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Abstract

In this paper we discuss the convergence of a stabilization algo-
rithm based on a singular version of the Discrete Riccati Difference
Equation. This method is particularly appealing for large scale lin-
ear time invariant dynamical systems since its complexity can nicely
exploit the sparsity of such systems.

1 Introduction

In this paper, we focus on the stabilization of a discrete-time system
Ti+1 — Al‘z + B’LLZ', (1)

where A and B are n X n and n X p real matrices which are known, and x;
and wu; are vectors of dimension n and p respectively. The stabilization of
the system requires the computation of a p x n feedback matrix F' such that
all eigenvalues of A — BF are inside the unit circle and therefore the system
defined by replacing A with A — BF' is stable. For small and moderate val-
ues of n, F' can be computed via pole placement or the solution of a matrix



equation, e.g., Riccati or Lyapunov equations. The computational require-
ments for standard algorithms for these approaches, however, is prohibitive
for large values of n. Fortunately, when n is large and p << n, the system
matrix A and/or input matrix B are typically very sparse. Algorithms for
such problems must therefore exploit this structure in order to efficiently
compute a stabilizing feedback.

2 Saad’s Approach

An important contribution to solving large scale stabilization problems with
a few unstable eigenvalues is Y. Saad’s projection method [7]. In this al-
gorithm, stabilization or eigenvalue assignment is only imposed on a small
invariant subspace that contains the unstable invariant subspace of A. Such
an approach is often effective, but it can have convergence difficulties and the
need for a basis of the invariant subspace can cause excess space requirements
for very large systems.

In Saad’s projection method, a left invariant subspace V7 of A (with pre-
sumably small dimension), that contains the left unstable invariant subspace
of A is computed. In order to exploit the possible sparsity of the matrix A
one often chooses to compute the basis directly by a subspace iteration like
method. The low-order projected system (VT AV,VTB) is then stabilized
and the reduced feedback F;, is lifted back to form a stabilizing feedback
F = F,VT of the original system (A, B). Subspace iteration like methods
as proposed by Saad, generate a sequence of approximations to a particular
invariant subspace V starting from an initial subspace V. The convergence
of such methods depends on the separation between eigenvalues of A “con-
tained” in V and the eigenvalues of A not “contained” in V. This is the
so-called gap of A with respect to V' and if it is too small, one should try to
compute a larger space instead (see [6]).

In this paper, we discuss an efficient alternative that addresses this con-
vergence difficulty. We also prove that this algorithm converges under very
mild conditions and we show that it avoids the need for an explicitly formed
basis of the invariant subspace.



3 Discrete Riccati Equation Stabilization

The major results of this paper are based on the discrete-time Riccati equa-
tion (DRE) and the discrete-time Riccati difference equation (DRDE)

P=AT(P-PB(R+B"PB)'BTP)A+Q (2)

P = A"(P,—~ BB(R+B"PB)"'B"P)A+Q (3)

where R and @ are p X p and n X n non-negative matrices and () is usually

decomposed into LQ.Lg. The most general results about DRE and DRDE

convergence are given in [2]. It is shown there that under the condition of

stabilizability of (A, B), a stabilizer and non-negative solution P of DRE (2)
exists and a stabilizing feedback F' can be computed by

F=R'B"P,A, R=(R+ B"P,B).

Whether the solution of DRDE (3) converges to the stabilizing solution of
DRE depends on properties of (A7, Lg) and the initial condition Py. We
establish in this paper that this algorithm converges to the stabilizing solution
under more general conditions than those reported in [2].

4 Basic properties of the DRDE

The Riccati difference equation (3) has several equivalent formulations. First,
one can rewrite it as the Schur complement (with respect to the (1,1) block)
of the compound matrix

R+ B"PB B"PA
M = ATP.B ATPA+Q |- (4)

(From this one easily derives a factorized form of the algorithm [4]. One
needs to assume that the Cholesky factorizations of the positive semi-definite
matrices R, () and P; are given :

R=LgL}, Q=LgL, P=S5.5]. (5)

Using these one obtains trivially the following non-square factorization of
M :

L 0
_|Lr B'S; 0 T T
0o L}



The so-called square root form of the Riccati difference iteration is then
obtained from a lower triangular reduction of the left factor ([4]) :

Lr B'S; 0 L o o
[ 0 A”S; LQ] Uz_lf(,- Sis1 0] "

where U; is orthogonal. We will assume in this paper that R > 0, which
implies that R; = R+ BP,BT > 0 as well. As a consequence, we obtain a
decomposition of M :

L; 0 LT KT
M = AZ . 3 7 8
le‘ 5z'+1] l 0 Sﬁl]’ ®)

from which it follows that the Schur complement with respect to the (1,1)
block equals P 1 = Sy - SiTH. Notice that this holds even if P;,; is not of
full rank.

Another formulation of (3) follows from the underlying two-point bound-
ary value problem 8, 1] :

A 0 Xiv1 | | In BR'BY X,
-Q I Yii 10 AT Y, |’
where P; = Y;X; ! implies P; = Y;+1Xijrll and vice versa (this implies of course

that both X; and X;;; must be invertible). We rederive this formulation
below in a more explicit form.

Lemma 1
If R > 0 he DRDE (8) can be rewritten as follows
A 0 In In BR_IBT In
R A R | VIR
where

Ap,=A-B-F, F,=R'B"PA, R,=R+B"PB.
Proof : We need to show the following two identities
A= I+ BR'B"P)Ar, P ,—-Q=A"PAp.
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Using the definition of the matrices involved, the second equation becomes

Py = A"PA-A"P,BF;+Q
= ATPA- ATPBR;'BTP,A+Q,

which is the DRDE. The first equation becomes
A=A+ BR'BTP,A- BF, - BR'BTP,BF,
which is equivalent to
0= B[R'R;, — I — R"'BTP,BJF,

and is clearly an identity. [ ]

5 Convergence of the DRDE

If one wants to study the convergence of the DRDE, the above lemma plays
a crucial role. It is clear from (9) that the generalized eigenvalue problem

—-Q I, 0 AT

will determine the convergence of the DRDE. For simplicity we assume A
to be invertible here but it can be shown that this assumption does not
affect our results. Iteration (9) is then a subspace iteration with a space of

dimension 7 :
Xit1 | o1 X;
lm]‘Ml MQ[Yi ]

-1nT
AMl—MgiAl A o]_lln BR™'B ]

Let \; be an eigenvalue of M; ' M, and assume they are ordered by decreasing
magnitude |\;|. If |\,| is strictly larger than |, 1| then the above recurrence
is known to converge for almost all initial conditions X, Yy, to the so-called
dominant invariant subspace of M, ' M,. If, on the other hand, |\,| = [An41]
then the iteration almost never converges : there exist fixed points but they
correspond to very special initial conditions [3]. It turns out that M;'M,
is simplectic and therefore has a special eigenvalue pattern : the eigenvalues
which are not on the unit circle come in pairs that are mirror images of each



other with respect to the unit circle. Therefore the condition |A,| > [An 1]
is satisfied iff M *M, has no eigenvalues on the unit circle. We make this
assumption in the rest of the paper. This is a classical assumption in the RDE
literature since it is closely linked to the existence of stabilizing solutions
of the corresponding feedback problem [2]. We recall in this context the
following results proved in [2].

Theorem 2
A stabilizing solution P; of the DRE exists and is unique if and only if either
of the following two conditions is satisfied

1. (A, B) is stabilizable and (AT, Q) has no unobservable eigenvalues on
the unit circle,

2. (A, B) is stabilizable and the pencil A\My — My has no generalized eigen-
values on the unit circle.

The simplectic structure of the pencil implies that all eigenvalues are then
mirror images of each other with respect to the unit circle, and the following
result then holds ([2, 3]).

Theorem 3
Let the simplectic pencil A\My — My have no generalized eigenvalues on the
unit circle. Then there exist invertible matrices S and T such that

Mp—I 0
0 M -—AL |

where A is stable and depends on the stabilizing solution P, as follows :

Ar=A-B-F, F=R'B"P,A, R=R+ B"P,B.

(AM; = My)S =T l

Under these conditions, the power method thus converges, provided the

initial matrix [ YO ] has a “non-degenerate” component in the direction of
0

Py
combination of both invariant spaces (spanned by the block columns of S) :

e ]=olw ]
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the non-degeneracy implies that V' must be invertible. Since

v=[1I on]sll);é’], (10)

it is easy to see that for random initial matrices Xy and Y, the matrix V'
is generically invertible. The DRDE thus almost always converges to the
stabilizing solution of the RDE the corresponding simplectic pencil AM; — M,
has no unit circle eigenvalues.

Theorem 4
Let the stmplectic pencil AM; — My have no generalized eigenvalues on the
unit circle and let the initial matriz Py = Yy X, * satisfy the non-degeneracy
condition (10). Then the iterates P; = Y;X; ' converge linearly to the stabi-
lizing solution Py of the RDE :

Iim Py = Py, lim [|[ Py = B[[/[[P = Bf| = ¢ < 1.

6 Convergence to P

We already know that the invariant subspace computed at each iteration
1 converges to the stable invariant subspace we are interested in, but one
typically wants to know this in terms of the matrix P; as well. Although it
is normal to expect linear convergence here as well, we analyze this in more
detail in this section.

The following simple lemma follows by straightforward error analysis of
the inverse of a matrix and can be found in slightly modified form in [9].

Lemma 5 Let A be a square invertible matrix with smallest singular
value 0,,;, and let F be a perturbation of norm smaller than this :

|Ell2 = 0 < Oumin-
Then
(A+E)Y'=A"1-AT'EAT + A
A=(A+E)'EAT'EA™ = AT'EAT'E(A+ E) 7,
Al = |[ATTEAT' EATY |y < 62 /03

men*
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Defining the convergence error as follows
E =P,-P,
and applying the above lemma to the expressions
R;'=(R+B"RB)™,
Py = AP, - P,BR7'B"PJA +Q,

we obtain

R = R' — R{'BTE;BR;* + O(|| Ei||2)

] ]

and

Py = A"[E;— E;BR;'B"P,— P.BR;'B"E,
+ P,BR;'BTE:BR;'B"PJA+O(|E),
= (A-BF)"E(A- BF)+O(|E|3),

where F; = R7'BTP,A.

Corollary 6 Let Ag, be the closed loop matrix A+ BF; and let the error
FE; = P,— P, between the i-th iterate of the DRDE and its steady state value
P; be small, then this error converges linearly and is in first order equal to

Eivi = AT EiAr, + O(|E:JB).

7 The singular SQR algorithm

The square root algorithm (SQR) of this paper is based on the DRDE with
@@ = 0. In the previous section we showed that the DRDE equation con-
verges under very mild conditions to the stabilizing solution provided the
corresponding pencil AM; — M, has no unit circle eigenvalues. For ) = 0
this pencil has a spectrum that is the union of the spectrum of A and that
of A~! since

0 AT

-1 RT
o[ 0] P
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Therefore the feedback F' generated in the limit moves the unstable eigen-
values of A, X to their unit circle mirror images, 1/, and leaves the stable
eigenvalues unchanged. As a special case of the square root form of DRDE,
the SQR stabilization algorithm (developed in [6]) has the form

Ly B'S;],, _[Li 0
[ 0 A’S, ]UZ_ lK SZ-H] (1)

where U; is orthogonal and the dimension of S; is n X [, the same as S.
Note that the QR decomposition is computed for a small matrix with size
(p+1) x p (the first row of (7)) and feedback F; can be computed from L,
and K;. Moreover, if A and B are sparse, the construction of the left factor
in the left hand side of (11) is cheap as well (see [6]).

The SQR iteration can produce the same sequence of subspaces as Saad’s
subspace iteration method with only an additional economical QR decompo-
sition of S; since the updating of S; has the form S;,; = ATS;U?2. If S, is
taken to be the same initial subspace basis as used for Saad’s method, SQR
will converge. Moreover convergence is easier to check as was pointed out in
[6].

It is also useful to point out that for () = 0 the DRDE can be rewritten
in a very compact manner :

Pi+1 = ATPZ'AFN

or equivalently

In the limit we also have that P; satisfies the discrete-time Sylvester equation

P, =ATP,Ap.

8 Comparing Saad’s method and SQR

Saad’s subspace iteration method essentially performs the QR factorization
of ATV, where Vj is the previously computed orthogonal base :

ATV; = Vi1 Riga. (13)



Comparing this with
ATSU? = S, (14)

it is obvious that both methods compute the same spaces. Because of (13,14),
ImVy = ImSy = ImV; =1ImS; Vi,

as long as U?? and R;,, are invertible. Multiplying (12) by the right inverse
of S}, we obtain :
U2 = ST Ap S,

Upon convergence, S;11 and S; are close to each other, and one shows that
ST Ap,S;. | is then a matrix whose spectrum is a subset of that of Ap, and
hence is stable. The effect of such a multiplication is to dampen out the
components along the smallest eigenvalues of S¥ A, S;' ,, and the iterates S;
may converge to a smaller rank matrix. This is actually what happens in
practice if Sy has dimension larger than the number of unstable eigenvalues
of A.

In order to analyze this we put ourselves in a special coordinate system,
where
A= ,
[ Ay Agp ]
where A;; is unstable and Ay is stable.
Theorem 7 Let A be in the coordinate system described above. Then the

solution to the DRE has rank equal to the dimension of the unstable subspace
of A. The invariant subspace satisfies

Ay 0 00 I 0
A21 A22 0 0 0 I _
0 0 I O0||Py O]
0 0 01 0 0

I 0 Wy Wiy I 0

0 I Wy Wy 0 I,

0 0 AT, AL P, 0|7

00 0 AL 0 0
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where
[Wﬂ Wn]i[Bl]R‘l[BlT By .

Wo Wa By
The matriz Py in this coordinate system is given by
| Pu O
r=| 0]

and has rank equal to the number of unstable eigenvalues of A.
Proof : This can be shown using the property that A,, is already stable
and solving a RDE of smaller dimension :

P = Ari_rl(Pn — P Bi(R+ BlTP1lB1)B;‘FP11)A11,
to stabilize the smaller system. [ |

This theorem implies that the image of P is also the desired unstable left
invariant subspace of A, which explains that when Sy, has rank larger than
the number of unstable eigenvalues of A, some components of S; have to
be damped out in the iteration. When we overestimate the dimension of the
unstable invariant subspace, we therefore nevertheless converge to a subspace
of correct dimension. Moreover, Corollary 6 implies that the spectrum of
Ap determines the convergence ratio of P; towards the stabilizing solution
P,. Convergence will occur provided the initial matrix P, satisfies the non-
degeneracy condition (10). A test for checking whether convergence has
occurred was presented in [6], where several numerical experiments are also
reported.

9 Conclusion

The results of this paper give a theoretical explanation of the convergence
behaviour observed in [6]. The analysis also give a proof that the DRDE
converges to a stabilizing solution of the DRE under milder conditions than
those of [2], provided an asymptotically stabilizing solution exists.
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