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Abstraet-42onsider the system A x  = b, where A is a large sparse nonsymmetric matrix. It is assumed that 
A has no sparsity structure that may be exploited in the solution process, its spectrum may lie on both 
sides of the imaginary axis and its symmetric part may be indefinite. For such systems direct methods may 
be both time consuming and storage demanding, while iterative methods may not converge. In this paper, 
a hybrid method, which attempts to avoid these drawbacks, is proposed. An L U factorization of A that 
depends on a strategy that drops small non-zero elements during the Gaussian elimination process is used 
as a preconditioner for conjugate gradient-like schemes, ORTHOMIN, GMRES and CGS. Robustness 
is achieved by altering the drop tolerance and recomputing the preconditioner in the event that the 
factorization or the iterative method fails. If after a prescribed number of trials the iterative method is 
still not eonvergent, then a switch is made to a direct solver. Numerical examples, using matrices from the 
Harwell-Boeing test matrices, show that this hybrid scheme is often less time consuming and storage de- 
manding; than direct solvers, and more robust than iterative methods that depend on preconditioners that 
depend .an classical positional dropping strategies. 

I, THE HYBRID A L G O R I T H M  

Cons ide r  the system of l inear  a lgebraic  equa t ions  
A x  = b,  where  A is a nons ingula r ,  large, sparse and  
n o n s y m m e t r i c  matr ix .  W e  assume also tha t  matr ix  A 
is general ly  sparse (i.e. it has  ne i the r  any special 
p roper ty ,  such as symmet ry  and /or  posi t ive definite- 
ness,  no r  any special pa t t e rn ,  such as bandednes s ,  
tha t  can be  exploi ted  in the  solut ion of  the  system).  
Solving such l inear  systems may be a r a the r  difficult 
task. This  is so because  c o m m o n l y  used direct  
me thods  (sparse Gauss ian  e l imina t ion)  are too  t ime 
consuming ,  and  i tera t ive  m e t hods  whose  success 
depends  on the  matr ix  having  a defini te  symmet r ic  
par t  or  depends  on  the  spec t rum lying on  one  side of  
the  imaginary  axis are not  robus t  enough .  Direc t  
m e t h o d s  have  the  advan tage  tha t  they normal ly  
p roduce  a sufficiently accurate  solut ion,  a l though  a 
direct  es t imat ion  of  the accuracy actually ach ieved  
requi res  addi t iona l  work.  O n  the  o the r  hand ,  when  
i terat ive m e t h o d s  converge  sufficiently fast, they 
requi re  compu t ing  t ime tha t  is several  orders  of 
magn i tude  smal ler  than  tha t  of any direct  me thod .  
This  br ie f  compar i son  of the  main  p roper t i e s  of 
direct  m e t h o d s  and  i tera t ive  m e t h o d s  for the  
p rob l em at hand  shows tha t  the m e t h o d s  of bo th  
groups  have some advan tages  and  some dis- 
advantages .  Tt le refore  it seems wor thwhi le  to design 
m e t h o d s  tha t  combine  the  advan tages  of bo th  
groups,  while minimiz ing  the i r  d i sadvantages .  

T h r o u g h o u t  we assume tha t  sparse  Gauss ian  
e l imina t ion  is the  direct  m e t h o d  chosen  for the  
solut ion of A x  = b.  It is well known  tha t  this is the  
bes t  choice in the  case where  A is large and  general ly  
sparse;  see for example  Ref.  1 or  2. T he  a r i thmet ic  

ope ra t ions  dur ing  stage k ( k  = 1 , 2 . . . n -  1 ) of Gauss ian  
e l imina t ion  are carr ied out  by the  formula  

a!k+~ ~ ( k } _ _ . ( k ) t . ( A p ~ - - l . ( k )  l )  
q = ¢til ~ i k  ~,Ukk ] tSkj , 

where  i = k + l ,  k + 2 . . . n ,  j = k + l ,  k + 2 . . . n ,  while 
(k) 

aii = a,~ are the e l emen t s  of matr ix  A. It is clear that  
= {,~ a},} ~ vanish,  then  a if a}~ ) 0 while ne i the r  ai, nor  

new non-ze ro  e l ement ,  f i l l - in ,  is c rea ted  in posi t ion 
(i, j) .  Unfo r tuna t e ly ,  fill-in does  occur  when  large 
sparse matr ices  are fac tored  by Gauss ian  e l iminat ion  
and  this m e t h o d  becomes  r a the r  expensive  (in t e rms  
of t ime and  s torage  r equ i r emen t s )  when  many  fill-ins 
are in t roduced .  The re fo re ,  reducing  the n u m b e r  of 
fill-ins is one  of  the  main  tasks dur ing  the develop-  
m e n t  of sparse mat r ix  cocles, at  least  on sequent ia l  
and  vector  compute r s .  Such min imiza t ion  of fill-in is 
ach ieved  by adop t ing  a sui table  p ivot ing s t ra tegy;  see 
for example  Refs  3-5.  The  a m o u n t  of fill-in may be 
large,  however ,  even  w h e n  a good pivot ing s trategy 
is adopted .  For  such systems direct  me thods  may lose 
compet i t iveness  with i terat ive me thods  if a con- 
vergen t  m e t h o d  can be found  for the system. The  
successful use of i terat ive me thods  often depends  
upon  the  effective use of p r e c o n d i t i o n i n g .  Precon-  
d i t ioning a system A x  = b involves using the i terat ive 
m e t h o d  to solve the  re la ted  system M -1 A x  = M - ~ b ,  

where  the  p recond i t i oned  M is easily inver t ib le  and 
M -1 A ~ I. The  choice of M is an  art  in itself and  de- 
pends  on the  i terat ive m e t h o d  used,  the  appl ica t ion 
f rom which the  system arises, and,  for high-per-  
fo rmance  mach ines ,  the  a rch i tec ture  on  which the 
a lgor i thm is to execute.  6 

For  the purpose  of ob ta in ing  an approx imate  
faetor izat ion of A for p recondi t ion ing ,  while main-  
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taining efficiency in the sparse Gaussian elimination 
process, we attempt to reduce further the number of 
fill-ins as follows (for more details see Ref. 7). Let 
'r be a parameter that satisfies 

0---'r < 1 (2) 

and let 

a~ )= max([a}.k~)+.[, ]a!.kk)+2l...la!k~), (3) 

where the elements over which the maximum is 
taken form the active part of row i at stage k. The 
parameter "r will be called the drop-tolerance,  

because any element at stage k that satisfies 

la~v~'l -- "~al~' (4) 
is d r o p p e d  (removed from the arrays where the non- 
zero elements, together with their indices, are kept 
and neglected in the computations after stage k). 

It is clear that by choosing a sufficiently large drop- 
tolerance "r the number of fill-ins can be reduced 
considerably. This will lead to an approximate 
factorization stage in which both the computing time 
and storage requirements are substantially reduced 
compared to the classical direct methods. It is also 
clear, however, that there are two difficulties with 
this approach: (1) there is no guarantee that the 
factorization will be completed successfully when a 
large drop-tolerance is specified; and (2) the solution 
obtained with the factors calculated by using a large 
drop-tolerance (assuming that the factorization is 
successfully completed) will normally be inaccurate. 

While it is assured [see Eqs (2)-(4)] that not all 
the elements in the active part of a row will be 
removed, it is possible that all non-zero elements in 
the active part of a column will be dropped when the 
drop-tolerance is large. Therefore, it is useful to 
enhance the dropping criterion defined by Eqs (2)- 
(4) by adding an extra requirement that the dropped 
non-zero element is not the last one in the active part 
of its column. In this way, structural singularity is 
assured at least not to appear at the stage under con- 
sideration. Although this enhancement does not 
guarantee that structural singularity will be avoided 
throughout the procedure, it works rather well in 
practice. 

Once the approximate factors of A are successfully 
obtained as a preconditioner, an iterative method 
must be used in an attempt to obtain a good approxi- 
mation of the solution. Depending on the drop 
tolerance, however, the iterative method may not 
converge. Experiments show, however, that con- 
jugate gradient-type methods perform rather satis- 
factorily in this situation. Three such methods, 
ORTHOMIN,  GMRES and CGS, are used in the 
experiments. 

The improvement made in the dropping criterion 
and the use of an iterative method (preconditioned 
with the factors L and U obtained by Gaussian 
elimination) enhance the chances of solving the 
system A x  = b with the desired accuracy with reason- 

able efficiency. These two steps so far do not 
guarantee such success, however. A third step is 
necessary to yield a solution with the accuracy 
requested by the user when either the factorization is 
not completed (due to singularity resulting from 
dropping too many non-zero elements) or when the 
preconditioned iterative method is not convergent 
(or converges too slowly). This third step is rather 
obvious. If either the factorization process fails or 
the iterative scheme does not converge, then the 
drop tolerance must be reduced, new approximate 
factors L and U computed, and the iterative method 
restarted. This action can be repeated for a 
prescribed number of trials after which the drop- 
tolerance is set equal to zero, i.e. switching to a 
direct method. Let ,4(-r) denote the matrix such that, 
in the absence of rounding errors, A ( r ) = L U  is 
formed by performing an approximate factorization 
of A using drop-tolerance -r (permutations required 
to form L and U have been ignored for simplicity of 
presentation). Note that A(-r)--->A as -r--+0. The 
hybrid solver can then be described as follows: 

DROP TOLERANCE -r IS GIVEN 
DESIRED ACCURACY ~ IS GIVEN 
DO UNTIL (X IS ACCEPTED) 

IF (LU= A('r) EXISTS) THEN 
M~---LU 
x ~  (LU)-~b 
CALL PCG_TYPE_METHOD (M,A,x,b,~) 
IF (NOT CONVERGED OR TOO SLOW) THEN 

r (---pl(T) 
E N D  IF 

ELSE 

END IF 
END DO 

The functions p~(-r) and p2('r) are functions that 
adjust the value of "r given an unsatisfactory 
performance by the iterative method and an un- 
successful factorization, respectively. The outer loop 
around the classical form of preconditioning which 
makes use of the two reduction functions yields a 
robust algorithm--in the worst case a direct method 
will eventually be used. By recomputing the precon- 
ditioner with smaller "r when the iterative method 
does not appear to be performing well we avoid the 
use of a poor preconditioner and the subsequent in- 
efficiency. The adaptive behavior of the algorithm 
can therefore be used, starting with a relatively large 
initial -r, to allow the algorithm to find a drop toler- 
ance that is natural for the problem. The early itera- 
tions with large -r require some extra time but the 
fact that many elements are dropped reduces the 
number of operations performed (significant for a 
single processor) and provides more opportunity for 
the creation of parallel pivot sets (important for 
parallel processors). The effort is usually repaid with 
rapid convergence of the iterative method and can be 
very worthwhile if a sequence of problems is to be 
solved with similar matrices, i.e. those with effective 
values of • that are about the same. 
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Assuming that the above steps are properly incor- 
porated in a code,  we must show the robustness and 
effectiveness ,of the hybrid. Below we illustrate by 
numerical  examples that (see also Ref.  7): 
(1) this hybrid method  is more robust than other  

precondi t ioned iterative schemes available in the 
literature., and often there is no need for recal- 
culating the approximate  factors, and in this case 
the hybrid scheme is much faster than direct 
methods;  

(2) the global comput ing t ime of  the hybrid scheme 
is less than that of direct methods  even if one has 
to recalculate the approximate  factors once or 
twice; 

(3) even in the worst case (when we have to switch to 
a direct method) ,  the increase of  the comput ing 
time is not that high. 

It is important  to carry out  the third step (the 
reduction of T and refactorization) properly.  This 
step is rather t ime-consuming and, therefore,  should 
be per formed only when ei ther the factorization 
process with a given drop tolerance fails, or  when the 
iterative method  does not converge.  In the first case, 
the third step, is activated when the code detects a 
zero column or row. In the second case, failure of the 
iterative scheme,  it is crucial to determine when to 
abandon the i terations and to resort to determining 
new approximate  factors with a more stringent drop- 
tolerance.  In the next section we shall show that it is 
possible to satisfy these two requirements  and, thus, 
it is possible to implement  all three steps efficiently. 

2. THE STOPPING CRITERIA 

Designing ,;topping criteria for iterative methods  
applied to systems A x = b ,  where A is a general  
matrix, is a critical task. Since Krylov sub-space 
methods (se, e above conjugate gradient-type 
methods)  are not guaranteed to converge for general  
l inear system,,;, the first task is to determine whether  
the iterates are converging.  

The residual vector  r, defined by 

ri  = b -  Axi = m ( x - x i ) ,  ( 5 )  

where x, is the ith i terate,  is often used in formulat ing 
stopping criteria. It is clear from Eq. (5) that some 
norm of the residual vector may provide a reliable 
est imate of tlhe norm of the error  if the norm of 
matrix A (corresponding to the vector norm chosen) 
is, roughly speaking, of order  1. 

If IlZll is large, a stopping criterion based on the use 
of Ilr, II may not detect that the error  in the solution, 
IIx-xL is small. This could be illustrated by taking 
only one equat ion with A = b = 10 "~. Assume that the 
accuracy required is ACCUR = 1 0  - 4  and that the 
current approximat ion x, is such that Ix-x,I = 10-" ' .  
Then Ir, I = 1 ;and a stopping criterion based on the 
use of the residual will be misleading. 

If IIAII is sman, a stopping criterion based on the 
use of IIr,lr does not yield useful information about  the 

error  of the approximation,  IIx-x,ll. To illustrate this, 
consider again one equat ion only, this t ime with 
A = b =  10-" ' .  Let  the accuracy required be again 
defined by A C C U R = I O  -4. Assuming that the 
current approximation x~ is such that Ix-x,I = 10-', 
then tr~l = 10 -5 and a stopping criterion based on the 
use of  the residual alone will be misleading. 

The examples given above are extreme (and in 
practice the situation will often be better) .  Never-  
theless, these examples indicate that it is not a good 
idea to have the matrix A (or some norm of this 
matrix) involved,  directly or indirectly, in the stop- 
ping criteria. 

An  interesting at tempt to el iminate the influence 
of  A is made  in the so-called simple version of 
G M R E S  (the theoretical  background of code 
G M R E S  is discussed in Re f  8). In this code the itera- 
tions are s topped if 

IIr,II < A CCUR, (6) 
IIr.II 

where ACCUR is the accuracy required by the user. 
Assume that 

I~A(x-x311-~ LIAIIIIx- xL (7) 

where i = 0,1 .... Under  this assumption 

IIr, II IIx-x,ll (8) 
IIr.ll-tk-x.II 

and, if the starting approximation xo is equal to zero, 
then an at tempt  to evaluate the relative error  is made 
by the stopping criterion in G M R E S  (at the same 
time eliminating the influence of  matrix A). While 
the assumption under  which this criterion works, Eq.  
(7), is not unrealistic, there will be difficulties when 
the starting approximation is close to the exact 
solution. This could be the case, for example,  when 
solving t ime-dependent  problems. 

It follows then that it is worthwhile to determine 
whether  or  not the iterative process is convergent  
without using the matrix A in the criterion 
developed.  In many iterative processes the new 
approximation is obtained from the old one by using 
a simple transformation:  

xi+t = xi+eL,p, (9) 

where i = 0 , 1 . . . ,  a, are constants and p, are certain 
correction vectors. Based on this observation,  a con- 
vergence check with the desired propert ies can be 
derived. 

Let  us assume that Eq.  (9) holds for the iterative 
method  selected. This is true for O R T H O M I N  (see 
Ref.  9) and for CGS (see Ref. 10), but not for the 
G M R E S  (see Ref. 8). Let  us assume also that the 
computat ions  with the above formula are carried out 
without rounding errors. Then,  if the iterative 
method  under  considerat ion is convergent ,  the exact 
solution x of the system Ax = b can be written as 

x=xi+ ~ oL,pj, (10) 
! t+l 
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and an upper  bound on the norm of x = xi can, under  
some mild assumptions, be given by 

ii~_x,ll_<l,~i+,lllp,+,ll[l+ ]~ Io,,lllpjll ] (11) /=,+21~,,+, IILoi+,llj" 
Consider  a real constant RA TE such that 

O < R A T E <  1 (12) 

and let for j =  - 2 , - 1 , 0  

RA TEj = 0.999 RATE.  (13) 

Define for i =  1,2 . . . the quantit ies RATEi  and 
M E A N R A  TEi by the recurrences 

R A T E i =  I,~,lllp,II (14) 
I~,-,llLo,-,ll 

and 

M E A N  RA TEl = 0.25 ( RA  TEl + RA TEl_ 1 
+ RA TEi_2 + RA TEi_2). (15) 

Consider  also an integer variable N B A D ,  which is 
initially set to zero and is updated at each i teration by 

N B A D  = N B A D +  l if M E A N  RA  TEi> RA TE (16) 
0 otherwise.  

We therefore  have adopted the following criterion. 

Convergence criterion. The iterative process de- 
fined by Eq. (9) is assumed to be converging at a 
sufficient rate if NBAD<-cr, where tr is some 
small positive integer (presently in our  code,  
or=5) .  

Normally much more stringent requirements  are 
imposed in the construction of a convergence 
criterion. For  example,  simple iterative refinement 
(see Ref.  5 or 11) is often stopped when R A T E i >  
RATE.  Such a criterion is rather restrictive in 
connection with conjugate gradient-type methods  
and very often stops the iterative process very early 
and, what is even more important ,  unnecessarily 
(because the process will often converge,  although 
slowly, even when R A T E i > R A T E  is occasionally 
true).  

An at tempt  to evaluate  the rate of convergence,  
especially for iterative refinement,  is made by using 
the parameter  R A T E .  In connect ion with conjugate 
gradient- type methods,  however ,  it is often useful to 
set R A T E  close to 1 (RATE=0.999  is used in our  
experiments) .  This is so because conjugate gradient- 
type methods  often converge very slowly at the 
beginning with remarkable  improvements  later. In 
fact, these slow and fast regimes of convergence 
could occur several t imes over  the course of solving a 
system. On the o ther  hand, when solving time- 
dependent  problems,  for example,  it is advisable to 
keep the value of RA TE small. The code in such a 
case will, after several trials and reductions of ' r ,  find 
some sufficiently accurate precondi t ioner  for which 

the convergence rate is fast from the beginning, and 
use it in several time-steps. 

The second task which must be considered is to 
terminate  the i terations when the desired accuracy is 
achieved.  Let  us assume that the iterative process 
converges (according to the convergence criterion 
given above).  Let  the stopping criterion be given by 
IIX--Xill ~- ACCUR.  Equat ion (11) requires the obtain- 
ing of  an est imate of the sum in order  to obtain an 
accuracy check; such an est imate may be obtained as 
follows. Define 

M A X R A  TEi= max 
(RATE, ,  RATE,_, ,  RATE,_2, RATEi_3) (17) 

and let (for some q = i, i = 1,2...) 

M A X R A  TEq < - RATE.  (18) 

If we assume that 

RA TEj<-MAXRA TEq for 
j = q - 3 ,  q - 2 ,  q - l ,  q (19) 

implies 

RA TE/ <-- M A X R A  TEq for 
j = q + l ,  q+2. . .oo,  (20) 

then it can easily be shown that Eq.  (11) reduces to 

i i x _  x,,ll < - I~,qllLo~ll (21) 
1 - M A X  RA TEq" 

As a result, we have the following stopping criterion 
based on the accuracy required.  

Acceptability criterion. Let 0 --- RATE < I and 

ACCUR<-O be given real numbers and assume 

that at the end of some iteration q we have 
M A X R A  TE u <- RA TE. Then the iterative process 
is terminated if 

I%lltpqll < A C C U R  (22) 
1 - M A X  RA TEq - 

It is clear that one should expect  I I x - xq l l  <- A C C U R  to 
be satisfied on successful exit when the above 
acceptability criterion is in use. 

We have sketched above the ideas used rather 
than the more complex termination criteria actually 
used in our code. For  example,  in an at tempt  to en- 
hance the possibility that assumptions made by Eqs 
(19)-(20) actually hold, we also require that all of the 
last four values of  et i are close to 

0.25 (oti+ eq_l + ~i-2 + cq-3). (23) 

Equat ion (22) is checked only when this condit ion is 
satisfied. 

When the O R T H O M I N  algorithm is chosen as the 
iterative method,  a special action is carried out at 
each iteration. The  number  of vectors in the Krylov 
subspace is increased by one if M E A N R A T E i >  
RATE.  (The user provides a parameter  M A X C O L  
which determines  the maximum dimension of the 
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Krylov subspace al lowed.)  In this way the code 
at tempts  to automatical ly increase the possibility of  
achieving convergence.  Exper iments  indicate that 
this is a very useful device. This is in part due to the 
fact that a large initial Krylov dimension is a waste of 
t ime if the i terative process converges quickly with a 
subspace containing one or  two vectors only; and for 
any particular problem one normally does not know 
in advance the optimal number  of vectors in the 
Krylov subspace for which the O R T H O M I N  con- 
verges (and thus it is bet ter  to leave to the code the 
task of finding a nearly optimal  number  of vectors for 
the Krylov subspace). This idea could also be used 
with o ther  t runcated conjugate gradient- type 
methods.  For  CGS,  of  course,  such a device cannot 
be applied. It is yet not clear to us how to apply the 
idea to methods  based on restarting the i terations 
(such as G M R E S ) .  

The  convergence  criterion, or  more preciesly the 
non-terminat ion criterion, is rather lenient. The 
code will try to carry out  the computat ions  in the 
iterative method  as long as possible. This is in some 
sense justified, because it is rather expensive to stop 
the iterations unnecessarily since it will require re- 
factorization. On the o ther  hand, the acceptabili ty 
criterion is rather conservative:  the codes usually 
perform several extra i terations (and compute  
solutions the accuracy of which is very often greater  
than the desired accuracy). However ,  this is typically 
not an excessive amount  of  extra work: the cost per  
iteration is normally very low. This means that we in- 
vest some more work in an at tempt  to prevent  an 
unnecessary application of costly refactorization and 
to ensure that the accuracy required is achieved. 

By checking the norms of the residual vectors and 
the correction vectors,  ri and e%oi, respectively,  we 
have observed that, when the matrix A is badly 
scaled and/or i l l-conditioned, these quantit ies may 
be small, while the norm of the error  vector x - x i  is 
considerably greater  than the accuracy requirement .  
However ,  in all such situations that have been 
observed in our  experiments ,  the stopping criteria 
indicate correctly that the iterative process must be 
continued because the accuracy desired has not been 
achieved. 

Finally, we have not discussed the alterations to 
the terminat ion criteria which introduce the cost of 
refactorization and the cost per  i teration into the 
decision to reduce "r. This is discussed in Ref.  7. 

3. THE CODES 

The hybrid algorithm described above has been 
implemented  in a code for the Ail iant  FX/80 which 
is based on a modified version of the direct method  
package for general  sparse matrices Y12M, 2's'12 
and three i terative solvers based on the algorithms 
O R T H O M I N ,  G M R E S  and CGS (see Refs 8, 9 
and 10, respectively) adapted to use the 
approximate  factorization and initial guess gener-  

ated by Y12M. Stopping criteria based on the ideas 
discussed in the previous section have been im- 
p lemented  in O R T H O M I N  and CGS,  while the 
original stopping cri terion is used in G M R E S .  A 
modera te  amount  of optimizat ion for the multi- 
vector processing capabilities has been per formed 
on the version used to generate  the results pre- 
sented below. For  more  details concerning the 
effect of more  aggressive optimization and the al- 
gori thm/architecture mapping,  see Ref.  7. 

The input stage of  the package has been organized 
in a user-friendly fashion. The matrix A is input in 
simple triplet form, i.e. a series of triples (~#, i, j) in 
an arbitrary order.  The  user is not required to order  
the non-zero e lements  by rows or  by columns nor to 
count  the non-zero elements  per  each row or 
column. The code converts  this storage scheme into 
two others required for the computations.  The first is 
a static structure which preserves the original values 
of  A needed for the iterative methods  in a way which 
supports the computat ional  primitives found in that 
port ion of the code. The  non-zero e lements  of matrix 
A are stored in an array AORIG, grouped by rows, 
i.e. non-zero e lements  of the first row, then the non- 
zero e lements  of the second row, etc. The order  of 
the non-zero e lements  within a row is arbitrary and 
there are no free locations between any two rows. 
The column numbers  associated with the elements  
are kept in an array CNORIG in corresponding 
positions---if a non-zero e lement  % is stored in 
AORIG(K),  then its column number  j is stored in 
CNORIG(K). Pointers into AORIG to first and last 
positions of each row of A are also prepared.  This 
static storage scheme supports the standard vector- 
concurrent  implementat ion of a sparse-matr ix-  
vector multiplication primitive (parallel sparse dot 
products,  each of which is vectorized within a 
processor) required by the iterative method.  If a 
different form of this primitive is used to improve 
performance of the i terative methods,  e.g. those dis- 
cussed in Ref. 13, this structure must be updated 
appropriately.  A second dynamic structure is re- 
quired to compute  the approximate  factorization of 
A(~). It must be dynamic due to the elements  added 
through fill-in and removed  through dropping.  The 
second structure is initialized by making a copy of the 
static structure sketched above and a second column- 
or iented version of the structure of A. In this 
structure,  the row numbers  of the non-zero e lements  
are grouped by columns, i.e. the row numbers of the 
non-zero e lements  in the first column, then the row 
numbers  of the non-zero e lements  in the second 
column, etc. Pointers into this structure to the first 
and last e lements  in each column are also kept. The  
column-or iented  structure contains no numerical 
information;  it is used to facilitate the search for a 
pivot e lement  at each stage. 

The  version of the code used to generate  the 
results below is based on exploiting the parallelism 
involved in a single stage of sparse Gaussian 
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elimination. The major phases of each stage are as 
follows: 
(1) pivotal search 
(2) interchanges 
(3) symbolic factorization in the column- and row- 

oriented structures 
(4) numerical rank-1 modification. 

In the pivotal search, a set of the best candidate 
rows is assembled (a few rows that contain a 
relatively small number of non-zero elements; see 
Ref. 4). This operation can be carried out in a vector- 
concurrent mode. The simplest way to do this is to 
search all rows in the active part of the matrix at the 
stage under consideration. This gives O(n 2) opera- 
tions. On sequential machines it is better to order the 
rows in increasing number of non-zero elements in 
the beginning and then at each stage to update this 
order: this gives about O(nq) operations, where q is 
the average number of non-zero elements in the 
active parts of the pivotal columns. Interestingly, a 
long series of experiments indicated that the simpler 
algorithm performs satisfactorily. Our experiments 
were with matrices of up to order n = 10  4. As n in- 
creases significantly beyond this point, however, a 
parallel version of the second algorithm should be 
preferable. 

The interchanges which permute the chosen pivot 
element ctij to the (k, k) position in the kth stage can 
be carried out in parallel in a straightforward 
manner. To see this, consider the row-oriented 
structure. We must scan each target row (a row that 
has a non-zero element, in the pivotal column) for 
elements in columns j and k and relabel them appro- 
priately. The interchanges in each target row are 
completely independent of the interchanges in the 
other target rows, and thus can be carried out con- 
currently. Similar considerations apply to the 
column-oriented structure. 

Once the pivot column and row are identified and 
permuted a symbolicfactorization is performed. This 
calculates the location of fill-ins in the target rows 
and columns involved in the rank-1 update and up- 
dates the dynamic data structure containing ,4(~). 
The advantage of using the symbolic factorization at 
each stage is that the numerical update of the active 
portion of the matrix can be carried out using 
vectorization and concurrency. This is different from 
the original version of Y12M, 2 where no symbolic 
factorization is carried out and the code searches for 
a place to locate the fill-in immediately when it dis- 
covers that a fill-in is to be created. The symbolic 
factorization is performed sequentially in the code 
whose results are presented below but it also lends 
itself to vector and concurrent processing (see Ref. 7 
for details). 

The main computational primitives required by 
each step of a preconditioned conjugate gradient- 
type algorithm are as follows: 
(1) matrix-vector multiplication 
(2) solving systems with triangular matrices 

(3) vector triads 
(4) norms (inner products) of a vector (two vectors). 

The last two operations are simple BLASI level 
primitives (see Ref. 14), and the main implementa- 
tion question is whether the entire machine should 
be used to compute them or whether they should be 
merged with one of the other phases into a more 
complicated primitive. The first is a BLAS2 opera- 
tion and is well understood on Alliant-like architec- 
tures (see Refs 15 and 16). If the matrix is sparse, 
then various approaches are possible. For example, 
the simplest approach is to use parallel sparse dot 
products, each of which are vectorized as mentioned 
by Dodson and Lewis. 17 Depending on the matrix 
A, however, other forms may be more efficient on 
architectures like the Alliant FX/80 (see Ref. 13). 

The second primitive is the source of most of the 
performance questions for a preconditioned method 
since it tends to be the most time-consuming. 
Parallelism and vectorization can be exploited if the 
structures of the factors L and U are examined 
before the start of the iterative process in order to 

create  a parallel schedule of row operations, 
typically by a simple levelization of the computa- 
tional dependence graphs. Our code uses a modified 
version of the code developed by Anderson TM (see 
also Ref. 19). 

4. ORGANIZATION OF  THE NUMERICAL EXPERIMENTS 

The numerical experiments whose results are 
presented in the next section were generated using 
matrices from the well-kinown HarweiI-Boeing set 
of test matrices prepared by Duff et al. 20.21 The three 
main purposes of the numerical experiments are as 
follows. 
(1) We show that the method sketched in the 

previous sections often performs better than 
direct methods. Results from Y12M and two 
other well-known packages, SPARSPAK-C and 
MA28 (see the works of ~sterby and Zlatev, 2 
Duff = and George and Ng, 23 respectively) 
are presented, the first modified for the Alliant 
as discussed above, and the rest using compiler 
generated parallelism and vectorization only. 

(2) We also show that the method is much more 
reliable than using the more standard incomplete 
L U factorization preconditioning which is based 
on positional dropping rather than numerical 
dropping. A code developed for the Alliant is 
used.18 

(3) The reliability of the stopping criteria will be 
illustrated by showing the accuracy estimated by 
the code and the accuracy actually achieved. 

The matrices selected for the experiments are all 
unsymmetric. Most have an order greater than 1000 
and those with a smaller order are such that they 
produce a large amount of fill-in when a direct solver 
is used. Some of the matrices used in our previous 
report 24 are not used here and improvements to 
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the code used :in that work,  both to Y12M and to the 
i terative me thod  port ion of  the code,  have been 
made.  Moreover ,  the new and more  efficient opt ion 
of MA28,  where  a pivotal  strategy based on the 
algori thm proposed  by Zla tev  4 is implemented ,  is 
used in the present  experiments .  The  paramete r  
NTOL in S P A R S P A K - C  (by which one  determines  
when a row of  the matrix should be considered as 
dense and t reated in a special way) was set to 100, 
while NTOL = 25 was used in Ref.  24. However ,  re- 
sults with NTOL = 25 are also presented in order  to 
demonst ra te  the fact that this code may somet imes 
be sensitive to the choice of  this parameter .  

The  drop- tolerance -r was set to 2 - 4  for initially 
calculating precondi t ioners  for the conjugate 
gradient  methods.  An e lement  is dropped from the 
active part of  the matrix if (4) is satisfied after com- 
pletion of  the rank-1 update.  The drop- tolerance is 
reduced by a factor of  2 -m when the factorization of 
,4(T) does not  succeed and by a factor of 2 -5 when 
there are difficulties with the convergence  of the 
i terative method.  The  calculation of  several precon- 
ditioners may require several such trials and the 
comput ing t imes reported are the sum of the compu-  
ting t imes for all trials required for a particular 
matrix. 

Difficulties in the calculation of  the precondit ion-  
ers very often appear  because the columns of  the 
matrices are very badly scaled (and the code throws 
away all non-zero e lements  in a column).  In an 
a t tempt  to reduce the possibility for appearance of 
such a situation, we perform an initial scaling of the 
matrices (the t ime needed to scale is included in the 
comput ing t imes given). For  the matrices tested 
scaling yields rather  good results with regard to 
avoiding unnecessary reductions of the drop- 
tolerance.  Two extra benefits due to the scaling 
procedure  are also observed.  The  first is connected 
with the preservat ion of the sparsity (when the 
matrix is scaled the number  of  candidates for pivots is 
normally increased and this leads to sparse factors L 
and U, even if the drop- tolerance is set to zero).  The  
second benefit is connected with the condit ion 
number.  Very often the condit ion number  of  the 
scaled matrix i,; smaller than the condit ion number  of  
the original matrix, and therefore  the i terative pro- 
cesses converge faster, as a rule, when scaling is in 
u s e .  

Some characteristics, including the condit ion 
number  K(A), of the matrices used are presented in 
Table 1. We believe that exper iments  using these 
matrices are representat ive.  There  are matrices that 
are very sparse (west2021 has about three e lements  
per row on average) and matrices that have many 
elements  initially (me-fe contains more  than 30 
e lements  per row on average).  There  are both very 
well condit ioned matrices (steam2) and very ill- 
condi t ioned matrices (nnc1374). For  some matrices 
the condit ion numbers  are reduced considerably 
after application of the scaling procedure.  For  

Table 1. Matrices used in the experiments 

Matrix Order Non-zeros K(A) 

steam2 600 5660 3.2E+ 0 
mc-fe 765 24,382 7.7E + 1 
sherman2 1000 23,094 2.6E+ 3 
pores-2 1224 9613 3.6E+ 5 
nnc1374 1374 8588 2.0E + 13 
hwatt-1 1856 11,360 4.7E+ 3 
hwatt-2 1856 11,550 3.1F+ 5 
west2021 2021 7310 4.8U+ 7 
orsreg-1 2205 14,133 8.2E+ 3 
or6781hs 2529 90,158 2.11=+ 6 
sherman5 3312 20,793 6.0E + 3 
saylr4 3564 22,316 1.2E + 7 
gematl 1 4929 33,108 1.6E + 6 
gematl2 4929 33,044 1.8E+ 6 
sherman3 5005 20,033 1.91~ + 5 

example,  the condit ion number  estimation for 
sherman3 is 6 . 9E+  16 when scaling is not applied. 
The matrices vary in the amount  of fill-in produced 
(west2021 produces very little fill-in while saylr4 
produces significantly more) .  Finally, while results 
from 15 matrices are presented,  the conclusions are 
based on experiments  with several hundred matrices 
(including some artificially created matrices created 
using the matrix generators  from Ref. 2). 

5. EXPERIMENTAL RESULTS 

In this section the numerical  results obtained by 
using the test matrices listed in Table 1 are discussed. 
As ment ioned  earlier,  the conclusions are drawn by 
using a much larger set of test matrices, but the 
matrices chosen illustrate correctly the different 
situations that could arise in practice; situations in 
which the hybrid methods  are very successful or in 
which the direct methods  or  the purely iterative 
methods  should be preferred.  

5.1. The performance of the direct solvers 

The comput ing times achieved with the three 
direct solvers, the new version of MA28,  SPARS-  
P A K - C  with N T O L  = 1000 and the new version of 
YI2M (denoted Y12M1), are given in Table 2. The 
numbers of  non-zeros in the factors L and U are 
given in Table  3 and the accuracy achieved is 
recorded in Table  4. 

Consider  first the accuracy results for the direct 
methods.  Surprisingly, the results obtained by 
S P A R S P A K - C ,  which uses partial pivoting, tend to 
be less accurate than the results obtained by the 
o ther  two codes. The  cause of this behavior  is not 
clear. It could be due to the fact that an improved 
general ized Markowitz  pivotal strategy is used in 
MA28 and Y12MI.  in this strategy some features of 
the complete  pivoting for dense matrices are applied 
on a subset of rows of the active part Atk) of matrix A 
at each stage k of  Gaussian elimination.  (See 
Theorem 1 in Ref.  4 or  the corresponding theorem 
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Table 2. Computing times (s) for the direct method codes 

Matrix MA28 SPARSPAK Y12M1 

steam2 16 62 5 
mc-fe 41 132 17 
sherman2 361 254 107 
pores-2 42 22 13 
nnc1374 113 50 31 
hwatt-1 91 107 43 
hwatt-2 99 100 42 
west2021 4 13 2 
orsreg-1 137 214 65 
or6781hs 174 195 75 
sherman5 286 141 61 
saylr4 353 312 147 
gematll  14 71 13 
gematl2 14 72 12 
sherman3 237 238 95 

Table 3. Non-zero elements in L U  for the direct method 
codes 

Matrix MA28 SPARSPAK Y12M1 

steam2 27,625 40,809 21,207 
mc-fe 61,376 59,424 61,419 
sherman2 209,648 301,610 177,712 
pores-2 66,452 49,913 53,371 
nnc1374 123,202 66,599 67,011 
hwatt-1 113,711 211,150 117,103 
hwatt-2 118,343 200,977 114,771 
west2021 14,576 10,574 8958 
orsreg-1 151,150 312,650 158,085 
or6781hs 146,245 188,606 133,715 
sherman5 223,967 229,912 149,593 
saylr4 311,379 489,256 308,455 
gematl l  52,826 70,630 45,987 
gematl2 54,403 72,905 49,118 
sherman3 218,315 350,046 210,394 

Table 4. Accuracy achieved with the direct method codes 

Matrix MA28 SPARSPAK Y12M1 

steam2 7.1E-13 1.1E-12 1.2E-15 
mc-fe 5.3E-15 6.8E-14 2.1E-14 
sherman2 1.5E-11 3 .2E-  7 3 .2E-  13 
pores-2 2.8E-13 8.6E-12 1.5E-12 
nnc1374 1.3E- 2 2 .2E-  3 9 .1E-  5 
hwatt-1 1.3E-14 2.5E-15 8.4E-15 
hwatt-2 1.2E-14 7.6E-14 1.2E-14 
west2021 2.8E-10 7.1E-10 1.2E-11 
orsreg-1 1.9E-13 3.1E-13 2.2E-13 
or6781hs 2 .0E-  14 1.4E- 8 4 .8E-  14 
sherman5 1.4E-14 8.9E-14 1.4E-14 
saylr4 7.9E-11 8.0E-12 5.6E-11 
gematll  6.4E-12 5.2E-11 3.0E-12 
gematl2 2.5E-11 1.6E-10 2.0E-12 
sherman3 2.6E-13 4.0E-13 8.8E-14 

pivoting), as should be expected.  Scaling is used with 
Y12M1 but not with the o ther  codes. As expected,  
the results show that scaling does not,  in general ,  
lead to bet ter  accuracy. Recall  that the motivat ion 
for scaling was to facilitate a more  effective choice of 
drop-tolerance.  

Compar ing the number  of non-zero elements  in L 
and U, it is seen that as a rule this number  is consid- 
erably greater  for S P A R S P A K - C .  Of  course, this 
should be expected:  it is well-known that the pivotal 
strategies of  the Markowitz will normally preserve 
the sparsity better  than partial pivoting. The reason 
that the numbers of  non-zeros in L and U f o r  Y12M1 
tend to be smaller than those for MA28 is probably 
due to the fact that scaling is used with the former  
package and as a result the set of  candidates for 
pivots for the scaled matrix tend to be, at each stage 
k, greater  than that for the original matrix. However ,  
it should be noted that the differences are not very 
large. 

The  computing t imes for Y12M1 are much smaller 
than those for MA28 and S P A R S P A K - C .  This is 
expected since Y12M1 has been somewhat  modified 
to exploit parallel and vector processing while the 
others rely only upon the restructuring compiler.  
The poor  performance of the latter codes indicates 
the inability of  restructuring compilers to achieve 
much with standard sequential  sparse solvers. If no 
optimizat ion is used, i.e. both vectorization and con- 
currency are suppressed, then the computing times 
for Y12MI become two to four times greater.  The 
results of  experiments  with concurrency and vectori- 
zation suppressed on Y12M1, but not for MA28 or 
S P A R S P A K - C ,  are given in Table 5. The results for 
MA28 in this table are obtained with the old pivotal 
strategy (the classical Markowitz).  Compar ing the 
results with those in Table 2, one can see the 
efficiency of  the pivotal strategy based on Theorem 1 
in Ref.  4. The  newer pivotal strategy also often gives 
bet ter  accuracy and a smaller number  of  non-zeros in 
L and U. 

The effects of the choice of N T O L  in 
S P A R S P A K - C  are also seen in Table 5. The results 
there were obtained with N T O L  = 25 while those in 
Tables 1-3 were obtained with N T O L  = 100. The 

Table 5. Computing times (s) on one processor for the 
direct method codes 

Matrix MA28 SPARSPAK YI2M1 

sherman2 
pores-2 

and the numerical  results in Ref.  2.) More  experi- nnc1374 
hwatt- 1 

ments are needed in order  to confirm this conjecture,  hwatt-2 
but  it should be noted here that if the opt ion in which west2021 
the classical Markowitz  strategy is used is chosen orsreg-I 
with MA28,  then the results obtained by this code sherman5 
become,  in general,  less accurate than those saylr4 sherman3 
obtained by S P A R S P A K - C  (and thus, by partial 

580 1052 362 
61 22 39 

224 42 62 
437 107 129 
406 100 127 
31 13 8 

140 197 195 
361 123 204 

1147 293 455 
847 215 309 
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results indicate that S P A R S P A K - C  may be very sen- 
sitive to the choice of  NTOL. For the matrix 
sherman2 the use of  N T O L = 2 5  instead of 
NTOL = 100 gives a factor of  4 increase in comput ing 
t ime and a factor of  3 increase in the number  of non- 
zeros in L and U. There  is, on the o ther  hand, a 
corresponding improvement  in the accuracy 
achieved (the max-norm of the error-vector  was 
1 . 9 E -  10). Various exper iments  with S P A R S P A K - C  
were run with NTOL equal  to 25, 50 and 100 and the 
overall  performance was best with NTOL = 100. 

5.2. The performance of  the hybrid algorithm 

Table 6 shows the comput ing times achieved by 
the hybrid algori thm using precondi t ioned O R T H O -  
MIN as the iterative method  and by Y12MI.  Recall  
that the initial value of  the drop-tolerance is "r = 2 - 4  

and it is reduced by a factor of 2 -m when the factori- 
zation fails and by a factor 2 -5 when the iterative 
process does not converge fast enough.  The numbers  
of trial factorizations are also given in this table. 

The  results shown, together  with many other  ex- 
periments ,  admit several conclusions. It is seen that 
the reduction in comput ing t ime can be greater  than 
one order  of magni tude (see the results for sherman2 
and saylr4). For  very i l l-condit ioned problems (e.g. 
nnc1374), or for problems that stay very sparse 
during the factorization (e.g. west2021, g e m a t l l  and 
gemat l2) ,  direct methods (Y12M1) are superior.  
The hybrid tends to perform best for large time- 
consuming problems,  i.e. precisely for problems 
where improving the performance  is most wanted. 
This is due to the fact that such problems are 
normally t ime-consuming due to a large amount  of 
fill-in during the factorization, many of which are 
dropped when a positive value for the drop-tolerance 
is used. If the problem solved is t ime-consuming,  
then the hybrid can be bet ter  than direct methods 
( Y I 2 M I )  even if more than one trial is required to 

Table 6. Computing times (s) for Y12M1 and ORTHOMIN 
hybrid (iterations) 

Matrix YI2M1 ORTMIN Trials 

steam2 5 1 (3) 1 
me-re 17 3(7) 1 
sherman2 1 (17 9(4) 2 
pores-2 13 4(64) 1 
nnct374 31 35(3) 5 
hwatt- 1 43 6(20) 1 
hwatt-2 42 7(38) 1 
west2021 2 5(3) 2 
orsreg- 1 65 5(38) 1 
or6781hs 75 10(13) I 
sherman5 61 7(21) 1 
saylr4 147 9(46) 1 
gematl I 13 20(5) 2 
gemat 12 12 20(5) 2 
sherman3 95 21 (73) 1 

Table 7. Non-zeros in LU for Y12M1 and ORTHOMIN 
hybrid 

Matrix NZ Y12M1 ORTMIN 

steam2 5660 21,207 1050 
mc-fe 24,382 61,419 6948 
sherman2 23,094 177,712 19,680 
pores-2 9613 53,371 4665 
nnc1374 8588 67,011 36,772 
hwatt- 1 11,360 117,103 13,857 
hwatt-2 11,550 114,771 13,979 
west2021 7310 8958 8670 
orsreg- 1 14,133 158,085 14,133 
or6781hs 90,158 133,715 9082 
sherman5 20,793 149,593 12,810 
saylr4 22,316 308,455 9915 
gematl I 33,108 45,987 44,876 
gemat12 33,044 49,118 45,096 
sherman3 20,033 210,394 16,384 

compute  a successful precondi t ioner  (see the results 
for sherman2).  

Table 7 lists the number  of non-zero elements  in 
the factors L and U for the Y12M1 and for the 
hybrid. In order  to facilitate the comparison,  we also 
list the numbers  of non-zero elements ,  NZ, in the 
original matrices. It is seen that the number  of non- 
zero e lements  may be reduced more than 10 times 
when a positive drop-tolerance is used. It is also seen 
that the number  of non-zero e lements  in the factors 
L and U may be smaller than NZ when using the 
hybrid. This is due to the fact that the code performs 
a scan of the non-zero elements  before the start of 
the factorization of ii(-r) and removes  all non-zero 
e lements  that satisfy the drop-tolerance relation. 
The fact that the number  of non-zero elements  could 
be kept very small also allows us to solve on the 
Alliant some very large problems that cannot be 
solved by Y I 2 M I .  An example of such a problem is 
the largest problem in the Harwel l -Boe ing  set, 
besstk32, which is a system of order  44,609 with 
2,014,701 non-zeros when the symmetry is not 
exploited.  

In Table 8 the accuracy achieved by YI2M1 is 
compared  with that achieved by the hybrid method.  
The column labeled "Actua l"  is the true error  in the 
solution computed  by the hybrid and the column 
labeled "Eva lua ted"  is the error  which the pre- 
condi t ioned O R T H O M I N  code thought it had 
achieved. It is seen that Y12M1 gives greater  
accuracy; however ,  more important  here is the fact 
that the accuracy requirement  imposed in all runs (to 
calculate a solution such that the norm of the solution 
vector is smaller than 10 -4 ) is always achieved. The 
error  est imates calculated by the code are, as a rule, 
less than the actual errors found (this shows that the 
acceptability criterion in the code is rather cautious). 
If the number  of i terations is small, then the accuracy 
achieved is much bet ter  than the required accuracy, 
because the code studies the behavior  of certain 
parameters  during several successive iterations in 
order  to decide whether  the computat ions  should be 
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Table 8. Accuracy for Y12M1 and ORTHOMIN hybrid 
(iterations) 

Matrix Y12M1 Actual Evaluated 

steam2 1.2E-15 7.2E-16 9.5E-8(3) 
mc-fe 2.1E-14 5.1E- 7 2.1E-5(7) 
sherman2 3.2E- 13 2.7E- 13 1.8E-9(4) 
pores-2 1.5E-12 3.9E- 8 1.1E-6(64) 
nnc1374 9.1E- 5 6.1E- 7 3.1E-8(3) 
hwatt-1 8.4E- 15 1.6E- 5 8.3E-5(20) 
hwatt-2 1.2E-14 1.1E- 6 4.9E-5(38) 
west2021 1.2E-11 7.3E- 6 5.0E-5(3) 
orsreg-1 2.2E- 13 5.8E- 7 9.9E-5(38) 
or6781hs 4.8E- 14 8.7E- 6 9.1E-5(13) 
sherman5 1.4E- 14 5.0E- 7 2.7E-6(21) 
saylr4 5.6E-11 5.7E- 7 9.4E-6(46) 
gematll 3.0E-12 4.9E-11 1.1E-8(5) 
gematl2 2.0E- 12 4.9E- 9 6.7E-7(5) 
sherman3 8.8E- 14 2.2E- 7 6.2E-5(73) 

stopped or not and, if the convergence rate is very 
fast, then the accuracy achieved when this study is 
completed is usually greater than the required 
accuracy. If the iterative process is converges slowly, 
then normally the accuracy achieved is only slightly 
better than the required accuracy. This means that if 
the iterative process is time-consuming, then the 
code does not carry out many extra iterations before 
the decision to stop the calculations. 

Three hybrid solvers, based on ORTHOMIN, 
GMRES and CGS, respectively, are compared with 
regard to the computing time in Table 9. While it is 
too early to draw any final conclusions since the work 
with ORTHOMIN is more advanced than that with 
the other two solvers, it is seen that for any of the 
three methods there are problems for which it per- 
forms best. However, note that the differences are 
not very big and will probably become smaller when 
GMRES and CGS are optimized. (Their perform- 
ances will undoubtedly improve with tuning.) 

The three conjugate gradient-type methods, 
ORTHOMIN,  GMRES and CGS, have also been 
used as pure iterative methods. If the convergence 
rate is fast, then this is a good choice (both comput- 
ing time and storage being saved). However, for 
many of the tested problems the pure iterative 
methods converge very slowly or do not converge at 
all. Of course, this should be expected: the theory of 

Table 9. Computing times (s) for three hybrids (iterations) 

Matrix ORTMIN GMRES CGS 

sherman2 9(4) 7(7) 8(5) 
pores-2 4(64) 10(3) 12(3) 
nnc1374 35(3) 38(1) 30(1) 
hwatt-1 6(20) 9(18) 12(16) 
hwatt-2 7(38) 10(21) 13(19) 
west2021 5(3) 5(2) 5(1) 
orsreg-1 5(38) 7(25) 9(19) 
sherman5 7(21) 8(16) 14(14) 
saylr4 9(46) 16(92) 15(38) 
sherman3 21(73) 35(137) 29(54) 

these methods tells us that convergence is 
guaranteed for special matrices only, e.g. for 
matrices whose symmetric part is positive definite. 

The use of iterative refinement with approximate 
factors L and U generated via numerical dropping 
was proposed in Ref. 25. It was used successfully in 
the numerical treatment of some large problems aris- 
ing in nuclear magnetic resonance spectroscopy (see 
e.g. Ref. 5). Since 1983, iterative refinement has also 
been implemented in other sparse matrix codes (as, 
for example, in MA28; see Ref. 1). Our experiments 
show that even with the improvement proposed here 
and in Ref. 24, e.g. the replacement of the absolute 
drop-tolerance with a relative one, the performance 
of iterative refinement is often inferior to that of the 
hybrid using CG-type methods in the sense that the 
drop-tolerance needed to obtain a convergent 
process when the iterative refinement is used is 
normally less than that needed to obtain a con- 
vergent iterative process when the preconditioned 
CG-type methods are used. This leads to using more 
time to calculate the preconditioners and to using 
larger total time to solve the problem. The fact that 
the cost per iteration for the iterative refinement is 
less than the cost per iteration for the preconditioned 
CG-type methods is normally not sufficient to com- 
pensate for the increase of time for calculating the 
preconditioners with a smaller drop-tolerance. Of 
course, for those few problems where iterative re- 
finement solves the problem with the same drop- 
tolerance and with a similar number of iterations as 
the preconditioned CG-type method, then it is 
preferable. 

5.3. The performance of GMRES with ILU 
preconditioning 

The code of Anderson, ~8 developed for the 
AIliant and in which GMRES with preconditioning 
by an incomplete LU is used, has been compared 
with the proposed hybrids based on numerical 
dropping. The incomplete LU (ILU) preconditioner 
calculates an approximate L U factorization based on 
positional dropping, i.e. fill-in elements are dropped 
when they appear in inconvenient places. Typically, 
no fill-in is tolerated and only non-zero elements of 
the original matrix are modified during the factori- 
zation. Moreover, no pivoting is carried out in the 
code (thus, if the matrix treated has a zero on the 
main diagonal the method will fail to complete the 
Gaussian elimination). 

It is seen from Table 10 that GMRES with ILU 
preconditioning sometimes fails as expected. It is 
also seen that the method is sometimes more expen- 
sive than the preconditioned ORTHOMIN (this 
should also be expected: if the discarded fill-ins are 
large, then the preconditioners L and U may be very 
crude and too many iterations may be needed to 
obtain the accuracy required). However, when the 
iterative process converges sufficiently fast, the 
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Table 10. Computing times (s) for ORTHOMIN hybrid and 
GMRES-ILU (iterations) 

Matrix ORTMIN GMRESwith ILU 

steam2 1(3) 0.5(2) 
mc-fe 3(7) 1.4(8) 
sherman2 9(4) 0.5(17) 
pores-2 4(64) 1.9(114) 
nnc1374 35(3) Failed 
hwatt- 1 6(20) 2.5(111) 
hwatt-2 7(38) 5.7(260) 
west2021 5(3) Failed 
orsreg-1 5(38) 2.2(79) 
or6781hs 10(13) Failed 
sherman5 7(21) 3.4(99) 
saylr4 9(46) 23.1 (553) 
gemat 11 20(5) Failed 
gematl2 20(5) Failed 
sherman3 21(73) 32.4(684) 

GMRES with an incomplete L U  is normally the best 
choice since there is no fill-in and the a priori  

knowledge of the non-zero locations which must be 
updated allows the complete suppression of much of 
the non-numerical work present in most direct 
method codes for general sparse systems such as 
symbolic factorization and dynamic data structures. 

In Anderson's code the stopping criterion is based 
on Eq. (6), as in the original GMRES.  No attempt to 
investigate whether the method converges or not is 
made: the code carries out the computations until 
either Eq. (6) is satisfied or the maximal allowed 
number of ilLerations prescribed by the user, 
MAXIT,  is reached. The attempt to carry out the 
computations with an accuracy requirement of 10 -4 
(as for the preconditioned ORTHOMIN)  was not 
successful: the code yielded solutions with poor 
accuracy in all but one case, steam2. It is recom- 
mended in the code to use an accuracy requirement 
given by A C C U R  = 10 -8. Even then, the code often 
returns solutions with poorer accuracy. The results 
obtained with accuracy requirementsof 10 -4,  10 -8  
and 10 -"~ are displayed in Table 11. The fact that the 

Table 11. Accuracy of GMRES-ILU when three accuracy 
requirements are imposed (iterations) 

Matrix ~ = 1.0E-4 ~ = 1.0E-8 • = 1.0E- 10 

steam2 1.6E-7(1) 1.7E-9(2) 1.7E-9(2) 
mc-fe 1.7E+2(2) 1.8E-2(6) 3.2E-4(8) 
sherman2 5.4E-2(7) 2.6E-6(14) 2.2E-8(17) 
pores-2 2.9E-2(49) 1.8E-6(97) 3.4E-8(114) 
nnc1374 Failed Failed Failed 
hwatt-I 5.6E-1(1) 8.8E-2(5) 1.2E-7(111) 
hwatt-2 8.6E-1(9) 3.1E-2(30) 1.5E-7(260) 
west2021 Failed Failed Failed 
orsreg-1 2.9E-2(23) 2.8E-7(63) 2.7E-9(79) 
or6781hs Failed Failed Failed 
sherman5 1.2E-2(17) 1.3E-6(79) 1.1E-8(99) 
say l r4  1.8E-2(17) 5.3E-6(429) 7.1E-8(553) 
gemat 11 Failed Failed Failed 
gemat 12 Failed Failed Failed 
sherman3 4.7E-2(19) 5.6E-4(470) 1.3E-7(684) 

GMRES-ILU code does not try to determine 
whether the process is convergent or not can result in 
many unnecessary iterations, especially when the 
ILU preconditioner is not sufficient to make the 
method converge for a problem. This situation 
occurred for the matrix gre-l l07.  The code 
performed MAXIT = 3000 iterations and returned a 
wrong result. 

The results given in Tables 8 and 11 indicate that 
the acceptability test proposed above seems to 
provide a more robust way of evaluating termination 
of an iteration than does using the residual vectors. It 
is also seen from Table 11 that the attempt to elimin- 
ate the influence of matrix A on the stopping criter- 
ion by using Eq. (6) is not always reliable [probably 
because the assumption (7) is not always satisfied]. 
Of course, our proposed criteria are also based on 
heuristics and many more experiments, and perhaps 
some improvements are needed to estimate their 
reliability in general. For the set of problems tested, 
however, they seem to be much more reliable than 
other proposed criteria. It should also be emphasized 
that this behavior of false convergence is not peculiar 
to GMRES-ILU.  Small residuals and/or correction 
vectors have been observed in the runs with the pre- 
conditioned ORTHOMIN.  However, the proposed 
stopping criteria were not satisfied and the failure of 
the method was avoided. The test-matrices from the 
Harwell-Boeing set for which this happened are 
gre-1107 and gaff1104 (some results concerning runs 
with these matrices are presented in our previous 
work24). Examples like this demonstrate that the 
code has been able to make the crucial decisions 
(1) to stop the iterative process 
(2) to reduce the drop-tolerance 
(3) to repeat the computations with recalculated 

preconditioners 
in a difficult situation where the norms of the correc- 
tion vectors are smaller than the accuracy required. 
It is necessary to emphasize that, in these two 
examples, continuing the iterations does not improve 
the situation: the iterative process simply does not 
converge (in spite of the smallness of the correction 
vectors, and the behavior of the residual vectors is 
similar). It should also be mentioned that the 
matrices involved in these examples are rather ill- 
conditioned. Checks of the correction norms, as well 
as the residual norms, have clearly shown that stop- 
ping criteria based on these norms often produce 
solutions that are not sufficiently accurate when the 
matrices involved are ill-conditioned and/or badly 
scaled. 

6. COMMENTS ON FU R THER  E N H A N C E M E N T S  

As noted earlier, the results presented above were 
for codes whose parallelism has been generated via 
moderate restructuring by hand to the sequential 
code and a restructuring compiler. The improvement 
due to the hand tuning can be seen by comparing the 
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results presented here to those in Ref. 24. It should 
not be surprising, therefore, that with more intense 
tuning the performance of both the calculation of the 
preconditioner and the iterative method can be im- 
proved considerably. This has been demonstrated 
for the positional dropping GMRES-ILU code 
developed by Anderson for the Alliant FX-series. TM 

As mentioned earlier, Wijshoff has also studied the 
architecture/algorithm mapping of sparse primitives, 
in particular a sparse matrix multiplied by one or 
more dense vectors, that are of interest for the itera- 
tive method portion of the code on multivector pro- 
cessors. 13 The effect of applying these performance 
enhancements to the iterative method portion of the 
code is discussed in Ref. 7. 

The improvement of the performance of the 
general sparse factorization portion of the algorithm 
is more difficult, but certainly possible. For example, 
changing the way in which the code handles the 
symbolic factorization portion of the rank-1 update 
further improves performance. Table 12 compares 
the performance of the version of Y12M used in Ref. 
24 to one with the symbolic factorization changes 
executing in direct method mode, i.e. r = 0, for some 
additional HarwelI-Boeing matrices. Comparing 
these results to some in Table 2 also indicates how 
much the incorporation of the factorization changes 
into Y12M1 could improve its performance. 

It is well known that for machines with hierarchical 
memory systems dense factorization algorithms must 
be written in terms of BLAS3 constructs in order to 
achieve high performance. 26 Furthermore, on 
such machines the discrepancy in the performance of 
general sparse solvers and dense solvers is consider- 
able. Therefore, the appropriate use of a switch to a 
dense solver during sparse factorization can also 
contribute to improved performance. Indeed, on a 
machine like the Alliant FX/80, for many of the 

Table 12. Computing times (s) after symbolic factorization 
alteration 

Matrix Old New 

pde9511 5 2.5 
jpwh-991 25 7.0 
shermanl 5 2.4 
orsirr 18 5.4 
sherman2 199 32.1 
gaff1104 27 9.4 
sherman4 4 1.5 
gre-1107 15 5.0 
pores-2 18 5.9 
mahistlh 4 2.1 
nnc1374 39 4.8 
hwatt-1 58 15.8 
hwatt-2 57 15.5 
west2021 4 2.2 
orsreg- 1 90 22.7 
sherman5 100 23.5 
saylr4 197 52.6 
sherman3 147 35.3 

Table 13. Computing times (s) 
with the addition of a switch to 

dense factorization code 

Matrix Time 

jpwh-991 2.4 
orsirr 2.8 
sherman2 4.9 
gaff1104 3.9 
gre-1107 2.8 
pores-2 3.3 
hwatt-1 5.7 
hwatt-2 5.7 
orsreg-1 9.0 
sherman5 8.1 
saylr4 23.4 
sherman3 16.2 

Harwell-Boeing matrices a well-implemented rank- 
1-based code with a dense switch will yield just as 
significant a performance improvement as codes 
based on more complex parallel pivot strategies. 
Table 13 shows the computing time for some of the 
HarwelI-Boeing matrices which benefit from the 
switch to dense factorization routines. Additional 
performance improvements are possible by the 
careful consideration of the use of the memory 
hierarchy for both rank-1 and parallel pivot versions 
of the code and by exploiting information gained in 
factorizations with larger values of r when updating 
of the drop-tolerance is required. (See Ref. 7 for 
details.) 
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