Computing Systems in Engineering Vol. 1, Nos 24, pp. 183-195, 1990

Printed in Great Britain.

0956-0521/90 $3.00+0.00
© 1990 Pergamon Press plc

A PARALLEL HYBRID SPARSE LINEAR SYSTEM SOLVER

K. GALLIVAN,T A. SAMEHYT and Z. ZLATEV}

tCenter for Supercomputing Research and Development, University of Illinois at Urbana-Champaign,
305 Talbot Laboratory, 104 South Wright Street, Urbana, IL 61801, U.S.A.
tAir Pollution Laboratory, Danish Agency of Environmental Protection, Risoe National Laboratory.
DK-4000 Riskilde, Denmark

(Received 27 April 1990)

Abstract—Consider the system Ax = b, where A is a large sparse nonsymmetric matrix. It is assumed that
A has no sparsity structure that may be exploited in the solution process, its spectrum may lie on both
sides of the imaginary axis and its symmetric part may be indefinite. For such systems direct methods may
be both time consuming and storage demanding, while iterative methods may not converge. In this paper,
a hybrid method, which attempts to avoid these drawbacks, is proposed. An LU factorization of A that
depends on a strategy that drops small non-zero elements during the Gaussian elimination process is used
as a preconditioner for conjugate gradient-like schemes, ORTHOMIN, GMRES and CGS. Robustness
is achieved by altering the drop tolerance and recomputing the preconditioner in the event that the
factorization or the iterative method fails. If after a prescribed number of trials the iterative method is
still not convergent, then a switch is made to a direct solver. Numerical examples, using matrices from the
Harwell--Boeing test matrices, show that this hybrid scheme is often less time consuming and storage de-
manding than direct solvers, and more robust than iterative methods that depend on preconditioners that

depend on classical positional dropping strategies.

1. THE HYBRID ALGORITHM

Consider the system of linear algebraic equations
Ax=b, where A is a nonsingular, large, sparse and
nonsymmetric matrix. We assume also that matrix A
is generally sparse (i.e. it has neither any special
property, such as symmetry and/or positive definite-
ness, nor any special pattern, such as bandedness,
that can be exploited in the solution of the system).
Solving such linear systems may be a rather difficult
task. This is so because commonly used direct
methods (sparse Gaussian elimination) are too time
consuming, and iterative methods whose success
depends on the matrix having a definite symmetric
part or depends on the spectrum lying on one side of
the imaginary axis are not robust enough. Direct
methods have the advantage that they normally
produce a sufficiently accurate solution, although a
direct estimation of the accuracy actually achieved
requires additional work. On the other hand, when
iterative methods converge sufficiently fast, they
require computing time that is several orders of
magnitude smaller than that of any direct method.
This brief comparison of the main properties of
direct methods and iterative methods for the
problem at hand shows that the methods of both
groups have some advantages and some dis-
advantages. Therefore it seems worthwhile to design
methods that combine the advantages of both
groups, while minimizing their disadvantages.
Throughout we assume that sparse Gaussian
elimination is the direct method chosen for the
solution of Ax=b. It is well known that this is the
best choice in the case where A is large and generally
sparse; see for example Ref. 1 or 2. The arithmetic

183

operations during stage k(k = 1,2...n—1) of Gaussian
elimination are carried out by the formula

e = aff - afP(all)) (M

where i=k+1, k+2...n, j=k+1, k+2...n, while
al’ = a, are the elements of matrix A. Itis clear that
if a? =0 while neither a{’ nor a{)’ vanish, then a
new non-zero element, fill-in, is created in position
(i, j). Unfortunately, fill-in does occur when large
sparse matrices are factored by Gaussian elimination
and this method becomes rather expensive (in terms
of time and storage requirements) when many fill-ins
are introduced. Therefore, reducing the number of
fill-ins is one of the main tasks during the develop-
ment of sparse matrix codes, at least on sequential
and vector computers. Such minimization of fill-in is
achieved by adopting a suitable pivoting strategy; see
for example Refs 3-5. The amount of fill-in may be
large, however, even when a good pivoting strategy
is adopted. For such systems direct methods may lose
competitiveness with iterative methods if a con-
vergent method can be found for the system. The
successful use of iterative methods often depends
upon the effective use of preconditioning. Precon-
ditioning a system Ax = b involves using the iterative
method to solve the related system M™' Ax=M"'b,
where the preconditioned M is easily invertible and
M~' A=I. The choice of M is an art in itself and de-
pends on the iterative method used, the application
from which the system arises, and, for high-per-
formance machines, the architecture on which the
algorithm is to execute.®

For the purpose of obtaining an approximate
factorization of A for preconditioning, while main-

184 K. GALLIVAN et al.

taining efficiency in the sparse Gaussian elimination
process, we attempt to reduce further the number of
fill-ins as follows (for more details see Ref. 7). Let
7 be a parameter that satisfies

0=r<1 2)

and let

k

a¥=max(|aff,.|, lafsal...|al2), 3.

where the elements over which the maximum is
taken form the active part of row i at stage k. The
parameter T will be called the drop-tolerance,
because any element at stage k that satisfies

|aff] = 7ai? “4)

is dropped (removed from the arrays where the non-
zero elements, together with their indices, are kept
and neglected in the computations after stage k).

It is clear that by choosing a sufficiently large drop-
tolerance T the number of fill-ins can be reduced
considerably. This will lead to an approximate
factorization stage in which both the computing time
and storage requirements are substantially reduced
compared to the classical direct methods. It is also
clear, however, that there are two difficulties with
this approach: (1) there is no guarantee that the
factorization will be completed successfully when a
large drop-tolerance is specified; and (2) the solution
obtained with the factors calculated by using a large
drop-tolerance (assuming that the factorization is
successfully completed) will normally be inaccurate.

While it is assured [see Eqs (2)—(4)] that not all
the elements in the active part of a row will be
removed, it is possible that all non-zero elements in
the active part of a column will be dropped when the
drop-tolerance is large. Therefore, it is useful to
enhance the dropping criterion defined by Eqs (2)-
(4) by adding an extra requirement that the dropped
non-zero element is not the last one in the active part
of its column. In this way, structural singularity is
assured at least not to appear at the stage under con-
sideration. Although this enhancement does not
guarantee that structural singularity will be avoided
throughout the procedure, it works rather well in
practice.

Once the approximate factors of A are successfully
obtained as a preconditioner, an iterative method
must be used in an attempt to obtain a good approxi-
mation of the solution. Depending on the drop
tolerance, however, the iterative method may not
converge. Experiments show, however, that con-
jugate gradient-type methods perform rather satis-
factorily in this situation. Three such methods,
ORTHOMIN, GMRES and CGS, are used in the
experiments.

The improvement made in the dropping criterion
and the use of an iterative method (preconditioned
with the factors L and U obtained by Gaussian
elimination) enhance the chances of solving the
system Ax = b with the desired accuracy with reason-

able efficiency. These two steps so far do not
guarantee such success, however. A third step is
necessary to yield a solution with the accuracy
requested by the user when either the factorization is
not completed (due to singularity resulting from
dropping too many non-zero elements) or when the
preconditioned iterative method is not convergent
(or converges too slowly). This third step is rather
obvious. If either the factorization process fails or
the iterative scheme does not converge, then the
drop tolerance must be reduced, new approximate
factors L and U computed, and the iterative method
restarted. This action can be repeated for a
prescribed number of trials after which the drop-
tolerance is set equal to zero, i.e. switching to a
direct method. Let A(7) denote the matrix such that,
in the absence of rounding errors, A(t)=LU is
formed by performing an approximate factorization
of A using drop-tolerance 1 (permutations required
to form L and U have been ignored for simplicity of
presentation). Note that A(t)—>A as 1—0. The
hybrid solver can then be described as follows:

DROP TOLERANCE 1 IS GIVEN
DESIRED ACCURACY ¢ IS GIVEN
DO UNTIL (X IS ACCEPTED)
IF (LU= A(s) EXISTS) THEN
Me—LU
xe (LUY'b
CALL PCG_TYPE_METHOD (M, A, x,b,¢)
IF (NOT CONVERGED OR TOO SLOW) THEN
T—pi(7)
END IF
ELSE
TepaT)
END IF
END DO

The functions p,(t) and p,(t) are functions that
adjust the value of T given an unsatisfactory
performance by the iterative method and an un-
successful factorization, respectively. The outer loop
around the classical form of preconditioning which
makes use of the two reduction functions yields a
robust algorithm—in the worst case a direct method
will eventually be used. By recomputing the precon-
ditioner with smaller v when the iterative method
does not appear to be performing well we avoid the
use of a poor preconditioner and the subsequent in-
efficiency. The adaptive behavior of the algorithm
can therefore be used, starting with a relatively large
initial 7, to allow the algorithm to find a drop toler-
ance that is natural for the problem. The early itera-
tions with large T require some extra time but the
fact that many elements are dropped reduces the
number of operations performed (significant for a
single processor) and provides more opportunity for
the creation of parallel pivot sets (important for
parallel processors). The effort is usually repaid with
rapid convergence of the iterative method and can be
very worthwhile if a sequence of problems is to be
solved with similar matrices, i.e. those with effective
values of 7 that are about the same.

Parallel hybrid sparse linear system solver 185

Assuming that the above steps are properly incor-
porated in a code, we must show the robustness and
effectiveness of the hybrid. Below we illustrate by
numerical examples that (see also Ref. 7):

(1) this hybrid method is more robust than other
preconditioned iterative schemes available in the
literature, and often there is no need for recal-
culating the approximate factors, and in this case
the hybrid scheme is much faster than direct
methods;

(2) the global computing time of the hybrid scheme
is less than that of direct methods even if one has
to recalculate the approximate factors once or
twice;

(3) even in the worst case (when we have to switch to
a direct method), the increase of the computing
time is not that high.

It is important to carry out the third step (the
reduction of 1 and refactorization) properly. This
step is rather time-consuming and, therefore, should
be performed only when either the factorization
process with a given drop tolerance fails, or when the
iterative method does not converge. In the first case,
the third step is activated when the code detects a
zero column or row. In the second case, failure of the
iterative scheme, it is crucial to determine when to
abandon the iterations and to resort to determining
new approximate factors with a more stringent drop-
tolerance. In the next section we shall show that it is
possible to satisfy these two requirements and, thus,
it is possible to implement all three steps efficiently.

2. THE STOPPING CRITERIA

Designing stopping criteria for iterative methods
applied to systems Ax=b, where A is a general
matrix, is a critical task. Since Krylov sub-space
methods (see above conjugate gradient-type
methods) are not guaranteed to converge for general
linear systems, the first task is to determine whether
the iterates are converging.

The residual vector r; defined by

ri=b—Ax,= A(x—x,), ()

where x; is the ith iterate, is often used in formulating
stopping criteria. It is clear from Eq. (5) that some
norm of the residual vector may provide a reliable
estimate of the norm of the error if the norm of
matrix A (corresponding to the vector norm chosen)
is, roughly speaking, of order 1.

If | A| is large, a stopping criterion based on the use
of |Ir] may not detect that the error in the solution,
llx—x]l, is small. This could be illustrated by taking
only one equation with A = b= 10'"". Assume that the
accuracy required is ACCUR=10"* and that the
current approximation x; is such that |x—x,|=10"""
Then {r,|=1 and a stopping criterion based on the
use of the residual will be misleading.

If |A is small, a stopping criterion based on the
use of ||| does not yield useful information about the

error of the approximation, ||x—x/|. To illustrate this,
consider again one equation only, this time with
A=b=107"". Let the accuracy required be again
defined by ACCUR=10"". Assuming that the
current approximation x; is such that |x—x|=10°,
then |r = 10~" and a stopping criterion based on the
use of the residual alone will be misleading.

The examples given above are extreme (and in
practice the situation will often be better). Never-
theless, these examples indicate that it is not a good
idea to have the matrix A (or some norm of this
matrix) involved, directly or indirectly, in the stop-
ping criteria.

An interesting attempt to eliminate the influence
of A is made in the so-called simple version of
GMRES (the theoretical background of code
GMRES is discussed in Ref 8). In this code the itera-
tions are stopped if

”’i”
7l

where ACCUR is the accuracy required by the user.
Assume that

=ACCUR, (6)

llaGe=x)ll= Ak —xif, M
where i =0,1.... Under this assumption
Il _ el ©

”’n” N }Lx—x(.H

and, if the starting approximation x, is equal to zero,
then an attempt to evaluate the relative error is made
by the stopping criterion in GMRES (at the same
time eliminating the influence of matrix A). While
the assumption under which this criterion works, Eq.
(7), is not unrealistic, there will be difficulties when
the starting approximation is close to the exact
solution. This could be the case, for example, when
solving time-dependent problems.

It follows then that it is worthwhile to determine
whether or not the iterative process is convergent
without using the matrix A in the criterion
developed. In many iterative processes the new
approximation is obtained from the old one by using
a simple transformation:

X =X tap, (9)

where i=0,1..., o, are constants and p, are certain
correction vectors. Based on this observation, a con-
vergence check with the desired properties can be
derived.

Let us assume that Eq. (9) holds for the iterative
method selected. This is true for ORTHOMIN (see
Ref. 9) and for CGS (see Ref. 10), but not for the
GMRES (see Ref. 8). Let us assume also that the
computations with the above formula are carried out
without rounding errors. Then, if the iterative
method under consideration is convergent, the exact
solution x of the system Ax = b can be written as

(10)

®

x=x+ 3 P,
B

186 K. GALLIVAN et al.

and an upper bound on the norm of x = x, can, under
some mild assumptions, be given by

besh= ol lpo[1+ 5, ol]y

Consider a real constant RATE such that

0<RATE<1 (12)
and let for j=—-2,—-1,0
RATE;=0.999 RATE. (13)

Define for i=1,2 . . . the quantities RATE; and
MEANRATE, by the recurrences

14
o] (14
and
MEAN RATE,=0.25(RATE,+RATE,_,
+RATE,_,+RATE._,). (15)

Consider also an integer variable NBAD, which is
initially set to zero and is updated at each iteration by
NBAD+1if MEAN RATE,> RATE

NBAD=
0 otherwise.

(16)

We therefore have adopted the following criterion.

Convergence criterion. The iterative process de-
fined by Eq. (9) is assumed to be converging at a
sufficient rate if NBAD =g, where o is some
small positive integer (presently in our code,
o=13).

Normally much more stringent requirements are
imposed in the construction of a convergence
criterion. For example, simple iterative refinement
(see Ref. 5 or 11) is often stopped when RATE,;>
RATE. Such a criterion is rather restrictive in
connection with conjugate gradient-type methods
and very often stops the iterative process very early
and, what is even more important, unnecessarily
(because the process will often converge, although
slowly, even when RATE,;>RATE is occasionally
true).

An attempt to evaluate the rate of convergence,
especially for iterative refinement, is made by using
the parameter RATE. In connection with conjugate
gradient-type methods, however, it is often useful to
set RATE close to 1 (RATE =0.999 is used in our
experiments). This is so because conjugate gradient-
type methods often converge very slowly at the
beginning with remarkable improvements later. In
fact, these slow and fast regimes of convergence
could occur several times over the course of solving a
system. On the other hand, when solving time-
dependent problems, for example, it is advisable to
keep the value of RATE small. The code in such a
case will, after several trials and reductions of 7, find
some sufficiently accurate preconditioner for which

the convergence rate is fast from the beginning, and
use it in several time-steps.

The second task which must be considered is to
terminate the iterations when the desired accuracy is
achieved. Let us assume that the iterative process
converges (according to the convergence criterion
given above). Let the stopping criterion be given by
|x—x]|= ACCUR. Equation (11) requires the obtain-
ing of an estimate of the sum in order to obtain an
accuracy check; such an estimate may be obtained as
follows. Define

MAXRATE, = max
(RATE,, RATE,_,, RATE,_,, RATE,_;) (17)

and let (for some g=i,i=1,2...)

MAXRATE, < RATE. (18)
If we assume that
RATE=MAXRATE, for
j=49-3,9-2,9-1,9 (19)
implies
RATE;=MAXRATE, for
j=q+1,q+2... 0, (20)

then it can easily be shown that Eq. (11) reduces to

|yl

= _
b= I-MAXRATE,

@1

As a result, we have the following stopping criterion
based on the accuracy required.

Acceptability criterion. Let 0= RATE< [and
ACCUR <0 be given real numbers and assume
that at the end of some iteration ¢ we have
MAXRATE, = RATE. Then the iterative process
is terminated if

—loallpl 4 ccpr

1-MAX RATE, (22)

Itis clear that one should expect |x—x,]|< ACCUR to
be satisfied on successful exit when the above
acceptability criterion is in use.

We have sketched above the ideas used rather
than the more complex termination criteria actually
used in our code. For example, in an attempt to en-
hance the possibility that assumptions made by Eqs
(19)-(20) actually hold, we also require that all of the
last four values of «; are close to

0.25(a;+ o Ho—ntay_3). (23)

Equation (22) is checked only when this condition is
satisfied.

When the ORTHOMIN algorithm is chosen as the
iterative method, a special action is carried out at
each iteration. The number of vectors in the Krylov
subspace is increased by one if MEANRATE, >
RATE. (The user provides a parameter MAXCOL
which determines the maximum dimension of the

Parallel hybrid sparse linear system solver 187

Krylov subspace allowed.) In this way the code
attempts to automatically increase the possibility of
achieving convergence. Experiments indicate that
this is a very useful device. This is in part due to the
fact that a large initial Krylov dimension is a waste of
time if the iterative process converges quickly with a
subspace containing one or two vectors only; and for
any particular problem one normally does not know
in advance the optimal number of vectors in the
Krylov subspace for which the ORTHOMIN con-
verges (and thus it is better to leave to the code the
task of finding a nearly optimal number of vectors for
the Krylov subspace). This idea could also be used
with other truncated conjugate gradient-type
methods. For CGS, of course, such a device cannot
be applied. It is yet not clear to us how to apply the
idea to methods based on restarting the iterations
(such as GMRES).

The convergence criterion, or more preciesly the
non-termination criterion, is rather lenient. The
code will try to carry out the computations in the
iterative method as long as possible. This is in some
sense justified, because it is rather expensive to stop
the iterations unnecessarily since it will require re-
factorization. On the other hand, the acceptability
criterion is rather conservative: the codes usually
perform several extra iterations (and compute
solutions the accuracy of which is very often greater
than the desired accuracy). However, this is typically
not an excessive amount of extra work: the cost per
iteration is normally very low. This means that we in-
vest some more work in an attempt to prevent an
unnecessary application of costly refactorization and
to ensure that the accuracy required is achieved.

By checking the norms of the residual vectors and
the correction vectors, r; and ap,, respectively, we
have observed that, when the matrix A is badly
scaled and/or ill-conditioned, these quantities may
be small, while the norm of the error vector x—x; is
considerably greater than the accuracy requirement.
However, in all such situations that have been
observed in our experiments, the stopping criteria
indicate correctly that the iterative process must be
continued because the accuracy desired has not been
achieved.

Finally, we have not discussed the alterations to
the termination criteria which introduce the cost of
refactorization and the cost per iteration into the
decision to reduce 7. This is discussed in Ref. 7.

3. THE CODES

The hybrid algorithm described above has been
implemented in a code for the Alliant FX/80 which
is based on a modified version of the direct method
package for general sparse matrices Y12M,>5!2
and three iterative solvers based on the algorithms
ORTHOMIN, GMRES and CGS (see Refs 8, 9
and 10, respectively) adapted to use the
approximate factorization and initial guess gener-

ated by Y12M. Stopping criteria based on the ideas
discussed in the previous section have been im-
plemented in ORTHOMIN and CGS, while the
original stopping criterion is used in GMRES. A
moderate amount of optimization for the multi-
vector processing capabilities has been performed
on the version used to generate the results pre-
sented below. For more details concerning the
effect of more aggressive optimization and the al-
gorithm/architecture mapping, see Ref. 7.

The input stage of the package has been organized
in a user-friendly fashion. The matrix A is input in
simple triplet form, i.e. a series of triples (o, i, j) in
an arbitrary order. The user is not required to order
the non-zero elements by rows or by columns nor to
count the non-zero elements per each row or
column. The code converts this storage scheme into
two others required for the computations. The first is
a static structure which preserves the original values
of A needed for the iterative methods in a way which
supports the computational primitives found in that
portion of the code. The non-zero elements of matrix
A are stored in an array AORIG, grouped by rows,
i.e. non-zero elements of the first row, then the non-
zero elements of the second row, etc. The order of
the non-zero elements within a row is arbitrary and
there are no free locations between any two rows.
The column numbers associated with the elements
are kept in an array CNORIG in corresponding
positions—if a non-zero element a; is stored in
AORIG(K), then its column number j is stored in
CNORIG(K). Pointers into AORIG to first and last
positions of each row of A are also prepared. This
static storage scheme supports the standard vector-
concurrent implementation of a sparse-matrix—
vector multiplication primitive (parallel sparse dot
products, each of which is vectorized within a
processor) required by the iterative method. If a
different form of this primitive is used to improve
performance of the iterative methods, e.g. those dis-
cussed in Ref. 13, this structure must be updated
appropriately. A second dynamic structure is re-
quired to compute the approximate factorization of
A(7). It must be dynamic due to the elements added
through fill-in and removed through dropping. The
second structure is initialized by making a copy of the
static structure sketched above and a second column-
oriented version of the structure of A. In this
structure, the row numbers of the non-zero elements
are grouped by columns, i.e. the row numbers of the
non-zero elements in the first column, then the row
numbers of the non-zero elements in the second
column, etc. Pointers into this structure to the first
and last elements in each column are also kept. The
column-oriented structure contains no numerical
information; it is used to facilitate the search for a
pivot element at each stage.

The version of the code used to generate the
results below is based on exploiting the parallelism
involved in a single stage of sparse Gaussian

188 K. GALLIVAN et al.

elimination. The major phases of each stage are as

follows:

(1) pivotal search

(2) interchanges

(3) symbolic factorization in the column- and row-
oriented structures

(4) numerical rank-1 modification.

In the pivotal search, a set of the best candidate
rows is assembled (a few rows that contain a
relatively small number of non-zero elements; see
Ref. 4). This operation can be carried out in a vector-
concurrent mode. The simplest way to do this is to
search all rows in the active part of the matrix at the
stage under consideration. This gives O(n?) opera-
tions. On sequential machines it is better to order the
rows in increasing number of non-zero elements in
the beginning and then at each stage to update this
order: this gives about O(nq) operations, where q is
the average number of non-zero elements in the
active parts of the pivotal columns. Interestingly, a
long series of experiments indicated that the simpler
algorithm performs satisfactorily. Our experiments
were with matrices of up to order n=10*. As n in-
creases significantly beyond this point, however, a
parallel version of the second algorithm should be
preferable.

The interchanges which permute the chosen pivot
element o to the (k, k) position in the kth stage can
be carried out in parallel in a straightforward
manner. To see this, consider the row-oriented
structure. We must scan each target row (a row that
has a non-zero element, in the pivotal column) for
elements in columns j and k and relabel them appro-
priately. The interchanges in each target row are
completely independent of the interchanges in the
other target rows, and thus can be carried out con-
currently. Similar considerations apply to the
column-oriented structure.

Once the pivot column and row are identified and
permuted a symbolic factorization is performed. This
calculates the location of fill-ins in the target rows
and columns involved in the rank-1 update and up-
dates the dynamic data structure containing A(7).
The advantage of using the symbolic factorization at
each stage is that the numerical update of the active
portion of the matrix can be carried out using
vectorization and concurrency. This is different from
the original version of Y12M,? where no symbolic
factorization is carried out and the code searches for
a place to locate the fill-in immediately when it dis-
covers that a fill-in is to be created. The symbolic
factorization is performed sequentially in the code
whose results are presented below but it also lends
itself to vector and concurrent processing (see Ref. 7
for details).

The main computational primitives required by
each step of a preconditioned conjugate gradient-
type algorithm are as follows:

(1) matrix—vector multiplication
(2) solving systems with triangular matrices

(3) vector triads
(4) norms (inner products) of a vector (two vectors).
The last two operations are simple BLASI level
primitives (see Ref. 14), and the main implementa-
tion question is whether the entire machine should
be used to compute them or whether they should be
merged with one of the other phases into a more
complicated primitive. The first is a BLAS2 opera-
tion and is well understood on Alliant-like architec-
tures (see Refs 15 and 16). If the matrix is sparse,
then various approaches are possible. For example,
the simplest approach is to use parallel sparse dot
products, each of which are vectorized as mentioned
by Dodson and Lewis.!” Depending on the matrix
A, however, other forms may be more efficient on
architectures like the Alliant FX/80 (see Ref. 13).
The second primitive is the source of most of the
performance questions for a preconditioned method
since it tends to be the most time-consuming.
Parallelism and vectorization can be exploited if the
structures of the factors L and U are examined
before the start of the iterative process in order to
create a parallel schedule of row operations,
typically by a simple levelization of the computa-
tional dependence graphs. Our code uses a modified
version of the code developed by Anderson'® (see
also Ref. 19).

4. ORGANIZATION OF THE NUMERICAL EXPERIMENTS

The numerical experiments whose results are
presented in the next section were generated using
matrices from the well-kinown Harweil-Boeing set
of test matrices prepared by Duff et al.?**' The three
main purposes of the numerical experiments are as
follows.

(1) We show that the method sketched in the
previous sections often performs better than
direct methods. Results from Y12M and two
other well-known packages, SPARSPAK-C and
MAZ28 (see the works of Psterby and Zlatev,’
Duff” and George and Ng,? respectively)
are presented, the first modified for the Alliant
as discussed above, and the rest using compiler
generated parallelism and vectorization only.

(2) We also show that the method is much more
reliable than using the more standard incomplete
LU factorization preconditioning which is based
on positional dropping rather than numerical
dropping. A code developed for the Alliant is
used.'®

(3) The reliability of the stopping criteria will be
illustrated by showing the accuracy estimated by
the code and the accuracy actually achieved.

The matrices selected for the experiments are all
unsymmetric. Most have an order greater than 1000
and those with a smaller order are such that they
produce a large amount of fill-in when a direct solver
is used. Some of the matrices used in our previous
report® are not used here and improvements to

Parallel hybrid sparse linear system solver 189

the code used in that work, both to Y12M and to the
iterative method portion of the code, have been
made. Moreover, the new and more efficient option
of MA28, where a pivotal strategy based on the
algorithm proposed by Zlatev* is implemented, is
used in the present experiments. The parameter
NTOL in SPARSPAK-C (by which one determines
when a row of the matrix should be considered as
dense and treated in a special way) was set to 100,
while NTOL =25 was used in Ref. 24. However, re-
sults with NTOL =25 are also presented in order to
demonstrate the fact that this code may sometimes
be sensitive to the choice of this parameter.

The drop-tolerance 7 was set to 2™* for initially
calculating preconditioners for the conjugate
gradient methods. An element is dropped from the
active part of the matrix if (4) is satisfied after com-
pletion of the rank-1 update. The drop-tolerance is
reduced by a factor of 27'° when the factorization of
A(7) does not succeed and by a factor of 27° when
there are difficulties with the convergence of the
iterative method. The calculation of several precon-
ditioners may require several such trials and the
computing times reported are the sum of the compu-
ting times for all trials required for a particular
matrix.

Difficulties in the calculation of the precondition-
ers very often appear because the columns of the
matrices are very badly scaled (and the code throws
away all non-zero elements in a column). In an
attempt to reduce the possibility for appearance of
such a situation, we perform an initial scaling of the
matrices (the time needed to scale is included in the
computing times given). For the matrices tested
scaling yields rather good results with regard to
avoiding unnecessary reductions of the drop-
tolerance. Two extra benefits due to the scaling
procedure are also observed. The first is connected
with the preservation of the sparsity (when the
matrix is scaled the number of candidates for pivots is
normally increased and this leads to sparse factors L
and U, even if the drop-tolerance is set to zero). The
second benefit is connected with the condition
number. Very often the condition number of the
scaled matrix is smaller than the condition number of
the original matrix, and therefore the iterative pro-
cesses converge faster, as a rule, when scaling is in
use.

Some characteristics, including the condition
number k(A), of the matrices used are presented in
Table 1. We believe that experiments using these
matrices are representative. There are matrices that
are very sparse (west2021 has about three elements
per row on average) and matrices that have many
elements initially (mc-fe contains more than 30
elements per row on average). There are both very
well conditioned matrices (steam2) and very ill-
conditioned matrices (nnc1374). For some matrices
the condition numbers are reduced considerably
after application of the scaling procedure. For

Table 1. Matrices used in the experiments

Matrix Order Non-zeros k{A)

steam2 600 5660 32E+ 0
mc-fe 765 24,382 77E+ 1
sherman2 1000 23,094 2.6E+ 3
pores-2 1224 9613 36E+ 5
nncl374 1374 8588 2.0E+13
hwatt-1 1856 11,360 47E+ 3
hwatt-2 1856 11,550 31E+ 5
west2021 2021 7310 4.8E+ 7
orsreg-1 2205 14,133 82E+ 3
or678lhs 2529 90,158 2.1E+ 6
sherman5 3312 20,793 6.0E+ 3
saylr4 3564 22,316 1.2E+ 7
gemat]1 4929 33,108 1.6E+ 6
gemat12 4929 33,044 1.8E+ 6
sherman3 5005 20,033 1.9E+ 5

example, the condition number estimation for
sherman3 is 6.9E+16 when scaling is not applied.
The matrices vary in the amount of fill-in produced
(west2021 produces very little fill-in while saylr4
produces significantly more). Finally, while results
from 15 matrices are presented, the conclusions are
based on experiments with several hundred matrices
(including some artificially created matrices created
using the matrix generators from Ref. 2).

5. EXPERIMENTAL RESULTS

In this section the numerical results obtained by
using the test matrices listed in Table 1 are discussed.
As mentioned earlier, the conclusions are drawn by
using a much larger set of test matrices, but the
matrices chosen illustrate correctly the different
situations that could arise in practice; situations in
which the hybrid methods are very successful or in
which the direct methods or the purely iterative
methods should be preferred.

5.1. The performance of the direct solvers

The computing times achieved with the three
direct solvers, the new version of MA28, SPARS-
PAK-C with NTOL = 1000 and the new version of
Y12M (denoted Y12M1), are given in Table 2. The
numbers of non-zeros in the factors L and U are
given in Table 3 and the accuracy achieved is
recorded in Table 4.

Consider first the accuracy results for the direct
methods. Surprisingly, the results obtained by
SPARSPAK-C, which uses partial pivoting, tend to
be less accurate than the results obtained by the
other two codes. The cause of this behavior 1s not
clear. It could be due to the fact that an improved
generalized Markowitz pivotal strategy is used in
MAZ28 and Y12M1. In this strategy some features of
the complete pivoting for dense matrices are applied
on a subset of rows of the active part A%’ of matrix A
at each stage k of Gaussian elimination. (See
Theorem 1 in Ref. 4 or the corresponding theorem

190 K. GALLIVAN et al.

Table 2. Computing times (s) for the direct method codes

Matrix MA28 SPARSPAK Y12M1
steam?2 16 62 5
mc-fe 41 132 17
sherman2 361 254 107
pores-2 42 22 13
nncl374 113 50 31
hwatt-1 91 107 43
hwatt-2 99 100 42
west2021 4 13 2
orsreg-1 137 214 65
or678lhs 174 195 75
sherman5 286 141 61
saylr4 353 312 147
gematl1 14 71 13
gemat12 14 72 12
sherman3 237 238 95

Table 3. Non-zero elements in LU for the direct method

codes
Matrix MA28 SPARSPAK Y12M1
steam?2 27,625 40,809 21,207
mc-fe 61,376 59,424 61,419
sherman2 209,648 301,610 177,712
pores-2 66,452 49,913 53,371
nncl374 123,202 66,599 67,011
hwatt-1 113,711 211,150 117,103
hwatt-2 118,343 200,977 114,771
west2021 14,576 10,574 8958
orsreg-1 151,150 312,650 158,085
or678lhs 146,245 188,606 133,715
sherman5 223,967 229,912 149,593
saylr4 311,379 489,256 308,455
gematll 52,826 70,630 45,987
gemat12 54,403 72,905 49,118
sherman3 218,315 350,046 210,394

Table 4. Accuracy achieved with the direct method codes

Matrix MA28 SPARSPAK YI12M1
steam?2 7.1E—-13 1.1IE—12 1.2E-15
mc-fe 5.3E-15 6.8E—14 2.1E-14
sherman2 1.5E-11 32E- 7 3.2E-13
pores-2 2.8E—13 8.6E—12 1.5E—12
nncl374 1.3E- 2 22E- 3 9.1E- 5
hwatt-1 1.3E-14 2.5E—-15 8.4E—-15
hwatt-2 1.2E-14 7.6E—14 1.2E-14
west2021 2.8E-10 7.1E-10 1.2E-11
orsreg-1 1.9E—-13 3.1E—-13 22E-13
or678lhs 2.0E—14 14E- 8 4.8E—14
sherman5 1.4E—-14 8.9E—-14 1.4E-14
saylr4 7.9E-11 8.0E—12 5.6E—11
gematl1l 6.4E—12 5.2E-11 3.0E-12
gematl2 25E-11 1.6E—-10 2.0E-12
sherman3 2.6E—13 4.0E—-13 8.8E—14

and the numerical results in Ref. 2.) More experi-
ments are needed in order to confirm this conjecture,
but it should be noted here that if the option in which
the classical Markowitz strategy is used is chosen
with MAZ28, then the results obtained by this code
become, in general, less accurate than those
obtained by SPARSPAK-C (and thus, by partial

pivoting), as should be expected. Scaling is used with
Y12M1 but not with the other codes. As expected,
the results show that scaling does not, in general,
lead to better accuracy. Recall that the motivation
for scaling was to facilitate a more effective choice of
drop-tolerance.

Comparing the number of non-zero elements in L
and U, it is seen that as a rule this number is consid-
erably greater for SPARSPAK-C. Of course, this
should be expected: it is well-known that the pivotal
strategies of the Markowitz will normally preserve
the sparsity better than partial pivoting. The reason
that the numbers of non-zeros in L and U for Y12M1
tend to be smaller than those for MA28 is probably
due to the fact that scaling is used with the former
package and as a result the set of candidates for
pivots for the scaled matrix tend to be, at each stage
k, greater than that for the original matrix. However,
it should be noted that the differences are not very
large.

The computing times for Y12M1 are much smaller
than those for MA28 and SPARSPAK-C. This is
expected since Y12M1 has been somewhat modified
to exploit parallel and vector processing while the
others rely only upon the restructuring compiler.
The poor performance of the latter codes indicates
the inability of restructuring compilers to achieve
much with standard sequential sparse solvers. If no
optimization is used, i.e. both vectorization and con-
currency are suppressed, then the computing times
for Y12M1 become two to four times greater. The
results of experiments with concurrency and vectori-
zation suppressed on Y12M1, but not for MA28 or
SPARSPAK-C, are given in Table 5. The results for
MAZ2S8 in this table are obtained with the old pivotal
strategy (the classical Markowitz). Comparing the
results with those in Table 2, one can see the
efficiency of the pivotal strategy based on Theorem 1
in Ref. 4. The newer pivotal strategy also often gives
better accuracy and a smaller number of non-zeros in
L and U.

The effects of the choice of NTOL in
SPARSPAK-C are also seen in Table 5. The results
there were obtained with NTOL =25 while those in
Tables 1-3 were obtained with NTOL = 100. The

Table 5. Computing times (s) on one processor for the
direct method codes

Matrix MA28 SPARSPAK YI2M1
sherman2 580 1052 362
pores-2 61 22 39
nncl374 224 42 62
hwatt-1 437 107 129
hwatt-2 406 100 127
west2021 31 13 8
orsreg-1 140 197 195
sherman$5 361 123 204
saylr4 1147 293 455
sherman3 847 215 309

Parallel hybrid sparse linear system solver 191

results indicate that SPARSPAK-C may be very sen-
sitive to the choice of NTOL. For the matrix
sherman2 the use of NTOL =25 instead of
NTOL =100 gives a factor of 4 increase in computing
time and a factor of 3 increase in the number of non-
zeros in L and U. There is, on the other hand, a
corresponding improvement in the accuracy
achieved (the max-norm of the error-vector was
1.9E—10). Various experiments with SPARSPAK-C
were run with NTOL equal to 25, S0 and 100 and the
overalil performance was best with NTOL = 100.

5.2. The performance of the hybrid algorithm

Table 6 shows the computing times achieved by
the hybrid algorithm using preconditioned ORTHO-
MIN as the iterative method and by Y12M1. Recall
that the initial value of the drop-tolerance is 1=2"*
and it is reduced by a factor of 27" when the factori-
zation fails and by a factor 27° when the iterative
process does not converge fast enough. The numbers
of trial factorizations are also given in this table.

The results shown, together with many other ex-
periments, admit several conclusions. It is seen that
the reduction in computing time can be greater than
one order of magnitude (see the results for sherman2
and saylrd). For very ill-conditioned problems (e.g.
nncl374), or for problems that stay very sparse
during the factorization (e.g. west2021, gematl1 and
gematl2), direct methods (Y12M1) are superior.
The hybrid tends to perform best for large time-
consuming problems, i.e. precisely for problems
where improving the performance is most wanted.
This is due to the fact that such problems are
normally time-consuming due to a large amount of
fill-in during the factorization, many of which are
dropped when a positive value for the drop-tolerance
is used. If the problem solved is time-consuming,
then the hybrid can be better than direct methods
(Y12M1) even if more than one trial is required to

Table 6. Computing times (s) for Y12M1 and ORTHOMIN
hybrid (iterations)

Matrix Y12Ml1 ORTMIN Trials
steam2 5 1(3) 1
me-fe 17 X7 1
sherman2 107 9(4) 2
pores-2 13 4(64) 1
nnci374 31 35(3) 5
hwatt-1 43 6(20) 1
hwatt-2 42 7(38) 1
west2021 2 5(3) 2
orsreg-1 65 5(38) 1
or678lhs 75 10(13) 1
shermans5 61 7(21) 1
saylrd 147 9(46) 1
gematl | 13 20(5) 2
gematl2 12 20(5) 2
sherman3 95 21(73) 1

Table 7. Non-zeros in LU for Y12M1 and ORTHOMIN

hybrid
Matrix NZ Y12M1 ORTMIN
steam?2 5660 21,207 1050
mc-fe 24,382 61,419 6948
sherman2 23,094 177,712 19,680
pores-2 9613 53,371 4665
nncl374 8588 67,011 36,772
hwatt-1 11,360 117,103 13,857
hwatt-2 11,550 114,771 13,979
west2021 7310 8958 8670
orsreg-1 14,133 158,085 14,133
or678lhs 90,158 133,715 9682
sherman5 20,793 149,593 12,810
saylr4 22,316 308,455 9915
gematll 33,108 45,987 44 876
gemat12 33,044 49,118 45,096
sherman3 20,033 210,394 16,384

compute a successful preconditioner (see the results
for sherman2).

Table 7 lists the number of non-zero elements in
the factors L and U for the Y12MI1 and for the
hybrid. In order to facilitate the comparison, we also
list the numbers of non-zero elements, NZ, in the
original matrices. It is seen that the number of non-
zero elements may be reduced more than 10 times
when a positive drop-tolerance is used. It is also seen
that the number of non-zero elements in the factors
L and U may be smaller than NZ when using the
hybrid. This is due to the fact that the code pertorms
a scan of the non-zero elements before the start of
the factorization of A(7) and removes all non-zero
elements that satisfy the drop-tolerance relation.
The fact that the number of non-zero elements could
be kept very small also allows us to solve on the
Alliant some very large problems that cannot be
solved by Y12M1. An example of such a problem is
the largest problem in the Harwell-Boeing set.
besstk32, which is a system of order 44,609 with
2,014,701 non-zeros when the symmetry is not
exploited.

In Table 8 the accuracy achieved by YI2MI is
compared with that achieved by the hybrid method.
The column labeled “Actual” is the true error in the
solution computed by the hybrid and the column
labeled “Evaluated” is the error which the pre-
conditioned ORTHOMIN code thought it had
achieved. It is seen that Y12M1 pgives greater
accuracy; however, more important here is the fact
that the accuracy requirement imposed in all runs (to
calculate a solution such that the norm of the solution
vector is smaller than 107%) is always achieved. The
error estimates calculated by the code are, as a rule,
less than the actual errors found (this shows that the
acceptability criterion in the code is rather cautious).
If the number of iterations is small, then the accuracy
achieved is much better than the required accuracy,
because the code studies the behavior of certain
parameters during several successive iterations in
order to decide whether the computations should be

192 K. GALLIVAN et al.

Table 8. Accuracy for Y12M1 and ORTHOMIN hybrid

(iterations)
Matrix Y12M1 Actual Evaluated
steam2 1.2E-15 7.2E-16 9.5E—-8(3)
mc-fe 2.1E-14 SJE- 7 2.1E-5(7)
sherman2 32E-13 277E-13 1.8E-9(4)
pores-2 1.5E~-12 39E- 8 1.1E—6(64)
nncl374 9.1E- 5§ 6.1IE— 7 3.1E-8(3)
hwatt-1 8.4E—15 1.6E— 5 8.3E-5(20)
hwatt-2 1.2E-14 1.1IE— 6 4.9E-5(38)
west2021 1.2E-11 73E- 6 5.0E-5(3)
orsreg-1 2.2E-13 5.8E— 7 9.9E-5(38)
or678lhs 4.8E—14 87E— 6 9.1E-5(13)
sherman5 1.4E-14 5.0E- 7 2.7E-6(21)
saylrd 5.6E—-11 5.7E— 7 9.4E-6(46)
gematll 3.0E-12 49E—-11 1.1E—8(5)
gemat12 2.0E-12 49E—- 9 6.7E-7(5)
sherman3 8.8E—14 22E- 7 6.2E-5(73)

stopped or not and, if the convergence rate is very
fast, then the accuracy achieved when this study is
completed is usually greater than the required
accuracy. If the iterative process is converges slowly,
then normally the accuracy achieved is only slightly
better than the required accuracy. This means that if
the iterative process is time-consuming, then the
code does not carry out many extra iterations before
the decision to stop the calculations.

Three hybrid solvers, based on ORTHOMIN,
GMRES and CGS, respectively, are compared with
regard to the computing time in Table 9. While it is
too early to draw any final conclusions since the work
with ORTHOMIN is more advanced than that with
the other two solvers, it is seen that for any of the
three methods there are problems for which it per-
forms best. However, note that the differences are
not very big and will probably become smaller when
GMRES and CGS are optimized. (Their perform-
ances will undoubtedly improve with tuning.)

The three conjugate gradient-type methods,
ORTHOMIN, GMRES and CGS, have also been
used as pure iterative methods. If the convergence
rate is fast, then this is a good choice (both comput-
ing time and storage being saved). However, for
many of the tested problems the pure iterative
methods converge very slowly or do not converge at
all. Of course, this should be expected: the theory of

Table 9. Computing times (s) for three hybrids (iterations)

Matrix ORTMIN GMRES CGS
sherman2 9(4) (7) 8(5)
pores-2 4(64) 10(3) 12(3)
nncl374 35(3) 38(1) 30(1)
hwatt-1 6(20) 9(18) 12(16)
hwatt-2 7(38) 10(21) 13(19)
west2021 5(3) 5(2) 5(1)
orsreg-1 5(38) 7(25) 9(19)
sherman$ 7(21) 8(16) 14(14)
saylr4 9(46) 16(92) 15(38)
sherman3 21(73) 35(137) 29(54)

these methods tells us that convergence is
guaranteed for special matrices only, e.g. for
matrices whose symmetric part is positive definite.

The use of iterative refinement with approximate
factors L and U generated via numerical dropping
was proposed in Ref. 25. It was used successfully in
the numerical treatment of some large problems aris-
ing in nuclear magnetic resonance spectroscopy (see
e.g. Ref. 5). Since 1983, iterative refinement has also
been implemented in other sparse matrix codes (as,
for example, in MA28; see Ref. 1). Our experiments
show that even with the improvement proposed here
and in Ref. 24, e.g. the replacement of the absolute
drop-tolerance with a relative one, the performance
of iterative refinement is often inferior to that of the
hybrid using CG-type methods in the sense that the
drop-tolerance needed to obtain a convergent
process when the iterative refinement is used is
normally less than that needed to obtain a con-
vergent iterative process when the preconditioned
CG-type methods are used. This leads to using more
time to calculate the preconditioners and to using
larger total time to solve the problem. The fact that
the cost per iteration for the iterative refinement is
less than the cost per iteration for the preconditioned
CG-type methods is normally not sufficient to com-
pensate for the increase of time for calculating the
preconditioners with a smaller drop-tolerance. Of
course, for those few problems where iterative re-
finement solves the problem with the same drop-
tolerance and with a similar number of iterations as
the preconditioned CG-type method, then it is
preferable.

5.3. The performance of GMRES with ILU
preconditioning

The code of Anderson,'® developed for the
Alliant and in which GMRES with preconditioning
by an incomplete LU is used, has been compared
with the proposed hybrids based on numerical
dropping. The incomplete LU (ILU) preconditioner
calculates an approximate LU factorization based on
positional dropping, i.e. fill-in elements are dropped
when they appear in inconvenient places. Typically,
no fill-in is tolerated and only non-zero elements of
the original matrix are modified during the factori-
zation. Moreover, no pivoting is carried out in the
code (thus, if the matrix treated has a zero on the
main diagonal the method will fail to complete the
Gaussian elimination).

It is seen from Table 10 that GMRES with ILU
preconditioning sometimes fails as expected. It is
also seen that the method is sometimes more expen-
sive than the preconditioned ORTHOMIN (this
should also be expected: if the discarded fill-ins are
large, then the preconditioners L and U may be very
crude and too many iterations may be needed to
obtain the accuracy required). However, when the
iterative process converges sufficiently fast, the

Parallel hybrid sparse linear system solver 193

Table 10. Computing times (s) for ORTHOMIN hybrid and
GMRES-ILU (iterations)

Matrix ORTMIN GMRESwith ILU
steam?2 1(3) 0.5(2)
mc-fe 3(7) 1.4(8)
sherman? 94) 0.5(17)
pores-2 4(64) 1.9(114)
nncl374 35(3) Failed
hwatt-1 6(20) 2.5(111)
hwatt-2 7(38) 5.7(260)
west2021 5(3) Failed
orsreg-1 5(38) 2.2(79)
or678lhs 10(13) Failed
sherman$ 7(21) 3.4(99)
saylr4 9(46) 23.1(553)
gematl1 20(5) Failed
gemat12 20(5) Failed
sherman3 21(73) 32.4(684)

GMRES with an incomplete LU is normally the best
choice since there is no fill-in and the a priori
knowledge of the non-zero locations which must be
updated allows the complete suppression of much of
the non-numerical work present in most direct
method codes for general sparse systems such as
symbolic factorization and dynamic data structures.

In Anderson’s code the stopping criterion is based
on Eq. (6), as in the original GMRES. No attempt to
investigate whether the method converges or not is
made: the code carries out the computations until
either Eq. (6) is satisfied or the maximal allowed
number of iterations prescribed by the user,
MAXIT, is reached. The attempt to carry out the
computations with an accuracy requirement of 10~*
(as for the preconditioned ORTHOMIN) was not
successful: the code yielded solutions with poor
accuracy in all but one case, steam2. It is recom-
mended in the code to use an accuracy requirement
given by ACCUR = 107%. Even then, the code often
returns solutions with poorer accuracy. The results
obtained with accuracy requirementsof 107, 107®
and 107"’ are displayed in Table 11. The fact that the

Table 11. Accuracy of GMRES-ILU when three accuracy
requirements are imposed (iterations)

Matrix €e=1.0E-4 €=1.0E-8 €e=10E-10
steam2 1.6E—-7(1) 1.7E-9(2) 1.7E-9(2)
mc-fe 1.7E+2(2) 1.8E—-2(6) 3.2E—4(8)
sherman2 5.4E-2(7) 2.6E-6(14) 2.2E-8(17)
pores-2 2.9E-2(49) 1.8E—-6(97) 3.4E-8(114)
nncl374 Failed Failed Failed
hwatt-1 5.6E—1(1) 8.8E~2(5) 1.2E-7(111)
hwatt-2 8.6E—1(9) 3.1E—2(30) 1.5E-7(260)
west2021 Failed Failed Failed
orsreg-1 2.9E-2(23) 2.8E-7(63) 2.7E-9(79)
or678lhs Failed Failed Failed
sherman5 1.2E-2(17) 1.3E-6(79) 1.1E-8(99)
saylrd4 1.8E—2(17) 5.3E—6(429) 7.1E—8(553)
gematll Failed Failed Failed
gemat12 Failed Failed Failed
sherman3 4. 7E-2(19) S5.6E—4(470) 1.3E-7(684)

GMRES-ILU code does not try to determine
whether the process is convergent or not can result in
many unnecessary iterations, especially when the
ILU preconditioner is not sufficient to make the
method converge for a problem. This situation
occurred for the matrix gre-1107. The code
performed MAXIT = 3000 iterations and returned a
wrong result.

The results given in Tables 8 and 11 indicate that
the acceptability test proposed above seems to
provide a more robust way of evaluating termination
of an iteration than does using the residual vectors. It
is also seen from Table 11 that the attempt to elimin-
ate the influence of matrix A on the stopping criter-
ion by using Eq. (6) is not always reliable [probably
because the assumption (7) is not always satisfied].
Of course, our proposed criteria are also based on
heuristics and many more experiments, and perhaps
some improvements are needed to estimate their
reliability in general. For the set of problems tested,
however, they seem to be much more reliable than
other proposed criteria. It should also be emphasized
that this behavior of false convergence is not peculiar
to GMRES-ILU. Small residuals and/or correction
vectors have been observed in the runs with the pre-
conditioned ORTHOMIN. However, the proposed
stopping criteria were not satisfied and the failure of
the method was avoided. The test-matrices from the
Harwell-Boeing set for which this happened are
gre-1107 and gaff1104 (some results concerning runs
with these matrices are presented in our previous
work®*). Examples like this demonstrate that the
code has been able to make the crucial decisions
(1) to stop the iterative process
(2) to reduce the drop-tolerance
(3) to repeat the computations with recalculated

preconditioners

in a difficult situation where the norms of the correc-
tion vectors are smaller than the accuracy required.
It is necessary to emphasize that, in these two
examples, continuing the iterations does not improve
the situation: the iterative process simply does not
converge (in spite of the smailness of the correction
vectors, and the behavior of the residual vectors is
similar). It should also be mentioned that the
matrices involved in these examples are rather ill-
conditioned. Checks of the correction norms, as well
as the residual norms, have clearly shown that stop-
ping criteria based on these norms often produce
solutions that are not sufficiently accurate when the
matrices involved are ill-conditioned and/or badly
scaled.

6. COMMENTS ON FURTHER ENHANCEMENTS

As noted earlier, the results presented above were
for codes whose parallelism has been generated via
moderate restructuring by hand to the sequential
code and a restructuring compiler. The improvement
due to the hand tuning can be seen by comparing the

194 K. GALLIVAN et al.

results presented here to those in Ref. 24. It should
not be surprising, therefore, that with more intense
tuning the performance of both the calculation of the
preconditioner and the iterative method can be im-
proved considerably. This has been demonstrated
for the positional dropping GMRES-ILU code
developed by Anderson for the Alliant FX-series.'®
As mentioned earlier, Wijshoff has also studied the
architecture/algorithm mapping of sparse primitives,
in particular a sparse matrix multiplied by one or
more dense vectors, that are of interest for the itera-
tive method portion of the code on multivector pro-
cessors.' The effect of applying these performance
enhancements to the iterative method portion of the
code is discussed in Ref. 7.

The improvement of the performance of the
general sparse factorization portion of the algorithm
is more difficult, but certainly possible. For example,
changing the way in which the code handles the
symbolic factorization portion of the rank-1 update
further improves performance. Table 12 compares
the performance of the version of Y12M used in Ref.
24 to one with the symbolic factorization changes
executing in direct method mode, i.e. v =0, for some
additional Harwell-Boeing matrices. Comparing
these results to some in Table 2 also indicates how
much the incorporation of the factorization changes
into Y12M1 could improve its performance.

It is well known that for machines with hierarchical
memory systems dense factorization algorithms must
be written in terms of BLAS3 constructs in order to
achieve high performance.”® Furthermore, on
such machines the discrepancy in the performance of
general sparse solvers and dense solvers is consider-
able. Therefore, the appropriate use of a switch to a
dense solver during sparse factorization can also
contribute to improved performance. Indeed, on a
machine like the Alliant FX/80, for many of the

Table 12. Computing times (s) after symbolic factorization

alteration
Matrix Old New
pde9511 5 2.5
jpwh-991 25 7.0
shermanl 5 2.4
orsirr 18 5.4
sherman2 199 32.1
gaff1104 27 9.4
sherman4 4 1.5
gre-1107 15 5.0
pores-2 18 5.9
mabhistth 4 2.1
nncl374 39 4.8
hwatt-1 58 15.8
hwatt-2 57 15.5
west2021 4 2.2
orsreg-1 90 22.7
sherman5 100 23.5
saylr4 197 52.6
sherman3 147 35.3

Table 13. Computing times (s)
with the addition of a switch to
dense factorization code

Matrix Time
jpwh-991 2.4
orsirr 2.8
sherman2 4.9
gaff1104 39
gre-1107 2.8
pores-2 33
hwatt-1 5.7
hwatt-2 5.7
orsreg-1 9.0
sherman5 8.1
saylr4 234
sherman3 16.2

Harwell-Boeing matrices a well-implemented rank-
1-based code with a dense switch will yield just as
significant a performance improvement as codes
based on more complex parallel pivot strategies.
Table 13 shows the computing time for some of the
Harwell-Boeing matrices which benefit from the
switch to dense factorization routines. Additional
performance improvements are possible by the
careful consideration of the use of the memory
hierarchy for both rank-1 and parallel pivot versions
of the code and by exploiting information gained in
factorizations with larger values of + when updating
of the drop-tolerance is required. (See Ref. 7 for
details.)

Acknowledgements—This work was supported in part by
the NSF under Grants No. NSF MIP-8410110 and No.
CCR-8718942, the Department of Energy under Grant
No. DOE-DE-FG02-85ER25001, and AT&T Corp. under
Grant No. AT&T-AFFL-67-SAMEH.

REFERENCES

1. I. Duff, A. Erisman and J. Reid, Direct Methods for
Sparse Matrices, Oxford University Press, Oxford,
1986.

2. O. Osterby and Z. Zlatev, Direct Methods for Sparse
Matrices, Springer, Berlin, 1983. '

3. 1. Duff and J. Reid, “A comparison of sparsity order-
ings for obtaining a pivotal sequence in Gaussian
elimination,” Journal of the Institute of Mathematics
and its Applications 14, 281-291 (1974).

4. Z. Zlatev, “On some pivotal strategies in Gaussian
elimination by sparse technique,” SIAM Journal of
Numerical Analysis 17, 18-30 (1980).

5. Z. Zlatev, “Sparse matrix technique for general
matrices: pivotal strategies, decompositions and appli-
cations in ODE software,” in Sparsity and its
Applications (edited by D. Evans), pp. 185-228,
Cambridge University Press, Cambridge, 1985.

6. U. Meier and A. Sameh, “The behavior of conjugate
gradient algorithms on a multivector processor with a
hierarchical memory,” Journal of Computational and
Applied Mathematics 24, 13-32 (1988).

7. K. Gallivan, A. Sameh and Z. Zlatev, “A robust
parallel linear system solver,” Report No. 984, Center
for Supercomputing Research and Development,
University of Illinois, Urbana, IL, 1990.

8. Y. Saad and M. Schultz, “GMRES: a generalized
minimal residual algorithm for solving nonsymmetric

11.

16.

17.

Parallel hybrid sparse linear system solver

linear systems,” SIAM Journal of Scientific and Statis-
tical Computering 7, 856-869 (1986).

. S. Eisenstat, H. Elman and M. Schultz, “Variational

methods for nonsymmetric systems of linear
equations,” SIAM Journal of Numerical Analysis 20,
345-357 (1983).

. P. Sonneveld, “CGS, a fast Lanczos-type solver for

nonsymmetric linear systems,” SIAM Journal of Scien-
tific and Statistical Computing 10, 36-52 (1989).

. Bjorck and Z. Zlatev, “Exploiting the separatability
in the solution of linear ordinary differential
equations,” Computers and Mathematics with
Applications (to appear).

. Z. Zlatev, “Survey of the advances of exploiting the

sparsity in the solution of large problems,” Journal of
Computational and Applied Mathematics 20, 83-105
(1987).

. H. Wijshoff, “Implementing sparse BLAS primitives

on concurrent/vector processors: a case study,” Report
No. 843, Center for Supercomputing Research and
Development, University of Illinois, Urbana, IL, 1989.

. C. Lawson, R. Hanson, O. Kincaid and F. Krogh,

“Basic linear algebra subprograms for Fortran usage,”
ACM Transactions on Mathematical Software 7,
308-323 (1979).

. J. Dongarra, J. Du Croz, S. Hammarling and R.

Hanson, “A proposal for an extended set FORTRAN
basic linear algebra subprograms. ACM SIGNUM
Newsletter 20, 1-18 (1985).

J. Dongarra and S. Eisenstat, “Squeezing the most of
an algorithm in CRAY FORTRAN,” ACM Trans-
actions on Mathematical Software 10, 219-230 (1984).
D. Dodson and J. Lewis, “Proposed sparse extension
to the basic linear algebra subprograms,” ACM
SIGNUM Newsletter 20, 22-25 (1985).

E. Anderson, “Parallel implementation of pre-

19.

20.

21.

22.

23.

24,

25.

26.

195

conditioned conjugate gradient methods for solving
sparse systems of linear equations,” Report No. 805,
Center for Supercomputing Research and Develop-
ment, University of Illinois, Urbana, IL, 1988.

E. Anderson and Y. Saad, “Preconditioned conjugate
gradient methods for general sparse matrices on shared
memory machines,” in Parallel Processing for Scientific
Computing (Edited by G. Rodrigue), pp. 88-92,
Society for Industrial and Applied Mathematics,
Philadelphia, 1989.

I. Duff, R. Grimes and J. Lewis, “Sparse matrix test
problems,” ACM SIGNUM Newsletter 17, 22-27
(1982).

I. Duff, R. Grimes and U. Lewis, “Sparse matnx test
problems,” ACM Transactions on Mathematical
Software 15, 1-14 (1989).

[. Duff, “MAZ28: a set of FORTRAN subroutines for
sparse unsymmetric linear equations,” Report No.
R8730, AERE Harwell Laboratory, Harwell, U.K.,
1977.

J. George and E. Ng, “An implementation of Gaussian
elimination with partial pivoting for sparse systems,”
SIAM Journal of Scientific and Statistical Compuring 6,
390405 (1985).

K. Gallivan, A. Sameh and Z. Zlatev, “Solving general
sparse linear systems using conjugate gradient-type
methods,” Proceedings of 1990 International Confer-
ence on Supercomputing, Amsterdam, ACM Press.
1990, pp. 132-139.

Z. Zlatev, “Use of iterative refinement in the solution
of sparse linear systems,” SIAM Journal of Numerical
Analysis 19, 381-399 (1982).

K. Gallivan, W. Jalby, U. Meier and A. Sameh.
“Impact of hierarchical memory systems on linear
algebra algorithm design,” International Journal of
Supercomputer Applications 2, 12-48 (1988).

