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Abstract. In this paper, we describe some recent developments in the use
of projection methods to produce a reduced-order model for a linear time-
invariant dynamical system which approximates its frequency response.
We give an overview of the family of Rational Krylov methods and com-
pare them with “near-optimal” approximation methods based on balancing
transformations.

1. Introduction

Physical phenomena are often modeled with linear, time-invariant (LTI)
dynamical systems because of the simplicity and low complexity of the
approach (both in terms of the complexity of the approximation problem
and its subsequent use for simulation). Such linear models can frequently be
acquired through discretizations of partial or ordinary differential equations
describing the physical system. However, such physical models are becoming
more complex due to either increased system size or an increased desire
for detail. Large scale problems (such as the North American power grid
system) and fine grid discretizations (needed in high-speed circuit designs)
require models of increasing complexity. Although such models tend to
accurately describe the behavior of the underlying physical system, their
complexity leads to high analysis and simulation costs which are too high
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when one uses traditional numerical techniques. Methods which exploit
the structure in the models such as sparsity have become critical. This
lead to an increased interest in iterative methods for solving large sparse
linear systems and/or eigenvalue problems for the simulation of such large
dynamical systems.

In some cases, however, there is a need to go even further. Despite
the use of efficient computational kernels, the model may still require an
unacceptable amount of time to evaluate. It is then necessary to create
a second model that is significantly smaller while preserving important
aspects of the original system. This is the model reduction problem for
linear time-invariant dynamical systems. It is assumed that the original
system is described by the generalized state-space equations

{ E&(t) = Az(t) + Bu(t) (1)
y(t) = Cx(t) + Du(t).

The vectors u(t) € R™, y(t) € R? and z(t) € RY are the vectors of
input variables, output variables and state variables, respectively. For nearly
all large-scale problems, it is assumed that the state transition matrices
A€ RV*N and E € RV*N are large and sparse or structured. Moreover,
the input dimension m and output dimension p are assumed much smaller
that the state dimension N. We point out that this system has a well-defined
solution provided the pencil (AE — A) is regular, i.e. det(AE — A) # 0. A
reduced-order approximation to (1) takes the corresponding form

{ U3 (t) = Az (t) + Bu(t) @
§(t) = C#(t) + Du(t).

The dimension n of the reduced-order is supposed to be much smaller than
N. Ideally, the reduced order model would produce an output §(t) approx-
imating well the true output y(¢) for all inputs u(¢). It is more realistic
to try to match the response y(t) of some “representative” input u(¢) and
typically one chooses the response of the zero initial state impulse response
(x(0) = 0,u;(t) = 6(t)e;, where 6(t) is the Dirac impulse and e; is the j-th
column of the identity matrix). The reason for this is that the system re-
sponse to an arbitrary input (with zero initial condition) can be represented
as a convolution with the impulse response. Provided FE is invertible, this
response equals (for each input é(t)e;) :

y;(t) = {Ce®AE-'B+ Dé(t)}e;, j=1,...,m. 3)
In the Laplace transform domain one derives the equivalent formula

Ly; = {C(sE — A)™'B + D}Lu;, (4)




179

which involves the transfer function H(s) = C(sE — A)"'B + D of the
system. It plays a key role in the description of the system behavior by
describing the response of the system to a periodic input signal u;(t) =
e'“‘e; since the corresponding output equals y;(t) = H(jw)u;(t). The model
reduction problem therefore reduces to an approximation of the frequency
response H (s) by another rational matrix of lower degree H(s) = C(sE —
fi)‘13+f). Since D and D are of dimensions p X m where p,m << N, one
typically chooses D = D. Without a loss of generality, the feed-through
term D of the original model can therefore be assumed to be zero since
the approximation problem clearly involves only the part that depends on
s and involve the large scale matrices.

Several measures of the accuracy of the reduced-order model are pos-
sible. Formally, one wants to bound the difference between the actual and
low-order outputs, y(t) — §(t), given a selected input u(t), and this can be
characterized by a system norm. The popular H,, error norm measures,
in the time domain, the worst ratio of output error energy to input en-
ergy. In the frequency domain, this represents the largest magnitude of
the frequency-response error. A second measure of the accuracy of the ap-
proximation is to assess which properties of the original model are pre-
served in the reduced-order one. A common choice is modal approximation
[1, 5] which preserves the dominant system’s poles (eigenvalues) A, and
corresponding residues which arise in the partial fraction expansion of the
transfer function. A reduced-order model that matches (or approximates)
dominant modal components of the original model is expected to approxi-
mate well its response. Unfortunately, it can be difficult to identify a priori
which modes are the truly dominant modal components of the original sys-
tem [23]. Alternative invariant properties that may be retained in model
reduction are the Hankel singular values. Hankel singular values are re-
lated to the controllability and observability properties of a system [18].
Constructing a reduced-order model preserving the largest Hankel singular
values is known as balanced truncation. A variant of this is known as op-
timal Hankel norm approximation [11]. These last two approximations are
nearly optimal in terms of the H,, norm of the error and are constructed
from balanced realizations. There exist sparse matrix techniques that com-
pute these “near-optimal approximations” in an approximate fashion as
well.

2. Moment matching

In this paper we focus on approximations defined from a power series expan-
sion of the rational matrix function H(s). Let o be a point in the complex
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plane, then H(s) has an expansion

H(s)= H_y(s—0) '+ +H_i(s—0) '+ Ho+H,(s—0)' + Hy(s—0)2+- - -,
(5)
where £ is the order of its pole at o. Typically, one chooses interpolation
points that are not a pole of H(s) and then £ = 0. The coefficients H; are
then easy to construct from the system model via a Neumann expansion of
H(s)=C{(s—0)E—~ (A—0FE)} !B since (A — ¢FE) is non-singular :

H;=C(cE - A" {E(cE - A)"'}B=C{(cE - A)"'E}(cE - A)"'B.

(6)
The solution techniques proposed determine a reduced-order model that ac-
curately matches the leading coefficients H; — also called moments — arising
in this power series. In general, one can produce a reduced-order model that

interpolates the frequency response and its derivatives at multiple points
{oMW @ ... o)}, Since

0'H(s) .o
e i'H; (7

we seek to match the moments H{) at each interpolation point o), j =
1,..., K. The first 2J; moments are matched at o(!), the next 2J, moments
are matched at o), etc., where J, + Jo + ...+ Jx = M. A model meeting
these constraints is denoted a multipoint Padé approximation or a rational
interpolant [2, 3]. By varying the location and number of interpolation
points utilized with the underlying problem in mind, one can construct
accurate reduced-order models in a variety of situations.

Moment matching methods are relatively old and are based on Padé
approximations [6]. For the more general rational interpolation problem
described here, one has to solve a system of equations involving a Loewner
matrix [2]. It is important to note that the system matrices only enter
the modeling problem through its moments explicitly. Unfortunately, these
explicit moment-matching methods exhibit numerical instabilities, which
was first pointed out in [8] and later on in [7]. The reader is referred to those
papers and to [14] for a detailed discussion. The numerical difficulties come
from the construction of the Hankel and Loewner matrices involved and
the ill-conditioning of the associated linear systems. Both [8] and [7] point
out that moment-matching via Krylov projection methods is a preferred
numerical implementation.

3. Krylov projection methods

In projection methods, the M-th order reduced system is produced by
applying two N X n matrices Z and V to the system matrices of the original
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system: A= ZT AV, E = ZTEV, B= ZT B, C = VTC. The matrices Z
and V in fact define projections onto Krylov spaces

K;(G,g) =Im{g,Gg,G%,...,G'"'g} (8)

for specific choices of G and g. The first connection between the Lanczos
algorithm, a Krylov-based technique, and Pade approximations was given
n [12]. Later work proposed related Krylov space techniques for model
reduction of dynamical systems in various application areas [19, 16, 26, 24,
4, 25]. New results in the area included stability retention of the reduced
order model [13] and multipoint rational Lanczos methods [10], i.e., starting
from the Lanczos procedure and modifying it to produce a reduced system
that matched multiple moments at multiple frequency values.

We now give a basic theorem describing the relationships between Krylov
subspaces, the iterative algorithms for constructing these subspaces, and
model reduction via rational interpolation. It was proven in [14] and [15]
and extends [26] to multipoint approximations.

Theorem 1

If
LKJ Ka, ((0®E - 4)7'E, (0WE - 4)7'B) CV (9)
k=1
and «
U K, ((@®E = 4)~TET, (6WE - 4)77CT) C 2 (10)
k=1
then the moments of (1) and (2) satisfy
2 = c{(@WE- "B} T (eWE-ATB= (1)
a9 = ¢{(eWE-AH7EY (eWE - AR (12)

for jr = 1,2,...,Jp, + Je, and k = 1,2,...K, provided these moments
exist.

Proof: This is a trivial extension of the proof given in [14] for the case
m=p=1. =

The moments of the original system exist if one chooses interpolation
points that are not poles of the system (one chooses e.g. points in the right
half plane, where a stable system has no poles). But the non-singularity of
the pencils (6®)E — A) is not automatically guaranteed (see [14] for details
on how to handle this case). Any pair of projection bases satisfying (9) and
(10) achieve the desired rational interpolant. Restrictions on V or Z, such
as biorthogonality or orthogonality, are implementation specific choices and
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lead to different variants. The Dual Rational Arnoldi method referred to
later on corresponds V' and Z having orthogonal columns. For algorithmic

implementations and further details on the different variants we refer to
[14].

4. Modal approximation

A classical method for model reduction is modal approximation. Let us
assume that the system (1) has ¢ different poles, then there exist invertible
matrices Z and V transforming AE — A to a block diagonal form. In this
new coordinate system, the model matrices {E, A, B,C} in (1) become :

AFE, — Ay B,
[ ZT\E-A)V | Z"B ] N : : (13)
cv | 0 AE,— A, | B, |’
Cy C, | 0

where each subpencil AE; — A; has only one eigenvalue );. In general each
eigenvalue A; can be repeated and its multiplicity k; is the dimension of the
block AE; — A;. The expansion

H(S) = Zt:c,(/\E, - A,‘)_IB,' (14)

1

is essentially the partial fraction expansion of H(s) since each term has
only one pole (but of degree k; which is possibly higher than 1). From a
comparison of this expansion and the expansion (5) around the pole \; we
obtain the identity

Ci(AE; — A)7'B; = HE)(A = \) " +...+ HO (A= A)1 (15)

which shows indeed that (14) is the partial fraction expansion of H (s).

Modal approximation now consists of keeping those terms in this ex-
pansion that correspond to “dominant” poles. The reduced order model is
then obtained from keeping only the columns of Z and V' corresponding to
the blocks containing the “selected” dominant poles. One can describe this
more formally by using the concept of deflating subspace.

Definition 1
The column spaces of the full rank matrices V; and Z; are called right,
respectively left deflating subspaces of the regular pencil (AE — A) if and
only if (\E—A)V; = V;(AE;— A;), respectively ZT (AE—A) = (AE;— A;) 27,
and (AE; — A;) is also a regular pencil. |
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The spectrum of a deflating subspace is that of the pencil (AE; — A;).
If that spectrum is only one point (say A;) then ImV; and ImZ; are called
deflating subspace of the eigenvalue A;. The largest dimension of a deflating
subspace with spectrum A; equals the multiplicity k; of that eigenvalue [17].

Theorem 2
Let ImV; and ImZ; be left and right invariant subspaces of the regular
pencil (AE — A) with a given spectrum, and consider the regular reduced
order system (\E — A) = ZT(\E — A)V. If

ImV; CImV =V (16)
then ()\E’ - A) has a right invariant subspace with the same spectrum. If
ImZ; CImZ =2 (17)

then ()\E’ — A) has a left invariant subspace with the same spectrum. In
both cases the corresponding poles of the original system are retained in
the reduced order system.

Proof: We only prove the result for the right deflating subspaces since
both cases are dual. Since ImV; C ImV we have V; = VX, for some full
rank matrix X;. Since ImV; is a deflating subspace of (AE — A), we have
(AE~A)V; = V;(AE;— A;). It follows that A\E—A)X; = ZT(AE-A)V X, =
ZTV,-(/\E,- — A;) = Yi(AE; — A;), whence X; is a right deflating subspace of
the reduced order pencil. |

Together with Theorem 1, this allows to combine moment matching
with pole (or modal) matching. A simple example of this is when one has a
system of differential algebraic equations (DAE’s) and one wants to retain
these algebraic equations in the reduced order system. For the original
system this implies that E is singular with a kernel V,, of a particular
dimension k.. The subscript oo is intentional since this kernel is in fact
a deflating subspace corresponding to the eigenvalue A = co. By imposing
ImV,, C ImV, the reduced order system will have an E matrix with a kernel
of the same dimension and hence will retain these algebraic equations. If
no such condition is imposed, the reduced order system built via moment
matching typically is not a DAE anymore.

We end this section by pointing out that modal matching can also be
interpreted as moment matching of the transfer function (A — X;)*H(s),
which has no poles anymore at A;. Its first £ moments are indeed the ma-
trices H(_'Z, .. ,HS’% of (15) and will be retained in the modified reduced
order model (A — X;)tH (s), provided both V and Z contain V; and Z; as
submatrices.
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5. Near-optimal solutions

The approximation problem in the frequency domain can also be phrased in
terms of the H,, norm of the error function AH(s) = H(s)— H(s). There is
a well developed theory for finding nearly optimal solutions of this problem
when the transfer function is given in a state-space formulation. These
are based on the so-called balanced realizations of a state-space system
{A, B,C}. Such realizations have Gramians that are equal and diagonal
[11], and hence a diagonal product as well. We develop here the equivalent
formulas for a generalized state-space {F, A, B,C}, under the assumption
that E is non-singular (which can therefore be reduced to a standard state-
space system).

The controllability Gramian G, and observability Gramian G, of a sys-
tem (1) can be defined as follows :

G.= /0+00(eE_‘A‘E‘lB)(eE-lA‘E‘lB)Tdt, (18)
G, = /:w(C’E'leAE-l‘)T(CE“’eAE-l‘)dt, (19)
which by Parseval’s theorem are also equal to
G.= 51; /0+o° (wE — A)"'BBT (JwE — A)™*dw, (20)
G, = % /_ :° (WE — A)~*CTC(WE — A)~'dw. (21)

These Gramians can be computed as the solution of the generalized state-
space equations

AG.ET + EG A" = —=BB” and ATG,E + ETG,A = -CTC.  (22)

The Gramians of the corresponding state space realization {E~'A, E~-'B, C}
are in fact equal to G, and ETG,E, respectively. It is the product ETG,EG,
of these two matrices that one diagonalizes via a state-space similarity
transformation [11]. One then truncates the smallest diagonal elements (i.e.
eigenvalues of ETG,EG.), which yields the reduced order approximation.
An n-th order approximation is thus obtained from the eigenspace cor-
responding to the n largest eigenvalues of ETG,EG,. An slightly better
approximation to H(s) is obtained from the optimal Hankel norm approxi-
mation which is also derived from the balanced realization and hence eigen-
decompostion of ETG,EG,. In practice both approximations give nearly
optimal approximations in the H,, norm [11].

But (20,21) suggest than the rational Krylov approach tries to approxi-
mate the same objects, since the frequency response C(jwE — A)~! B clearly
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is retrieved in the integrals describing the Gramians. Let us define the ap-
proximations to these Gramians as

G.=VGVT, and G, = 2G,Z7, (23)
where G, and G, satisfy the projected equations
AGET + BGAT = —BET and ATG.B+ BTG A= —CTE. (24)
Define also the residuals
AG.ET + EG AT + BBT = A, and ATG,E+ ETG,A+CTC = A,. (25)
Then the approximations clearly satisfy the Galerkin conditions
ZTA.Z =0, and VTA,V = 0. (26)

As the spaces V and Z grow, these residuals decrease and we are thus trying
to improve the approximation G, = G. and G, = G,. By choosing Z and
V such that the dominant features of the transfer function C(JwE — A)~'B
are captured, we look for the dominant spaces of G, and GG,, which in the
balanced coordinate system are also the dominant eigenspaces of these two
positive definite matrices.

6. A numerical comparison

We now compare moment matching techniques with the near-optimal ap-
proaches in terms of numerical accuracy and complexity. For the complex-
ity, we only need to consider the most time consuming steps of each ap-
proach. We assume that the system is given in generalized state-space sys-
tem. For the solution of the generalized Lyapunov equations one needs first
to put the pencil AF — A in generalized Schur form. For a dense N x N sys-
tem this requires approximately 70V flops (floating point operations). The
subsequent eigendecomposition of ETG,EG, needed for balanced trunca-
tion takes another 30N3 flops, while the additional work for constructing an
optimal Hankel norm approximation requires about 60 /N3 flops. Both near-
optimal solutions therefore require over 100N flops. The rational Krylov
approach on the other hand requires the LU factorizations of each matrix
(eVE — A), which is a total of 2K N3 flops. All other steps are less impor-
tant and so this approach is of much lower complexity since the number of
interpolation points K is typically small.

For sparse large-scale systems, the comparison is still in favor of rational
Krylov methods. The near-optimal solutions still need the solution of the
generalized Lyapunov equations but here one can also use sparse matrix
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techniques. Efficient methods are based on the Smith iteration and multi-
point accelerations of it [20] and compute a low rank approximation of the
true solutions. This still has a complexity of the order of ¢;kaN flops where
« is the average number of non-zero elements in each row of A and E, and k
is the number of interpolation points used in this method. All other parts of
the algorithm involve n X n matrices where n is the approximate rank of the
Gramians. Notice that for this reason, the near-optimality is lost and that
these approximations become much less accurate. For the rational Krylov
approach one uses iterative solvers for the solution of the systems involving
(¢)E— A), and this requires ¢, KN flops, where K is the number of inter-
polation points. Both approaches are therefore comparable in complexity,
but the near-optimal methods tend to loose their accuracy. Moreover, the
rational Krylov methods rely on independent matrix solves which can be
implemented efficiently in parallel.

Now we look at the accuracy of both approaches. In order not to dis-
favor the near-optimal schemes we use the full Lyapunov solvers and start
from standard state-space models so that no accuracy can get lost from the
inversion of E. All computations were performed on a machine with IEEE
standard arithmetic and using MATLAB (which is also why all models
are reasonably small). In Figures 1, 2 and 3 we compare three 15th order
approximations of a single-input/single-output 120th transfer function of
degree 120, used for the Compact Disc regulator [27]. The solid lines rep-
resent the frequency response of the full system, the approximations are
dotted for the Hankel norm approximation, dash-dotted for the balanced
truncation and dashed for the rational Krylov method.
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Although the near-optimal schemes should behave much better that

the rational Krylov approximations, the pictures seem to indicate the op-
posite. This impression is due to the fact that a logarithmic scale was used.
The absolute error of the near-optimal schemes is indeed much better that
that of the Rational Krylov approach as indicated in Table 1, but for the
logarithmic errors this is just the opposite. Notice that for the rational
Krylov method we used 6 different interpolation points. We observed the
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same phenomenon on random 100th order models for various orders of ap-
proximation. As expected, the absolute errors for the near-optimal scheme
are systematically smaller than for the rational Krylov technique, but the
logarithmic errors of both approaches are comparable. In practice it is im-
portant to take into account the large range of scales of the frequency
response, since a very small value of the frequency response corresponds
to “blocking” frequency and it is often desirable to maintain this in the
reduced order model. This is precisely what is obtained by a logarithmic
fit of the frequency response.

Errors | 1ain(R)] |AR]
Hankel norm approximation 6.1 0.02
Balanced truncation 4.1 0.04

Rational Krylov approximation 1.5 4.02

Table 1 : Logarithmic versus absolute errors of the approximations

7. Concluding remarks

In this paper we showed the advantages of the rational Krylov approach
for constructing reduced order models of generalized state-space systems.
These methods rely on sparse matrix solves which can be implemented ef-
ficiently using iterative or direct methods and are easy to parallelize. They
can be mixed with partial modal matching and also work for systems with
singular F matrices. Finally, their accuracy is comparable to near-optimal
schemes provided the point selection is handled appropriately. Issues that
were not handled in this paper are the point selection mechanism and
the stopping criterion both for the model approximation and the itera-
tive solves. These additional features are handled elsewhere but are equally
important in order to obtain an efficient general purpose scheme.
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