only report the numerical results for ‘mgs’ for those methods for which there was a significant change
in the number of sparse matrix vector multiplications. The use of MGS did not affect the convergence of
BeEN and BtEN.

For more than one right-hand side most of the block Broyden methods fail, only the ‘good’ block
Broyden method with optimal line search succeeds and is faster than block GMRES for less than 20
right-hand sides. As expected, the hybrid schemes are faster than block GMRES. Overall, the block EN-
like methods are the fastest for this problem, especially BeEN(4) which=£020 is almost twice as fast
as the hybrid scheme, almost five times as fast as block GMRES and almost six times as fast as block
GBM. For BBEN(4), the use ok, = B — A X, was necessary far= 12, since the other version diverges
for this case.

Since block GMRES requires less memory than the block Broyden and block EN-like methods, we
also ran block GMRES and the hybrid schemes with a Krylov subspace of dimension 8. In this case block
GMRES uses the same amount of memory as BeEN. As expected, the performance of block GMRES is
significantly increased, however BeEN is still faster by a factor of 1.5 to 2.

If the times achieved for one right-hand side are compared to those for multiple right-hand sides, it is
seen that the use of the block methods is, in general, significantly better than using the single right-hand
side methods times. Mostly, this is due to two effects, an increase in data locality as well as a decrease
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Table 5

Times in seconds (number of spmv’s) for SHERMANS with ILU(0)
Methods 1 4 8 12 16 20
BG(5)(cgs) 1.2(205) 4.4(816) 8.1(1328) 10.1(1380) 12.5(1536) 9.7(1100)
BG(5)(mgs) 1.1(205) 5.2(864) 11.0(1304) 18.7(1524) 22.4(1456) 16.9(1020)
BG_H(5,1)(cgs) 0.9(182) 2.0(428) 1.5(280) 1.7(300) 2.8(464) 3.8(660)
BG_H(5,1)(mgs) 0.9(182) 2.2(428) 1.8(280) 2.2(300) 3.7(448) 4.6(620)
BG_H(5,2)(cgs) 1.2(255) 0.8(196) 1.0(232) 3.2(732) 6.5(1328) 9.6(2000)
BG_H(5,2)(mgs) 1.2(255) 1.0(196) 1.3(232) 2.3(420) 4.1(672) 6.1(1020)
BeEN(4)(cgs) 0.4(85) 0.9(172) 1.0(168) 1.6(252) 1.8(272) 2.1(300)
BBEN(4) 0.5(91) fail 1.7(280) 2.1(348) 2.0(304) 2.7(380)
BGEN(4) 0.5(81) 1.0(172) 1.1(184) 1.5(252) 2.3(368) 2.2(340)
BGBM(4) 1.1(117) 3.4(428) 6.2(736) 6.8(684) 9.8(912) 11.9(1120)
BtEN(4)(cgs) 0.5(109) 1.9(500) 1.9(456) 1.8(396) 1.9(400) 2.5(500)
BGBM1(4) 2.1(260) fail fail fail fail fail
BBBM(4) fall fall fall fall fall fall
BBBM1(4) 1.4(161) fail fail fail fail fail
BG(8)(cgs) 0.6(100) 1.5(256) 1.7(224) 2.2(264) 3.0(304) 3.9(360)
BG_H(8,1)(cgs) 0.6(100) 1.0(196) 1.5(216) 2.3(336) 3.2(480) 4.0(660)
BG_H(8,2)(cgs) 0.7(131) 0.9(176) 1.4(258) 2.5(456) 3.9(720) 5.5(1060)

in the number of iterations. For example, BeEN(4) takes only about 5 times as long=f20 than for
s=1,1.e., itis about 4 times as fast to use BeEN(4) versus eEN(4) for 20 different linear systems.

The results for the symmetric, but very ill-conditioned, matrix SAYLR4 from the Harwell-Boeing
collection are given in Table 6. We used a Krylov subspace size of 8. Here, the use of ‘mgs’ improved the
times by about 20 percent for one right-hand side, but increases the times significantly fos laitier
a comparable number of sparse matrix vector multiplications. For this example, the truncated methods
perform overall better than the restarted methods. The alternative implementations for BtEN and block
Orthomin were used, since they were somewhat faster on this particular machine. This results in the fairly
large number of spmv’s listed. For BtBEN(7), the useRpf= B — AX, improved the convergence for
s = 4 by a factor of 1.4 and for = 8 by a factor of 4. Except far = 20, the fastest method overall is
BtEN(7). Fors = 20, BeEN(7) is the fastest method.

The times for BG(14) and the corresponding hybrid schemes are included, since the memory usage
of BG(14) is comparable to that of BeEN(7) and BtEN(7). Since the times for block GMRES using
a larger Krylov subspace are significantly improved fo¢ 1, the results for the hybrid schemes are
mixed.
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Table 6

Times in seconds (number of spmv’s) for SAYLR4 with ILU(0)
Methods 1 4 8 12 16 20
BG(8)(cgs) 5.5(822)  46.2(6204) 67.3(8072) 98.9(8760) 72.4(6480) 71.8(4920)
BG(8)(mgs) 4.7(919) 40.4(5396) 100.2(8200) 135.7(7428) 160.6(7008)  125.4(4860)
BG_H(8,1)(cgs) 3.2(540) 22.0(3056) 23.8(3208) 4.9(624) 5.7(816) 7.6(780)
BG_H(8,1)(mgs) 2.8(540)  22.4(3004) 22.9(2528) 7.0(624) 9.1(816) 12.8(780)
BG_H(8,2)(cgs) 4.0(705)  10.4(1944) 4.4(680) 3.5(528) 6.2(816) 11.9(1980)
BG_H(8,2)(mgs) 3.8(727)  11.9(1808) 5.1(680) 4.9(528) 8.5(816) 14.6(1180)
BeEN(7)(cgs) 5.1(665) 4.2(604) 3.8(456) 3.8(396) 4.8(496) 4.1(420)
BBEN(7) 4.6(625) fail fail 29.4(3060) 19.7(1808) 8.2(700)
BGEN(7) 8.3(923) fail fail fail fail 8.8(700)
BtEN(7) 1.1(177) 2.2(372) 2.4(424) 3.7(540) 4.5(656) 5.5(740)
BOrthomin(7) 2.4(357) 4.0(572) 5.7(712) 10.6(1284) 12.9(1264) fail
BtBEN(7) 1.2(125) 2.8(260) 5.4(440) 3.8(348) 4.6(400) 5.6(420)
BG(14)(cgs) 7.0(781) 7.3(744) 7.1(560) 7.3(528) 7.4(464) 7.6(440)
BG_H(14,1)(cgs) 3.1(369) 6.2(672) 3.9(376) 6.4(516) 8.2(704) 7.8(720)
BG_H(14,2)(cgs) 2.7(339) 3.5(432) 3.7(376) 6.8(660) 8.9(944) 8.8(1120)

7. Conclusions and future research

Overall, the results demonstrate the general superiority of the hybrid block GMRES and block EN-like
methods over block GMRES and block Broyden methods. The block EN-like methods are therefore a
very promising form of the block quasi-Newton approach to the problem. The relative performance of
the block EN-like methods and the block GMRES hybrid depends on the problem and both are effective
generally. Further work will be done on the parallel and memory efficiency of these methods, adapting
some of the hybrid techniques to the quasi-Newton block EN-like method setting and on the examination
of nonlinear block EN-like methods.
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