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Abstract

A numerical algorithm is proposed for computing an extreme eigenpair of a sym-
metric/positive-definite matrix pencil (A, B). The leftmost or the rightmost eigen-
value can be targeted. Knowledge of (A, B) is only required through a routine
that performs matrix-vector products. The method has excellent global conver-
gence properties and its local rate of convergence is superlinear. It is based on a
constrained truncated-CG trust-region strategy to optimize the Rayleigh quotient,
in the framework of a recently-proposed trust-region scheme on Riemannian mani-

folds.
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1 Introduction

The generalized eigenvalue problem
Ax = \Bx,

where A and B are n x n real symmetric matrices with B positive definite,
arises in many scientific applications [Saa92]. The symmetric/positive-definite
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pencil (A, B) is known to admit n real eigenvalues \; < Ao < ... < \,o1 <\,
with associated B-orthonormal eigenvectors vy, ..., v, (see [Ste01l]). We call
(A1, v1) and (A, v,) the leftmost and rightmost eigenpairs, respectively.

Single vector iterations [Par80,BDDRO00] are the simplest methods for the
eigenproblem. It is worthwhile considering them briefly, as their advantages
and drawbacks are ubiquitous in eigencomputation methods. If the matrix A
is positive definite, the power method

Bwj = Az, (1)

where 7, is a normalizing factor, converges to the principal eigenvector v,, of
(A, B) from almost all initial points; but the rate of convergence is only linear
and becomes very slow when the eigenvalues of (A, B) are not well separated.
Similarly, an inverse iteration

(A — pB)xys1 = By, (2)

with a shift u that approximates A;, converges linearly to v; from almost
all initial conditions. A higher rate of convergence can be obtained using a
feedback-like process that makes the shift depend on the current iterate. When
the shift is chosen as the Rayleigh quotient

el 3)

where R{j denotes R" without the origin, evaluated at xj, then a cubic rate of
convergence is obtained, but global convergence is lost in the sense that the it-
eration converges to the “nearest” eigenvector; we refer e.g. to [Par80,BS89,ASVMO04]
for more details. If n is large, then only an approximate solution of (2) is
sought, and the key question is to determine how crudely the solution can be
approximated without tampering (too much) with the convergence of the ex-
act iteration; for recent advances, see [SP99,GY00,SE02,vdE02,Not03,KN03].

It is natural to think of combining the individual advantages of these sim-
ple methods and obtain an iteration for which iterates are cheap to compute,
convergence holds globally and the rate of convergence is superlinear. There
is evidence that such a method can come from an optimization approach; in-
deed, for the problem of finding a minimum of a smooth cost function on the
Euclidean space, the trust-region scheme proposed by Steihaug [Ste83] and
Toint [Toi81], where the trust-region subproblems are approximately solved
using a truncated CG inner iteration, possesses a similar combination of ad-
vantages.

It is well known (see for example [ST00]) that the leftmost and rightmost
eigenvectors of (A, B) can be expressed as minimizers and maximizers of the



Rayleigh quotient (3)—which thus plays the role of a cost function. More
precisely, assuming that A\; < A\ and \,_; < \,, one has

vl Avy,  yT Ay - vl Av,

vI'Bv, ~yT"By ~ vIBuv,

for all y that are collinear with neither v; nor v,. The difficulty is that the
optimizers of (3) are not isolated: all the points av;, o € Ry, are minimizers,
and all the points av,, a € R, are maximizers. This is a cause of major diffi-
culties of practical and theoretical nature; for example, applying the Newton
method to the Rayleigh quotient (3) in R™ yields convergence to the origin in
one step, from which no information can be drawn. A remedy to this difficulty
is to impose some normalization condition on y that picks typically one or
two allowed points in each (or almost each) line {ay : @ € R"}. This was
recognized in the early work of Bradbury and Fletcher [BF66] where several
normalization conditions were considered (such as ||y|l; = 1, |lyl]ls = 1 and
|lyll.o = 1) and a nonlinear conjugate-gradient optimization approach was
proposed. For the generalized eigenproblem, we propose to use the normaliza-
tion |ly||p = 1, where ||y||p := \/y" By; this particular normalization yields
simplifications in the forthcoming developments. The optimization problem is
thus to minimize or maximize the cost function

y' Ay
yT"By

f:{lyeR":y'By=1} = R:y (4)
The minimizers are +v; and the maximizers are +uv,, i.e., the eigenvectors
of (A, B) associated with the extreme eigenvalues. The remaining issue is to
adapt the classical (i.e., in R™) Steihaug approach to the constrained mini-
mization of f. This task was carried out in [ABG04b,ABGO05] for the more
general situation of a smooth cost function defined on a Riemannian manifold.

The purpose of the present paper is thus to apply the general Riemannian
trust-region algorithm of [ABG04b,ABGO05] to the minimization of the Rayleigh
quotient cost function (4). This yields a numerical algorithm that automat-
ically retains the good global and local convergence properties of the gen-
eral scheme. In particular, the property of convergence to stationary points
of the cost function for all initial conditions translates into convergence to
eigenspaces, since the stationary points of (4) are the eigenvectors of (A, B).
Moreover, the instability of the saddle points and local maxima turns into
instability of all but the leftmost eigenvector +v;. Furthermore, similar to the
classical truncated-CG-based trust-region, the Riemannian algorithm of [ABG04b,ABGO05],
with a suitably-chosen stopping criterion, converges superlinearly to local min-
imizers of the cost function; this means that the proposed algorithm converges
locally superlinearly to the leftmost eigenvector +v;. The precise statements
on convergence are given in Theorem 3.1. We will also see that since the al-
gorithm is based on CG, it only requires a routine that returns Ax and Bx



given x (the algorithm is thus “matrix-free”), along with storage space for a
few n-vectors and a few scalars. Therefore, the method is particularly relevant
for very large-scale problems.

Since the algorithm does not assume positive definiteness of A, it can also
be applied to (—A, B) and compute the rightmost eigenpair of (A, B) with
the same convergence properties. It is also possible to compute a few extreme
eigenvectors by using a block version of the algorithm [ABGO04a] or by relying
on deflation techniques [Par80].

Of course, with B = I the generalized eigenproblem reduces to the standard
eigenproblem. However, in contrast to many methods that tackle the general-
ized eigenproblem by reducing it to a standard one, the proposed method deals
naturally with the generalized eigenproblem; therefore, there is no interest in
considering the case B = I separately.

We point out that the link with the deflation-accelerated CG (DACG) algo-
rithm of [GSF92,BGP97] is not as strong as it may seem. The DACG method
minimizes the Rayleigh quotient using a nonlinear CG method, whereas the
proposed algorithm uses linear CG as an inner iteration for approximately
solving a Newton equation. In this respect, the proposed algorithm falls within
the category of inexact Newton methods. The inexact scheme not only reduces
the computational load while preserving superlinear convergence, but it also
yields excellent global convergence properties that the exact Newton does not
possess.

The proposed algorithm does have close connections with some existing eigen-
value algorithms. In particular, it has striking similarities with a variant
of the Jacobi-Davidson method as analyzed by Notay [Not02]. The meth-
ods, however, differ on important points (see Section 4.1). The proposed
method also relates to the Trace Minimization method of Sameh and Wis-
niewski [SW82,ST00]. We believe that the model trust region concept in-
troduced in the proposed algorithm can be combined with other existing
strategies to obtain even more efficient eigenvalue algorithms; in this respect,
see [ABGS05] for a combination of the proposed algorithm and Basic Tracemin
within the framework of adaptive model-based methods.

The paper is organized as follows. The algorithm is derived in Section 2. Its
convergence properties are studied in Section 3. Some connections with other
eigenvalue methods are briefly described in Section 4. Promising numerical
experiments are presented in Section 5. Conclusions are drawn in Section 6.



2 The Algorithm

The proposed method was initially derived from an algorithm for optimiza-
tion on manifolds [ABGO04b]. However, it can be presented with little if any
reference to optimization and differential geometry, as discussed in this sec-
tion. We return to the connection with the Riemannian Trust-Region method
of [ABGO04b] in Section 3 when we study the convergence properties of the
algorithm.

Let (A, B) be a symmetric/positive-definite pencil, with (A1, v1) the leftmost
eigenpair. We consider the problem of computing the minimizer +v; of the
Rayleigh quotient (4) constrained to the set {y : y" By = 1} by an iterative
method evolving on {y : y? By = 1}. Throughout the discussion, y denotes
the current iterate. Consider the function

a (y+ )" Aly + s)

o) = By VB =0 )

where s has the meaning of an update vector tangent to the set {y : y" By =
1}. Denoting by

Py=1-By(y'B%) 'y'B (6)
the orthogonal projector onto {s : y” Bs = 0} and denoting by (u,v) = u’v
the inner product on the Euclidean space R", one has

T T T
~ y' Ay y' As 1 T y Ay 3
= 2 As — B @)
W)=, T2 Ey T By ( s= Eyt BT (IIsl*)

= Fly) + 2P Ay, )+ S@P(A~ F0)B)Ps.5) + O Is]).
Define
my(s) = F(9) + 2P, Ay, 5) + S2P,(A — [(5)B)Pys, ), 4T Bs =0, ()
to be the second order approximation of fy(s)
Assuming that the Hessian operator
H,:{s:y"Bs=0} - {s:y"Bs=0}:5— 2P, (A~ f(y)B)P,;s (8)

is invertible, the quadratic model m,(s) admits one and only one stationary
point s,, solution of

PAy + P,(A— f(y)B)P,s=0, y'Bs=0, (9)

which, depending on whether the Hessian operator H,, is positive definite, neg-
ative definite, or neither, is a minimum, maximum, or saddle point of the model



my(s), respectively. The “pure” Newton approach [Smi94] consists in comput-
ing the update s, and warping this update back onto the manifold, for example
as Y4 = (y + s«)/|ly + s«||- This development is also presented in [WSS9S§]
as an application of Tapia’s algorithm for constrained optimization [Tap74],
and it is closely related to the rationale in [SW82,ST00] (with an fundamental
difference explained in Section 4). It is also well known [Shu86,AMSV02] that
this pure Newton method is equivalent to the Rayleigh quotient iteration,
whose convergence behaviour is well understood [BS89]. The pure Newton
approach, however, is limited by two difficulties. First, while our objective is
to minimize the Rayleigh quotient (4), it is not guaranteed that the Newton
iteration will converge to a minimizer; depending on the initial condition, it
may converge to a saddle point (interior eigenvector) or a maximizer (right-
most eigenvector). Second, when the iterate is far away from the solution,
solving the Newton equation (9) accurately is a waste of computational effort.
Therefore, the Newton equation is usually solved approximately using itera-
tive solvers. The approximate solution, however, has to be sufficiently accurate
for the (superlinear) convergence of the pure algorithm to be preserved; recent
related work include [SP99,GY00,SE02,vdE02,Not03,KN03].

This paper innovates by proposing an inner iteration scheme for approximating
s, that addresses these two difficulties. The inner iteration directly stems from
the truncated-CG trust-region method of Steihaug [Ste83]. The inner iteration
proceeds as a classical CG enhanced with a dedicated stopping criterion.

Steihaug’s approach relies on the following observations. Consider the quadratic
model m,(s) of (7) and assume for a moment that the Hessian operator H,
of (8) is positive-definite. Recall that CG (which can be viewed as an opti-
mization algorithm for the quadratic model m, [GV96]) builds a sequence {s; }
of approximate minimizers of m,, a sequence {d;} of search directions and a
sequence {r;} of residuals. These search directions d; are descent directions
for the quadratic model m,(s) at s;. The inner iterate s, is the minimizer of
my(s) along the line s;+ad;, hence my(s;41) < my(s;). Finally, |[s;11]] > ||s]]
where || - || denotes the standard 2-norm.

Steihaug proposes three termination rules which work along the following lines.
(i) The raison d’étre for the model m,(s) is to approximate f,(s) by a simpler
function. As such, when ||s|| gets large, the model loses its ability to closely
match j;(s) Therefore, the CG process is terminated when it crosses the
boundary of the trust-region {s : ||s|| < A}, where A is the trust-region radius
inherited from the previous outer iteration step, and the point s = s; + 7d;,
with 7 > 0 and ||s|| = A, is returned.

(i) The Hessian operator H, of (8) is positive-definite only when the current
iterate y is sufficiently close to the minimizers +v;. Consequently, it may
happen that a search direction d; is a direction of nonpositive curvature for
the model m,(s), namely, di H,d; < 0; then the minimizer of m, along the



direction d; is at infinity. This case is considered separately in the iteration
before «a is computed, and the point s = s; 4+ 7d;, with 7 > 0 and ||s|| = A, is
returned.

(iii) Finally, the CG process is terminated when ||7;]|/||70|| < £ for some £. With
a view on preserving the superlinear convergence of the exact algorithm, we
propose instead a stopping criterion of the form

I3l < Jirol) min ((u)) (10)
Y

for some positive constants 6, x and . This condition reduces to a criterion
proposed in [CGT00] when v = 1.

According to these termination criteria, the truncated CG process returns
with an approximate minimizer § of m,(s) constrained to the trust-region
{s : ||s]] < A}. A complete algorithm is obtained by embedding the inner
process in a trust-region framework. The decision to accept or not the update
s and to modify the trust-region radius is based on the quotient

£0) = £,6)

~ my(0) — my(3)

(11)

which compares the decrease predicted by the model with the decrease actu-
ally observed on fy If p is very small, then the model is very bad: the step
is rejected and the trust-region radius is reduced. If p is small but less dra-
matically so, then the step is accepted but the trust-region radius is reduced.
If p is close to 1, then there is a good agreement between the model and the
function over the step, and the trust-region radius can be expanded.

These considerations yield the following method, which is the numerical algo-
rithm obtained when applying the Riemannian trust-region scheme presented
and analyzed in [ABG04b,ABGO5] to the Rayleigh quotient cost function (4),
using the retraction (which defines how the manifold is locally unwarped onto
the tangent space at the current iterate) given by Ry(s) = (y + s)/|ly + sl 5.

Algorithm 1 (outer iteration — trust-region)

Data: symmetric n X n matrices A and B, with B positive definite.
Parameters: A >0, Ag € (0,A), and p' € (0,1).

Input: initial iterate xy € {y : y* By = 1}.

Output: sequence of iterates {xy,} in {y : y" By = 1}.

for k=0,1,2,...

e Obtain sy using the Steihaug-Toint truncated conjugate-gradient method (Al-
gorithm 2) to approzimately solve the trust-region subproblem

min my, (s) st [|s]| < Ay, (12)
0

J?kS:



where m is defined in (7).
e Fuvaluate

Tl ~ Fulsw)

P g (0) — i 54) )
where f is defined in (5).
o Update the trust-region radius:
if Pr < 1
Appr = 1,
else if p; > 2 and ||s|| = A,
Ak+1 = mln(QAk, A)
else
Apyp1 = Ay}
e Update the iterate:
if pr > 9/
Thp1 = (@n + 1)/ ||k + sills (14)
else
Tp41 = Ty
end (for).

Algorithm 2 (inner iteration — truncated CG)
Set s =0, ro = Py, Az, = Azy — Bay(xf B*xy) '] BAxy, 60 = —ro;
for j = 0,1,2,... until a stopping criterion (10) is satisfied, perform the
following operations, where (,) denotes the standard inner product and H.,,
denotes the Hessian operator defined in (8).
if (0, H;,6;) <0
Compute 7 such that s = s; + 70; minimizes m(s) in (7) and satisfies
Isll = A,
return s;
Set aj = (rj,15)/ (05, Ha 05);
Set Sj+1 = Sj + OZj(Sj,'
i [[5,1]) > A
Compute T > 0 such that s = s; + 76; satisfies ||s|| = A;
return s;
Setrjv1 =1+ ajHy, 0,5
Set Bipr = (rjn, 15410/ 75) 5
Set 01 = =71 + Bj110;;
end (for).

Finally, we mention that, as a CG process, the inner iteration nicely lends
itself to preconditioning; actually, Steihaug’s original paper [Ste83] deals with
preconditioning. Let K be a preconditioner for (A — f(y)B), i.e., some ap-
proximation of (A — f(y)B) such that linear systems of the form Ku = v are
easily solved. Consider P,K P, as a preconditioner for the Hessian operator
P,(A— f(y)B)P, of (8). If this preconditioner is used in the CG process, the



property that the length of the update vector increases becomes true in the
K norm, i.e., |[Sj+1|lxk > [|s;llkx. In order to preserve the property that the
inner iterates never re-enter the trust-region, the trust-region is defined as
{s : |Is]|[x < A}. The use of P,KP, as a preconditioner is made possible by
the following result due to Olsen et al. [OJS90] (or see [SvdVMOI8]). Let u and
v satisfy P,KP,u = v, y' Bu= 0 = y’ Bv and assume that y" BK~' By # 0;
then u = (] - KﬁlBy(yTBKley)*lyTB) K.

Note that some papers [SS98,vdE(02] refer to preconditioning as replacing
the Hessian in the correction equation (9) by some approximation. This is
not what is meant here: without stopping criteria, the preconditioned CG
would compute—in exact arithmetic—the exact solution of the Newton equa-
tion (9) in a finite number of steps. However, both approaches—solving ex-
actly an inexact Newton equation (quasi-Newton approach) or solving approx-
imately the exact Newton equation (inexact Newton approach)—are closely
related [Cat04].

3 Convergence analysis

The global and local convergence properties of trust-region schemes, including
the truncated CG variant of Steihaug and Toint, have been studied thoroughly
in the literature; see [CGT00,NW99] and references therein. However, the
method proposed in the previous section differs from a classical trust-region
algorithm in order to accommodate the fact that the optimization problem is
not defined on the Euclidean space but on the non-Euclidean set {y : y” By =
1}. In particular, the “unwarped” cost function fy(s) depends on the current
iterate, and the update defined by (14) is different from the classical additive
update.

Fortunately, the proposed method is an application of the general Riemannian
trust-region algorithm [ABGO04b], whose convergence was studied in [ABG04a,ABGO05]:
classical assumptions were rewritten in a way that makes sense on manifolds

and it was proven that the convergence results of the classical trust-region
schemes are preserved, mutatis mutandis. This yields the following statement

for the proposed algorithm.

Theorem 3.1 Let (A, B) be an n xn symmetric/positive-definite matriz pen-
cil with eigenvalues Ay < Ao < ... < A1 < A\, and an associated B-
orthonormal basis of eigenvectors (vy, ..., v,). Let S; = {y : Ay = \;By, y" By =
1} denote the intersection of the eigenspace of (A, B) associated to \; with the
set {y : y' By = 1}.

(i) Let {zv} be a sequence of iterates generated by Algorithm 1. Then {x} con-
verges to the eigenspace of (A, B) associated to one of its eigenvalues. That



is, there exists i such that limy_, ., dist(zg, S;) = 0.

(7i) Only the set Sy = +wvy is stable. More precisely, given i € {2,...,n} and
€ > 0, there exists xo, ||xo||p = 1, with dist(xg,S;) < € such that the sequence
{zr} generated by Algorithm 1 from the initial condition xo, converges to an
(iii) There exists ¢ > 0 such that, for all sequences {xy} generated by Algo-
rithm 1 converging to Sy, there exists K > 0 such that for all k > K,

dist(v411,S1) < c(dist(zy, Sp))mnifrta (15)
with 8 > 0 as in (10).

Proof. (i) Algorithm 1 is the RTR-tCG algorithm of [ABGO5] applied to the
Rayleigh quotient cost function (4) on the manifold {y : y” By = 1} equipped
with the retraction R,(s) = (y + s)/|ly + s||s. The cost function and the
retraction are smooth, the manifold is compact, the truncated CG scheme
satisfies the Cauchy decrease condition, and the parameter p’ belongs to (0, i)
Therefore all the assumptions of [ABGO05, Th. 4.4] are satisfied. Consequently,
the gradient of f converges to zero, that is, P,, Az; — 0. This means that
every limit point of {x;} is an eigenvector of (A, B). Moreover, since the
Rayleigh quotient f given in (4) is nonincreasing over the whole sequence
{zy}, it follows that all the limit points have the same value of f. Since f
evaluated at an eigenvector returns the corresponding eigenvalue, it follows
that all the limit points of {z)} are eigenvectors of (A, B) corresponding to
the same eigenvalue; that is, all limit points belong to some §;. The fact that
the sequence {x} converges to its limit set follows from boundedness of the
manifold by a classical contradiction argument. Indeed, suppose that this is
not the case; then there is an € > 0 and an infinite subsequence {y, } such that
dist(zx;,S;) > €. Since the sequence zy, is bounded, it contains a convergent
subsequence, whose limit point must belong to S; and at the same time be at
a distance at least € from S;, a contradiction.

(ii) It is well known (see, e.g., [ST00,AMSV02]) that the eigenvectors related
to Ag, ..., A, are saddle points or maxima of the Rayleigh quotient f and that
the eigenvector related to \; is a minimum of f. Since f is nonincreasing over
the sequences generated by the algorithm, the result follows from (i).

(iii) The cost function and the retraction are smooth; the manifold is compact;
the model m in (7) is the exact quadratic model; the assumption A; < Ay en-
sures that v is a nondegenerate local minimum of f (the Hessian is positive
definite). Consequently, all the assumptions of [ABGO05, Th. 4.13] hold and
the result follows. U

Strictly speaking, dist(u,v) denotes the geodesic distance on {y : y? By = 1}

between two points u and v, which is the length of the shortest curve on
{y : y" By = 1} that joins u and v. However, this distance is asymptotically
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equivalent to the more classical Euclidean distance ||u — v|| in the embedding
space R™. That is, for all v with |[u||p = 1, there exist constants ¢;, ¢ and
e such that, for all v that satisfies ||v][p = 1 and ||v — u|| < €, one has
cillv — ul| < dist(u,v) < cof|lv — ul|. Since all the statements involving “dist”
in the convergence results are asymptotic, all the occurrences of dist can be
replaced by the Euclidean distance.

4 Links with other methods

Not surprisingly, the proposed method relates to several Newton, CG or Krylov
eigenvalues methods [ABGO4a]. It can be anticipated that the strong con-
vergence results presented in Section 3 will help understand the workings of
several of these methods. In this section, we briefly consider the case of two
well-known and successful methods whose workings are still the object of in-
vestigation in the literature.

4.1 Jacobi-Davidson

The proposed algorithm relates to the Simplified Jacobi-Davidson (JD) an-
alyzed by Notay in [Not02] for the case B = I. In Simplified JD, the next
iterate is obtained by adding to the current iterate y the computed approxi-
mate solution to the correction equation

(I —yy"YA—oD)(I—yy")s=—I —yy")Ay, y"s=0, (16)

where the shift o is selected either as the Rayleigh quotient § = y” Ay or as
some ‘target’ 7 less than the smallest eigenvalue \;. Simplified JD is thus a
JD method [SV96] without subspace acceleration. The approximate solution
to the correction equation (16) is obtained using a CG iteration with a specific
termination strategy [Not02, §4].

Simplified JD and the proposed algorithm are closely related. For the choice
o =0 and B = I, the exact solution to the correction equation (16) is equal
to the stationary point of the model (7), since (9) and (16) are identical.
Under these assumptions, from a given iterate y, the inner iteration of both
algorithms start generating identical sequences, because they both rely on the
same CG process. The two approaches, however, differ on the use of ¢ and
on the stopping strategy for the inner CG iteration, and this has important
theoretical and practical consequences that we now describe.

The proposed algorithm terminates using a trust-region strategy combined
with a residual-based condition (10). The trust-region strategy yields the

11



global convergence properties of Theorem 3.1-(i,ii), which does not seem to
have equivalents in the existing JD-related literature. The trust-region also
helps avoid a waste of computational effort when the eigenvector approxima-
tions are not yet accurate.

The residual-based stopping condition (10) comes directly from general con-
cepts without any effort to taylor it to the Rayleigh quotient minimization. In
contrast, the stopping criterion in [Not02] relies on a careful analysis of the
relation between the norm of the residuals in the eigenvector approximations
and in the residuals in the CG iterates [Not02, (12)]. However, we found in
preliminary numerical experiments that the stopping criterion (10) performs
better than the stopping criterion [Not02, (27-28)]. A possible explanation is
that the inner CG process strives to reduce to zero the model residual involved
in (10), and not the residual of the actual cost function computed by [Not02,
(12)]. A combination of criteria based on [Not02, (12)] and on (10) may yield
better results. This clearly deserves further investigation.

The other difference concerns the use of o. The classical CG breaks down in
the presence of an indefinite Hessian, and the possibility of choosing ¢ = 7
provides a way out by forcing the operator in the correction equation (16)
to be positive definite. In contrast, indefiniteness of the Hessian is natually
taken care of in the Steihaug trust-region CG: when a direction of negative
curvature is encountered, the inner iteration hits the trust-region boundary
and returns the obtained point. Therefore, the proposed algorithm can use
the shift ¢ = 6 throughout, which corresponds to using the exact quadratic
model given in (7). This does not mean that the trust-region approach cannot
benefit from using inexact models. Indeed, the global convergence theory (see
e.g. [NW99], and [ABGO5] for the Riemannian extension) holds regardless
of the choice of the quadratic term in the model m; in other words, global
convergence holds for any value of o. For local superlinear convergence to
occur, however, the model Hessian has to be a sufficiently good approximation
of the exact Hessian, according to conditions given in [ABGO5]; it is thus a
good idea to select the exact Hessian (thus o equal to the Rayleigh quotient)
when the iteration approaches the solution. This points to an adaptive model
strategy that was recently investigated in [ABGS05].

We now come back to the subspace acceleration technique that was left out in
Simplified JD. Much as the complete JD (i.e., with subspace acceleration) is
faster in general than Simplified JD, the proposed algorithm is generally faster
with a subspace acceleration enhancement. A difference is that the proposed
algorithm converges globally (Theorem 3.1) without subspace acceleration,
while Simplified JD benefits from subspace acceleration for global convergence
purposes: selecting the leftmost Ritz pair from the acceleration subspace favors
convergence to the leftmost eigenpair and makes the choice of the shift o less
critical, although no global convergence result in the form of Theorem 3.1-(i,ii)

12



seems to be available yet.

We conclude with a remark concerning the projector (6) appearing in the Hes-
sian operator (8). This is an orthogonal projector, in contrast to the oblique
projector on which JD for B # I usually relies (see e.g. [BDDRO00]). The choice
of an orthogonal projection comes from geometric considerations: by defini-
tion, the gradient P, Ay appearing in (7) must belong to the tangent space to
the manifold, and the Hessian operator (8) must be from the tangent space
into itself. Consequently, the projector (6) must be into the tangent space of
{y : y" By = 1}, which is (By)=*. This has favorable consequences: orthogonal
projectors are numerically safer, and the resulting operator 2P,(A— f(y)B)P,
maps the space (By)* to itself, which is not the case in the usual JD formu-
lation, thus making the use of a preconditioner unavoidable if a Krylov solver
is used.

4.2 Tracemin

Sameh and Wisniewski [SW82] and Sameh and Tong [ST00] proposed and
analyzed a trace minimization (Tracemin) algorithm for computing a few (p)
minor eigenpairs of a symmetric positive definite matrix pencil (A, B). For
simplicity, we consider the algorithm for the case p = 1; block versions of
Algorithm 1-2 and the Tracemin algorithm will be considered elsewhere. The
basic Tracemin method is derived as follows. Instead of (7), the Rayleigh
quotient is approximated by the model

me(s) =yl Ay + 2y As + sT As

1 17
= yT Ay + 2(PAy, s) + 5(2PAPS, s), y'Bs=0. 17)

Comparing with the exact quadratic model (7), we see that there is a “miss-
ing term” in the second-order part. This indicates why the simple Tracemin
method does not reach superlinear convergence. On the other hand, assuming
that A is also positive definite, the model m] (s) has an interesting beneficial
feature: the exact minimizer s, of (17) satisfies

(y+s)' , ts) _ y° 9y
ly+s.dls lly +sdlls = llylls llylls’

and moreover, if CG is used to compute s,, then the above inequality is satis-
fied by all intermediate iterates of the CG process [ST00, Lemma 3.2]. There-
fore, the basic Tracemin method is in fact a descent method for the Rayleigh
quotient that is robust with respect to inexact solves.

To improve the speed of convergence of the iteration, Sameh and Wisniewski [SW82]
and Sameh and Tong [ST00] proposed a dynamic shift technique that appears
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to be effective in practice but whose workings are not yet rigorously under-
stood. The results of this paper may shed some light on this issue, since the
“missing term” in (17) is simply a Rayleigh quotient shift.

5 Numerical experiments

In this section, we report on preliminary numerical experiments that show
the strong potential of Algorithm 1-2 as a competitive method for computing
extreme eigenpairs of symmetric/positive-definite matrix pencils.

The first set of experiments was conducted to illustrate the convergence prop-
erties presented in Section 3. The matrices A and B were chosen from random
distributions and the initial condition xq was chosen from a normal distri-
bution and B-normalized. More than 10* such experiments were conducted
and convergence to the leftmost eigenvector v, was systematically observed.
The 6 parameter in the inner stopping criterion (10) was set to § = 1.0, and
the observed results were compatible with the (at least) quadratic conver-
gence proven in Section 3. In fact, due to the symmetry of the problem, it can
be argued that the rate of convergence is actually min{1 + 6,3}, and this is
supported by the numerical experiments. We refer to [ABG04a] for details.

A second set of experiments was conducted to compare Algorithm 1-2 with the
Krylov subspace method for the generalized eigenproblem proposed by Golub
and Ye [GY02, Alg. 1] (referred to as the GY method). Note that the use of
preconditioners is not considered here. These preliminary experiments were
conducted on matrices of moderate size (n = 100); since the proposed algo-
rithm is matrix-free, it is suitable for dealing with very-large-scale problems,
but the influence of finite-precision arithmetic deserves further theoretical and
numerical investigation.

In each experiment, a symmetric positive-definite matrix A was generated with
specific eigenvalues. The symmetric positive definite matrix B was chosen as
B = SST +10001, where S was a square matrix with elements chosen from a
standard normal distribution. This choice allowed the eigenvalue distribution
of the pencil to be essentially determined via A, while testing the ability of the
method to operate on a non-trivial B. For each generated problem (A, B), the
proposed method was applied using three different values of the 6 parameter
from criterion (10): § = 0.5, # = 1.0, and ¢ = 1.5. The GY method was
allowed to form a basis of size m = 6. This number was chosen so that both
of the algorithms were allowed an equal amount of memory. The distance to
the solution is measured by computing the angle between the current iterate
and the leftmost eigenvector of the pencil.
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Figure 1(a) shows the results of the first test, where the gap between the
leftmost two eigenvalues is small ( A’}ié?f;)_j\;f?f;) ~ .009)(Figure 1(b)). The
superlinear convergence of the proposed algorithm is clearly seen. Moreover,
we see that in terms of the number of matrix-vector multiplications (which
can be considered as a consistent measure of the computational cost of both
algorithms), the proposed method outperforms the GY method, even for mild

accuracy requirements.

Figure 1(c) shows the results of a second test, where the gap between the left-
most two eigenvalues was much larger ( Aﬁééflg)_j\if?f;) ~ .47)(Figure 1(d)).
The numerical performance, in term of matrix-vector multiplications, has im-
proved for both algorithms. While the GY method experienced greater im-
provement in performance due to the larger gap, the proposed method per-

formed comparably well.

Also note that while there is some variation in the performance of the proposed
method for different values of 6, the performance is not dramatically sensitive
to this parameter. This is important, because it suggests that the choice of
0 be more easily made than is often the case with parameter-based methods
in the literature in order to provide adequate performance of the algorithm
across varying matrices A and B.

Note that the GY method has been shown to yield faster convergence when
a preconditioner is used; future experiments will consider the relative perfor-
mance of the preconditioned GY method against a preconditioned version of
the proposed method.

6 Conclusion and future work

We have proposed a “matrix-free” method for computing the leftmost eigen-
pair of a symmetric/positive-definite matrix pencil (A, B). The algorithm
stems from a method of optimization on Riemannian manifolds [ABG04b,ABGO05],
from which it inherits good and well-understood local and global convergence
properties (Theorem 3.1). It employs a trust-region strategy where the trust-
region subproblems are solved approximately using a truncated conjugate-
gradient method. The algorithm can be applied to (—A, B) to compute the
eigenvector corresponding to the rightmost eigenvalue (A, B). The algorithm
relates to the Jacobi-Davidson method [FSvdV98] and the trace minimization
method [SW82,ST00]. In particular, it is closely related to a variant of the
Jacobi-Davidson method analyzed by Notay [Not02], from which it notably
differs by the trust-region-based inner stopping criterion that avoids a waste
of computational effort and yields global convergence properties. Numerical
experiments show that the proposed method is able to outperform a recently-
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Fig. 1. Numerical efficiency of Algorithm 1-2 and the Krylov subspace method
of [GY02, Alg. 1]. (a,c) plots the distance to the solution versus the number of
matrix-vector products by A and B. (b,d) illustrates the spectrum of the pencil
A — \B.

proposed [GY02] Krylov subspace method for the generalized eigenproblem.

The current form of the proposed method is simply a direct application of the
Riemannian trust-region method of [ABG04b,ABGO5] to the eigenproblem,
but even in this simple form it demonstrates promising numerical results and
sheds light on the behaviour of other well-known methods. In an upcoming
paper, we report on improvements to the method that take into account prop-
erties specific to the eigenproblem. We will also report on a block version of
the algorithm obtained by applying the Riemannian trust-region method on
the Grassmann manifold to the trace minimization problem associated with
the symmetric generalized eigenvalue problem.
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