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This paper presents a model reduction method for large-scale linear systems that is based on
a Lanczos-type approach. A variant of the nonsymmetric Lanczos method, rational Lanczos, is
shown to yield a rational interpolant (multi-point Padé approximant) for the large-scale system.
An exact expression for the error in the interpolant is derived. Examples are utilized to demon-
strate that the rational Lanczos method provides opportunities for significant improvements in
the rate of convergence over single-point Lanczos approaches.
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1. Introduction

This paper explores the use of Lanczos techniques for the reduced-order model-
ing of large-scale dynamical systems. A need for such reduced-order models arises
in various areas of engineering such as the control of large flexible space structures
[5] and the simulation of high speed circuits [6]. The system to be modeled is typi-
cally defined via a set of state space equations

Ex(t) = Ax(t) + bu(t)  and  y(¢) = ¢ x(¢) + du(?), (1)

where, for simplicity, the direct-coupling term, d, will be assumed to be zero. As this
paper will restrict itself to single-input single-output (SISO) systems, the input u(¢)
and output y(¢) are scalar functions of time with b and ¢ column vectors of length ».
The system matrix, 4 € R”", and descriptor matrix, E € R™", are assumed to be
sparse or structured (e.g., Toeplitz). We stress that such assumptions are met by
large-scale problems arising from most applications. However, most existing
model reduction techniques (e.g., balanced truncations and Hankel norm optimal
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approximations) [8] fail to take advantage of any sparsity or structure in the system
matrix and are thus typically impractical for large-scale problems.

For the case where E is an identity matrix, the zero-state (x(0) = 0) solution to
the first expression in (1) is x(2) = [y e*“bu(r)dr. Thus, determining a good
k < n order approximation,

Ex(t) = A%(t)+ bu(r)  and  §() = ¢T%(s), (2)

is intimately connected with finding a good approximation to a matrix exponential.
A method based on orthogonal Krylov projectors (the Arnoldi algorithm) is util-
ized in [12,26] for approximating e*'d. But in fact, these concepts can be taken
one step further by noting that one is really only interested in that information
in e*'b which lies in the direction of ¢ (one ultimately desires || y — 7|| small for
some desired range of inputs »). Numerous papers [4,17,27,28] are beginning to
explore this last fact. In particular, these papers begin to investigate the use of
an oblique Krylov projector (i.e., the Lanczos algorithm) for generating the
reduced-order model.

The Lanczos-based approaches to model reduction are in fact connected to well-
known approximations of (1) including partial realizations and/or Padé approxi-
mants [14,29]. These approximations are centered on the transfer functions
8(s) = y(s)/u(s) = c"(sE — A)™'b and §(s) = j(s)/a(s) = ¢T(sE — A)'h which
arise out of Laplace transforms of (1) and (2) respectively. The reduced-order
model is computed so that its transfer function g(s) shares (matches) certain attri-
butes of the original transfer function g(s). The Lanczos method is known to be a
preferred numerical approach for computing such a model [7,10]. Additionally,
Lanczos-type methods only involve multiplication by 4 and E and/or solving
linear equations involving A4 and E. Thus one can take advantage of the structure
of these matrices. Avenues also exist in the Lanczos method for removing the spuri-
ous, unstable poles which may appear in the approximation [15].

Unfortunately, model reduction methods such as partial realization and Padé
approximation are not acceptable in all applications. Such approximations tend
to converge in a local fashion about a single frequency s = ¢ € C. The reduced-
order model can grow large before becoming an acceptable global approximation
of the original system. To overcome this difficulty, several papers in the areas of
control and circuits explore the use of a multi-point Padé approximant (denoted
a rational interpolant in the systems literature) for approximating (1) (see for
example [6,16,18,32]). In rational interpolation [1] (multi-point Padé [2]), a
reduced-order model is constructed whose transfer function g(s) interpolates the
value and subsequent derivatives of g(s) at multiple frequencies {o1,09,...,07}.
Each interpolation point is selected to identify the dynamics of (1) in a specific fre-
quency range. One avoids trying to acquire information from a single, distant point.

This paper lays the foundation for a practical computational approach to
rational interpolation through the development of the novel rational Lanczos
method. Being a Lanczos type method, rational Lanczos still possesses the desir-
able numerical qualities lacking in explicit moment matching approaches. But in
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a significant break from the standard Lanczos algorithms, rational Lanczos is no
longer tied to a specific interpolation point. By intelligently selecting from multiple
interpolation points, rational Lanczos provides an opportunity for efficiently and
accurately determining models across a wide frequency range. An error expression
between the transfer functions of the original and reduced-order systems is derived
which may enhance the placement of the interpolation points. Given this set of
interpolations points, a strategy for selecting among them arises quite cheaply
out of rational Lanczos and is grounded in system theory. One does not simply
match a fixed number of moments about each interpolation point. Such an
approach may be unnecessary at certain interpolation frequencies and insufficient
at others. Instead, selections are made from among the interpolation points as the
model size grows with the goal of maximizing the amount of new information being
placed into the model. A surprising benefit of this last fact is that the rational Lanc-
zos method is driven to avoid the numerical instabilities present in the standard
Lanczos method. Meaningful system theory in rational Lanczos can replace the
nonintuitive, complex fixes of the standard Lanczos method (e.g., look-ahead [9,21]).

This paper begins in section 2 by describing moment matching, the Lanczos
method and the connections between the two. An empbhasis is placed on defining
the terminology associated with both moment matching and the Lanczos method
in a unified and unambiguous way. The techniques of section 2 correspond to inter-
polation about a single point. Section 3 discusses the limitations of interpolating
about a single frequency point and thus motivates the development of the rational
Lanczos method in section 4. The rational Lanczos method of section 4 is con-
structed in a simplified manner so as to promote an understanding of the algo-
rithm. The relation between rational Lanczos and rational interpolation is
proven. Section 5 converts the rational Lanczos method into a model reduction
tool. Examples are provided to suggest the power of the approach. An error expres-
sion for the reduced-order model is derived in section 6.

2. Background

This section contains the background material necessary to proceed with the
later development of the rational Lanczos algorithm as a model reduction
method. We emphasize the need for a thorough coverage of moment matching
methods, versions of the Lanczos method, and the interconnections between the
two. The terminology and credit for these topics lies strewn over several appli-

cation areas. It is our goal to at least begin to piece together these items in the
following review.

2.1. Moment matching methods

The model-reduction methods of interest in this paper are those which reproduce
in the reduced-order model a set of invariant attributes belonging to the transfer
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function g(s) of (1). To be more specific, we are interested in determining a reduced-
order model which matches the first 2k coefficients, m;, arising in a power series
expansion of g(s). If g(s) is expanded about zero for example

2 3
s

g(s)=m0+m1s+—2-lm2+§m3+..., (3)

the coefficients (referred to as moments in this case) satisfy m; = —c "(4'E)’ A‘lb

The reduced-order model, a Padé approximant, is constructed so that m; = m; =
—C T(A'IE)’ hforj=0,1,2,...,2k — 1. These moments are the value and subse-
quent derivatives of the transfer function g(s) evaluated at s = 0. If g(s) is expanded
in a power series about infinity,

-3

gs) =d+m s +m s 4mogs + ., (4)

the coefficients (referred to as Markov parameters in this case) satisfy m_
c'(E lA) IDE~1p. The resultmg model, denoted a partial realization, possesses
moments which satisfy m_; = m_; for j = 1,2,...,2k. These Markov parameters
are the value of the zero-state impulse response g(t) (the inverse Laplace transform
of g(s)) and subsequent derivatives of g() evaluated at t = 0. Power series expan-
sions about 0 are generally of greater interest because one typically desires to repro-
duce the steady-state (versus the transient) response of the original system over
some frequency range. The steady-state behavior of the output can be defined in
terms of the frequency response of the system, g(iw), where the variable w € R
corresponds to real frequency and i = v/—1. If the input u(z) includes a sinusoid of
frequency wy, the output y(¢) contains this sinusoid at steady-state scaled in mag-
nitude and shifted in phase by the value of g(iw,). By replacing s in (3) with the shifted
variable s — o, i.e., g(s) = 3" 720(s — 0)’m;(0)/j!, one can generate shifted moments,
mi(0) = —c"{(A— ocE)'E}(4 ~ 0E)"~ 1b which match g(s) and its subsequent
derivatives at a user-specified frequency o. On the other hand, we will show shortly
that the use of a shifted variable s — ¢ in an expansion of the form (4) does not
affect the resulting partial realization. For these reasons, this paper will con-
centrate on matching moments which are the coefficients of positive powers of s
(possibly shifted). Models of this type fall under the title of Padé approximants.
For quick reference, various sources for the moments to be matched are sum-
marized in table 1. The only listed type of approximation yet to be covered is the
rational interpolant or so-called multi-point Padé approximant. The rational inter-
polant (which includes Padé approximation as a special case) matches moments
arising out of multiple (say i) power series expansions. These expansions are

about 0 but each is shifted by a different amount, o, i =1,... ,i. The resulting
reduced-order model is defined by the matrices {4, E, b, ¢} which satisfy
mj‘_(a'i):rhji(o'i), ji"—_O,l,...,Z_]Ti"‘l, i:1,2,...,i:, (5)
where : |
m;(0;) = _CT{(A _UiE)—lE}]i(A—O'iE)— b, (6)
y,(0;) = —CA'AT{(/i - ‘71'1%)_14112'}]}(1‘i - UiE)_lb (7)
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Table 1

Possible choices for the moments to be matched.

Approximation name(s) Power series expansion jth moment

Partial realization, gs) = 2im s~ m_;=c"(ETAY'E7 b =gV (1) =
Padé at co

Padé gls) = Y2 m;s’ /j! m;=—cT(AE) A" =g (5)],m0

Padé (shifted) g(s) = X 2omy(s — )’ /j! mj=—c"{(cE — 4)"'}Y

X(GE - A)_lb = g(")(S) Is:a

Rational interpolant, g(s) = 52om, (0)(s— o)) /j! my(0) =—c"{(c;E—-A)"'E}Y
multi-point Padé fori=1,2,...,i x(o,E—A)bfori=1,2,...,i

and Zﬁ;l Ji = k. The value and subsequent derivatives of g(s) are thus equivalent
to those of g(s) at multiple interpolation frequencies. The number of data pieces
matched about a given interpolation point o; is twice the user-selected value of j.!

2.2. Moment matching through Lanczos methods

From a systems point of view, our interest in the nonsymmetric Lanczos method
[19] (presented as algorithm 1) centers on its ability to compute rectangular
matrices Wy, V;, € R™* which satisfy (i) the biorthogonality condition W,/ V, = I
and (ii) the Krylov subspace conditions colsp(V}) = #(¥,r,) and colsp(W,) =
A (PT, q,) where the Krylov subspaces are

fk(w’ r()) = Span{rm qera LR qlk_lr()}
and
J‘/k('I’T, qo) = span{qy, WT‘IO, ) ('Pk_l)r%}-

It is the construction and use of these two Krylov subspaces which connects the
Lanczos method to moment matching [29]. Note that the Krylov subspaces are
shift-invariant; replacing ¥ with ¥ — ol does not change the resulting subspaces.

Besides those features already mentioned, it can be easily shown that the
Lanczos method leads to the recursive identities

PVi=ViTi+ srvinner  and  PTW, = W T[] + Beywinier .

The standard unit vector e, is the kth column of an identity matrix of appropriate
length. The matrix T} = W,’ ¥V, takes on the well-known tridiagonal form which
is composed of the scalars +; below the diagonal, o; on the diagonal and 3; above
the diagonal.

For the model reduction problem, it is important to point out that the matrix ¥
(or at least the action of ¥ on a vector) has historically been assumed to be known a

! The restriction that an even number of moments be matched about each interpolation point is due to
the form of rational Lanczos but need not hold in the most general definition of rational interpolation.
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Algorithm 1 Nonsymmetric Lanczos [19]

Input: starting vectors ro and gg of length n;
For k =1 to k,
(AL1) v = \/Ir]_ qk—1] and Bk = sign(r]_ ax-1);
(A1.2) vp = (rx—1 /) and wy = (gx—1/Bk);
(A1.3) ag = w{'ﬁuk;
(A1.4) ry = Wk — ogvk — Brvk—r and g = T Twy — apwy — vewe—1;

end.

priori in step (A1.4) of algorithm 1. This condition was met by the first Lanczos-
based model reduction papers in the control area [4,17,28]. The choices ¥ = A4,
ro =b and gy = ¢ were made while E was assumed to be an identity matrix.
Given that ¥ = A is sparse, the matrix-vector products in (A1.4) are obtained
with only pn operations where p is the average number of non-zero entries in a
row of A. The resulting model, A = T, = W/ AV,, b= W b and ¢ = Vile, is a
partial realization of the original system [14]. However, as noted in section 2.1, k
must typically grow large before a sufficiently accurate partial realization is
acquired. The use of shifts does not help here. For example, if one replaces s in
(4) with the shifted variable § = s — o and assumes for simplicity that E = I, the
resulting shifted Markov parameters are m_j=c' (4 —ol )/"'b due to the Neu-
mann expansion of (sI A7 =((s - 0)1 (A—ol))" = GI— (4 —ol))™"
Thus the choice ¥ = 4 in algorithm 1 need only be shifted by oI. But since the
underlying Krylov subspaces are shift invariant, shifting s has no effect on the
final partial realization. Only when shifting s does more than shift ¥ (e.g., Padé
approximation where (4 —oI)™' # A™' —oI) will & make an impact on the
reduced-order model.

For improved accuracy, other papers select ¥ to be a rational function of 4 and/
or E. For example, the earliest known papers on Lanczos-based model reduction
(arising in structural dynamics [20,27,30]) chose ¥ = A~'E. This selection corre-
sponds to Padé approximation with o = 0 [29]. Although this choice of ¥ still
fits the notation of algorithm 1, it differs in a significant computational way from
the commonly assumed choice of ¥ = A. On the surface, selecting ¥ to be a
rational function of 4 and/or E still leads to a matrix-vector product in (A1l.4).
However, such a ¥ is not known a priori; more to the point, an inverse involving
A and/or E should not be explicitly computed. Choosing ¥ to be a rational function
requires that each matrix-vector product in (A1.4) involve the solution of a large-
scale system of linear equations. But solving systems of linear equations can be
much more computationally intensive than simply multiplying a known, sparse
matrix times a vector. Using rational functions for ¥ (to improve accuracy or to
simply handle E # I') does not come without a cost. We comment on some pos-
sible approaches to minimize this additional cost in section 7.

As noted above, the Lanczos algorithm is typically treated as involving a known,
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easily accessible ¥. However, the use of rational functions of 4 and E in ¥ is
examined in [23]. The so-called rational Krylov space was defined as
span{ry, ¥ 17y, ¥aro, . .., ¥Yr_17o} Where ¥; could be a rational function and where
the restriction that ¥; = ¥,¥;_; was dropped. Hence those model reduction
approaches which select ¥ to be a fixed rational function are special cases of a
rational Krylov method since they enforce the relation ¥; = ¥,¥;_;. The resulting
reduced-order model is a Padé approximant associated with a single shift o. But the
following section motivates interpolating g(s) at multiple frequency points. To
achieve interpolation at multiple points, this paper drops the restriction that
¥Y; = ¥,¥,_,. The result is a rational Lanczos method.

3. Limitations of single-point interpolation

As discussed in section 2, Lanczos-type algorithms with ¥ = (4 — 0E) 'E are a
desirable numerical approach to computing Padé approximants. The resulting
reduced-order model interpolates the transfer function g(s) and subsequent deriva-
tives of g(s) at a single point, . However, even if one can accurately match attri-
butes of g(s) at s = o, the resulting reduced-order model may not be acceptable.
Properties of Padé approximation and the Lanczos algorithm are combined in
this section to indicate why the frequency response of a Lanczos-generated
model tends to be only locally accurate about ¢ for reasonably small values of k.
Specifically, we are interested in two convergence properties of single-point Padé
approximations [2,6]: (P1) Padé approximants are exact at the point of interpola-
tion while accuracy is lost away from o and (P2) the accuracy of the Padé approxi-
mant is lost away from o more rapidly when pole(s) of the original system (the
generalized eigenvalues of the pencil 4 — AE) are near ¢. This second property
implies that even non-dominant eigenvalues in the neighborhood of o (eigenvalues
near o whose presence has negligible impact on the system’s frequency response
g(iw)) can block the modeling of essential eigenvalues away from the interpolation
frequency. Related to these properties are two important characteristics of the
Lanczos method: (P3) those eigenvalues which are on the outer-edge of the spec-
trum of the Krylov matrix ¥ = (4 — oE )“IE tend to be well approximated by
the Lanczos method and (P4) the Lanczos method tends to converge to well-
separated eigenvalues first. Corresponding to this last property, the Lanczos
method typically does a poor job of identifying the multiplicity of identical (or
nearly identical) eigenvalues.

To examine the impact of these properties on single-point approximations, a
simple 22nd order system is considered for the remainder of this section. The E
matrix in this example is the identity matrix. As for 4, 18 eigenvalues are in the
neighborhood of 0 while the remaining four have an imaginary component of
+500. Of these, only four eigenvalues close to the imaginary axis (—0.21 £i and
—0.2 4 500i where i =+/—1) play a significant role in the frequency response
of the system (the two peaks on the system’s frequency response in figure 1
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ig(iw)!

actual system

------ single-pt Lanczos, k=17

-150

10 10° 10 10 10
frequency (w)

Figure 1. Frequency response of example 1.

correspond to these two eigenvalue pairs). Thus one expects to be able to model the
original system of this example with k£ < 10.

Unfortunately for k£ < 18, the single-point Lanczos generated model about 0 (a
standard choice for o) fails to reflect the actual system’s peak in magnitude at
w =500, see figure 1. Even though most are unimportant to modeling the
system, the eigenvalues around o = 0 are almost perfectly approximated before
the high-frequency eigenvalues make an appearance. Such behavior is consistent
with the two Padé properties P1 and P2. From a Lanczos point of view, one
must consider the Krylov subspaces (47", 47'b) and #;(477,c). The eigen-
values of 47! are shown in figure 2. Note that those eigenvalues of 4 which are
near o = 0 have reciprocals which are spread out in the spectrum of A~'. On the
other hand, the high-frequency eigenvalues of 4 correspond to four eigenvalues
of A~' which are all basically zero. More importantly, those eigenvalues of the
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Figure 2. Eigenvalues of 4.
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system near the imaginary (iw) axis appear on the outer edge of the spectrum of
A~'. By property P3, the eigenvalues of 4 close to zero and the imaginary axis con-
verge quickly in the reduced-order model. The desired high-frequency eigenvalues
are also on the outer edge of 4™ "’s spectrum, but their convergence is hindered by
property P4. Until £ becomes large, the Lanczos method sees the four nearly iden-
tical eigenvalues of 4" at 0 (the high-frequency poles of the initial system) as a
single, real pole. The Lanczos properties confirm that £ must be large before the
high-frequency behavior can be modeled.

In general, we stress that a single-point Lanczos model will eventually model the
frequency response of the system (e.g., when k > 18), but the size of the reduced-
order model may become large in doing so. The convergence of the single-point
method is dependent on eigenvalues which are unimportant to the model. More-
over, these non-dominating eigenvalues appear in the reduced-order model. Yet
if k is large and the model contains a large quantity of non-essential informa-
tion, there is little value in obtaining the model. The above example is admittedly
simple to clearly demonstrate these points. In section 5, we obtain similar results
with a real-world problem. Finally, note that one may improve the single-point
results by using a different interpolation frequency. For instance, a good model
arises for the above example when k = 12 and o = 20. However, it is not easy to
locate such an interpolation point a priori. And in this example, even an optimal
single-point interpolation falls short of the multi-point Padé approximation of
section 5.

4. Rational Lanczos algorithm

To avoid the difficulties inherent to single-point interpolation, one can turn to
model reduction via multipoint Padé approximation [16,32]. In multi-point
approximation [2], the moments of the reduced-order model, the 7, (0;) in (7),
satisfy the moment matching condition (5). Every interpolation point, o;, is
chosen to identify dynamics from a specific frequency range. One avoids trying
to acquire information from a single, distant interpolation point. It is stressed
once more that a Lanczos-type method is desired to avoid the numerical diffi-
culties encountered in previous explicit moment matching methods [10].

To simplify the development of rational Lanczos, we assume in this section that a
fixed number of moments (2j ) are to be matched about each interpolation point.
This restriction is not conducive to model reduction however and will be dropped in
section 5. We will also assume in this section that no breakdowns (divisions by zero)
occur in the rational Lanczos algorithm. This second assumption is related in some
ways to the first and will also be addressed in section 5.

The variant of the Lanczos method employed to generate a reduced-order
model {E, 4,b,¢} satisfying (5) is denoted the rational Lanczos algorithm as it
was inspired by the rational Arnoldi method of [24,25] for computing eigen-
values. In a rational Krylov method, the Krylov subspace is replaced with
span{ry, ¥ ro,..., Px_1ro} where the ¥; are arbitrary rational functions in 4 and
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Algorithm 2 Rational Lanczos [11]

Input: rg = (A =01 E)~ b and g = ¢;
Fori=1tor1,
For j =1 to J.
(A21) k= (i = 1)j+j;
(A2.2) vkt = /Irf_ qk-1ls
(A2.3) vk = (rk—1/Ykk—1) and wy = sign(r]_,qk-1) - (qk—1/Vk,k—1);
(A24)if j< Jand i < 7,
(A2.4.1) 7 = (A= 0;E)"'Evy and §x = ET(A - 0. E) " Tuy;
elseif j =jand i <7,
(A2.4.2) 7 = (A— 041 E)~ b and Gx = ET(A - 0;41E)~T¢;
else
(A2.4.3) 7y = (A — 01 E)"'Ev; and §x = ET(A — 01 E)~Twy;
end
(A2.5)if j > 2 and k # 77,

(A2.5.1) ["(1‘); ’Yk,k]T = [0 0wk w;{’"”"]T and

Bk - Bix]” = [0 .0 T @ vTa]s

else
T e T .
(A2.5.2) [’Yl,k ’Yk,k] = W/ 7, and [,81’;: ﬁk,k] =V ks

end .
. T . T
(A2.6) rp = 7 = Vg ["ll,k ’Yk,k] and gx = Gk — Wi [ﬁl,k ﬂk,k] ;

end
end

Vi1 = (ri/k41,5) where gy ¢ = \/Irfq; | and k = 7.

E [23]. The rational Lanczos method developed below actually computes two
rational Krylov subspaces, yielding biorthogonal ¥, and W, in place of rational
Arnoldi’s orthogonal ¥,. There are, however, numerous subtle differences between
the two rational methods which are needed to insure that the oblique projector,
I, = VW, of rational Lanczos yields a rational interpolant.

Strong similarities exist between the standard nonsymmetric Lanczos algorithm
(algorithm 1) and rational Lanczos (algorithm 2). The key difference between the
two lies in step 4 of algorithm 2. In rational Lanczos, the matrix, (4 — 0, E)™'E,
multiplying a previous v vector varies with the interpolation point. Because this
matrix is a function of o;, the union of several Krylov subspaces is computed
(see theorem 1below). In fact, we will see that each of these Krylov subspaces corre-
sponds to 2/ moments about an interpolation frequency, ;.

We begin our analysis of algorithm 2 by examining the case where & is a multiple
of j. This case involves the execution of step (A2.4.2) and corresponds to a change
in the interpolation point from o; to o;,;. Note that v, yv,; = r; due to (A2.3).
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Then placing 7, from (A2.4.2) into the expression for r; in (A2.6) yields
M,k
Vi | =(4-0E) " b=mo(4— 0 E) (A= \E) Ve,  (8)
Vi1, k

since ¥y g0y = (4 — 01 E )~'b. Note in (8) that the vector e; is the jth standard unit
vector of appropriate length. Multiplying (8) on the right by (4 —0,.,E) and
rearranging the expression results in

M,k M,k
AV : = Mol | = EVin| oin : — 01 0€1

Ye+1,k Ve+1,k
which can be rewritten as

N,k M,k
(A - UlE) Vi : —mger | = EVi : (0i+1 - 01) ) (9)
Ye+1,k Ye+1,k
0 0
he ke

where k = ij. When k is not a multiple of j, step (A2.4.1) is executed and the next v
vector computed is still associated with the interpolation point o;. For this case,
placing the 7, of (A2.4.1) into the expression for r, in (A2.6) yields

M,k
Vk+l = (A - a',-E)_lEVkek. (10)
Yr+1,k
Multiplying (10) on the left by (4 — 0; E') produces
M.k
EVier=(A—0,E) Vi : )
Ve+1,k
which can be rewritten as
N,k M,k
(A= 0E) Viy, : = EViy : (gi—o) +e |- (11)
Ye+1,k Ye+1,k
0 0
\W—/ - ~ J

e ki
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Combining all & steps of algorithm 2 yields
(4—0\E) ViriHirn i = EVi Keg ks (12)

where the columns, h; and k;, of Hg,, ; and Kg,, ; are defined via (9) and (11).
Specifically, columns j,2j,...(i—1)j of Hg,, ; and Kz, ¢ fit the form of (9)
while the remaining columns satisfy (11).

The matrices Hg,,; and K., ; are upper-Hessenberg. The elements, v, of
these matrices are computed in algorithm 2 so as to enforce a biorthogonality
condition, i.e., W,;T Vi = 1. However, as indicated by step (A2.5.1), a majority
of the elements above the diagonals of Hg,, ; and K, ; are typically zero and
thus need not be computed in theory. To be precise, Hy,, j is tridiagonal except
for off-tridiagonal fill-in occurring in those columns where (using the notation of
algorithm 2) j=1 or j=2. The structure of Hp,,; and Kg,, ; follows from
lemma 1 (see appendix) and is a generalization of the three term recurrences
present in the standard nonsymmetric Lanczos algorithm. For example if
k =j+2, the element ~,; = w7 = w/ (4 — 0,E) ™" Evy,, is zero for t <k — 1.
This last fact is due to the biorthogonality of V, and W, and also by (37)
of lemma 1, ie, w/(4—-0,E)"' € /{(ET(A—0,E)T,ET(4—0,E) Tc) U
AAET(A-aE) T c)ift<k—1.

Special mention should also be given to the kth columns of Hj . and K .

Due to step (A2.4. 3) the kth column satisfies the general form of (11) with
o; = o1.-Thus kg = [e— 0]” so that Vi, Ki1 s = ViKe k- Maklng use of this last
fact when multlplymg (12) on the left by WkT(A o E ) yields

Hii= Wi (A—0E)" EViKg, (13)

where k = ji. Expressions (12) and (13) serve as the initial relations between the
projector VW and E and A.

Under the assumption that F is invertible, the relations (12) and (13) were util-
ized in [11] to argue for

~ ~

A=KE,E+UIHE,E’ E=H" y b (A O'IE) 1b and C _CTVkKkk
(14)

Lol

in the reduced-order model, (2). In this paper, the assumption that E is invertible is
dropped. Furthermore, the remainder of this section combined with several lemmas
provided in the appendix actually proves that (14) corresponds to a multi-point
Padé approximation of (1) (i.e., (5) is satisfied by the model selected by (14)). To
arrive at this final result, we begin by obtaining a relationship between the rational
Lanczos projector ¥, W, and Krylov subspaces.

Theorem 1 _
If V, and W are the results of the first k steps of algorithm 2 with 1 <k <k
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then

colsp(Vy) = {fk-f(i—l)((A —0,E)"'E,(4 - 0,E)"'b)

X U.}t’f((A —0,E)7'E, (A—a;E)'lb)}, (15)
I=1
where i — 1 is the quotient of k/j. Correspondingly,
colsp(W,) = {xk;f(,._l)(ET(A —6,E) T, ¢) U]J{(ET(A —qE)T, c,)}, (16)
where the vector c; is ¢ if / = 1 and (4 — 0, E) " ¢ otherwise.

Proof
We prove (15) via induction. The result clearly holds for k =1 since v, 4v, =
(4 — 0,E)™"b by choice. Assume

colsp(Vi—1) =
{fk_,(, 1((A=0;E)'E,(A—0,E)'b) Ux((A 0,EY'E,(4— 0, )“b)}.
1

I=1
_ (17)
For k > 1, steps (A2.4) and (A2.6) in the kth iteration of algorithm 2 yield

k-1
Vi k-1Vk = (4 — 0,E)'Ety_, + Z’Yx,k-l’“n (18)

t=1

where 0,_, = bif (A2.4.2)is executed and Vg1 = v4_; if (A2.4.1) is executed. Under
the assumption (17), ¥y_; = ( D vk 1 where

17;5’._)1 € Hi_j(i—1y-1((4 — Ui)~1Ea (4- UiE)_lb) (192)
and
i1
30, € | (4= o) 'E, (4= ) b). (19b)
=1

Thus (18) can be rewritten as

k-1
Yok1V = (A — 0, E)EG, + (A= 0, E) " E50, + 3 yic1ve (20)

t=1
The vector (4 — o;E)™ E5", lies in #3_;_1y((4 — 0,E)"'E,(4 — 0,E)”'b) since
one is simply multiplying some power of (4 —o; E)”'E again by (4 — o, E ) 'E.
Elsewhere, one must use lemma 1 of the appendlx to show that (4 — o, E)” lEvk | €
{#:((4= 0,E)"'E, (4 - 0,E)'b) UL, #;((4 — o) 'E,(A— ) ')}, Lastly,
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ary Y, k-1, € colsp(V}_,) where colsp(V;_,) is defined by (17). Combining these
last three facts with (20) implies that V), satisfies (15). The portion of the proof
corresponding to (16) is the dual to that presented above. O

In [29], it is shown that an oblique Krylov projector leads to a Padé approxi-
mation about a single interpolation point. Except for certain technicalities which
are handled in lemmas 2 and 3 of the appendix, an argument in [29] can be general-
ized to prove that an oblique projector corresponding to a union of multiple Krylov
subspaces leads to a multi-point Padé approximation. This result is given in the
following theorem.

Theorem 2

Let the jth moments of the orlglnal and reduced order systems about the inter-
polation point g; be m;(o;) =c "{(4-0,E)"'E}(A—0,E)"'b and (o) =
“T{( -0, E)” 1E} (4-o; ) 1h respectlvely If A= Ky y + o Hy wE= Hy i
b = Wk (A — 0 ) lb and C =c VkKkk where Hk+l kaKk+1 ks Vk+l and Wk+1
are the results of algorithm 2 with k = k (i.e., algorithm 2 is run to completion),
then m; (o) = my(o;) fori=1,2,.. zandj—012 L2j =1

Proof
Corresponding to the two-sided nature of nonsymmetric Lanczos methods, it is
helpful to split up the expression for m; (o;) as

my(0;) = [c"{(4~ 0, E)"E}'|[{(4 - 0,E) "' E}*(4 - 0, E) '8, (21)

where j; = [j/2] and j, = | j/2]. If I, = VW is a blorthogonal projector,
v € colsp(V;) and w € colsp(W,,), then IT,v = v and w” I, = w”. Thus (21) can
be rewritten as

mi(0;) = [T Vi{W{ (4 - 0, E) ' EV, } ]
X (W (A~ 0,E)EV,}2 Wi(A—0,E)'b] (22)

by the properties of the biorthogonal projector and theorem 1. From (22), m;(a;) is

also the jth moment about o; of the restriction of (1) by II;. We must now simply

show that this moment of the restricted system takes on the form specified by

m;(0;). Two lemmas from the appendix will be needed to relate the matrix

Wl (4 - o,E)™ EV;, of (22) to the matrices H ; and K , appearing in ().
We proceed by concentrating on the right hand side of (22), i.e.,

(Wl (A4 -0, E)'EVY2 Wl (A4 —0,E) b (23)
={Wl (4 -0, EY'EV,}2 W (A —0,E)" (4A—0,E)(A—0,E)'b
= {W (A~ E)'EV,}* WS (4 —0,E) (A -0, E)V, W (4 —0,E)"b.
By using (40) of lemma 2 and recalling that (4 — o, E)™'b = T10Y1, (23) can be
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rewritten as
(Wl (4-0,E)'EV,}?[Kix — Wi (A= 0,E) (A~ 0,E) reeif (o) — )]k, k171,05

where J; , = [Ky . + Hy 1 (07 — 0;)]”". This most recent expression can be further
simplified to

{w/l4- o'iE)—IEVk}szk,ka,kel'Yl,O (24)

due to (45) in lemma 3. Applying (41) of lemma 2 once to (24) yields that (23) is
equivalent to

(W (4 - 0,E)" EV}* ' [K kS sHi i + Wil (A= 0,E) (4 — 0,E) ryef
X {I + (01 — 0) S ,kHi i Y i €110
which can again be further simplified via (45) to
(W (4 -0, E)" EV.}" " Ky i Ji iHie x T k€1 M1 0-
After the repeated use of (41) and (45) in a similar fashion, one finally obtains
{wl(A—-a,E)"'EV,}2 W[ (4~ 0,E)'b
= K 1{TecHi i} s Wi (4 — 0, E)7'b,
so that
mj(o;) = CTVk{ WkT(A - UiE)_lEVk}jlKk,k{Jk,ka,k}th,k WkT(A - UiE)_lb
(25)

We now concentrate on the left hand side of (22) Applying (41) of lemma 2 to
(25) yields

my(0;)) =c"Vi{Wg (4 — 0,E) ' EV,} ' [Ki p Sk Hip + Wi (A~ 0,E)™
x (A= o, E)rvef {1+ (01— o)) i sk Hi ki kHic i } 2T i Wil (A— 0, E)7'b,
which becomes
TVk{W (A -0,E)” IEVk}J1 1Kk k{Jk ka k}hHJk ka (A - UIE)—lb

since the residual vector, r;, drops out due to (46). The repeated application of (41)
and (46) in an analogous manner yields

mj(d‘) = CTVkKk k{Jk kHy, k}ij kaT(A_U'E)—lb (

26)
The right hand s1de of (26) is in fact r1;(0;) given the definitions of 4 AE, l; ¢ and
o= =(d-oE)". O

5. Model reduction with the rational Lanczos algorithm

Using the rational Lanczos method of section 4, one can model the 22nd order
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problem of section 3 with much smaller values of k than required by the single-
point interpolation about 0. For instance, consider interpolating this system
about the points {.1, 1,10, 100, 1000}. Matching four moments about o, = 100
and two moments about each of the other four points generates a 6th order
rational interpolation. Figure 3 demonstrates that the frequency response of the
6th order model is nearly identical to the frequency response of the original,
22nd order system. Recall that the single point interpolation of section 3 did not
yield a response with such accuracy until £ grew to be 18. By utilizing multiple
interpolation points, the size of k was reduced from approximately » to a value
consistent with the amount of important dynamics in the original system. Of
course, selecting a proper combination of interpolation frequencies, o;, and the
number of moments, 2j, to be matched about each o; is by no means a trivial
matter. In this section, a technique is developed for implementing the rational
Lanczos as a model reduction tool.

For ease of computation and for lack of better application-specific information,
the i interpolation points are fixed in this paper with a log-linear spacings over a
frequency range, w,,;, t0 w,.y, specified by the user. We refer the reader to [18]
for a discussion of point selection in the context of rational interpolation of the
frequency response. The interpolation points are spread over the positive real
axis with oy = w,,;, and o; = w,,,,. The moments generated about each o; tend to
yield information pertaining to the original system’s response in the neighborhood
of the frequency o;. One way of justifying this last statement is to examine the
eigenvalues of the reduced-order model in an approach analogous to section 3.
For a o, between w,,;, and w,,,, those eigenvalues of (1) with imaginary compo-
nents > o; appear in the spectrum of (4 — o; E)™'E as a cluster at 0. Those eigen-
values with an imaginary component < o, appear in the spectrum of (4 — o;E)™'E
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as a cluster at 1/0;. The remaining eigenvalues of the original system tend to be well
spread in the spectrum of (4 — o, E )‘IE with those eigenvalues near the imaginary
axis on the edge of the spectrum. By generalizing the Lanczos properties discussed
in section 3, one can expect that the inclusion of moments about o; leads to a
reduced-order model that has some eigenvalues which approximate those of
(4 — AE) in the neighborhood of +ic;. Modeling the eigenvalues in the proximity
of +10; tends to in turn lead to a reduced-order model whose transfer function
approximates g(s) for frequencies near o;.

Choosing real interpolation points leads to a rational Lanczos algorithm which
avoids complex computations (assuming the original system (1) is real). However,
complex (imaginary) points may be preferred since one is in fact interested in inter-
polating g(s) along the imaginary axis. The rational Lanczos algorithm is not
restricted to real o;. For example, one might combine algorithm 2 and the methods
of [25] to arrive at a complex interpolation point, rational Lanczos method. The
selection and implementation of complex interpolation points will be discussed
in a forthcoming paper.

Besides placing the interpolation points, one must also be concerned with how
many moments are to be matched about each of these points. In section 4, the
number of moments about each interpolation point was fixed a priori at (2j).
The first j rational Lanczos iterations corresponded to the interpolation point o,
the next j iterations were associated with o,, etc. Although this approach allowed
for a simpler development of theorems 1 and 2, it is not preferred for acquiring
an acceptable reduced-order model. Rather, we would hope to choose an inter-
polation point in the (k + 1)st rational Lanczos iteration which yields in some
sense the greatest improvement between the kth and (k + 1)st order models®.
One should no longer simply perform all of the rational Lanczos iterations corre-
sponding a given interpolation point consecutively. To begin to formalize these
statements, consider a somewhat more generalized pair of residuals

o) =(4- o, E)y" B — VW (4 - 0,E) B, v € colsp(Vy),
(27)

g’ =ET(A4 - 0,E) "W - W VIET(4-0,E)Tw®,  w® e colsp(W,),
(28)

where the superscripts (i) are added to explicitly denote the dependence of rk ) and
qk on the choice of ¢;. The (k + 1)st iteration (and also the vectors v,,; and wy,)
will be said to correspond to the spec1ﬁc mterpolatlon point o; e, € {o1,...,07}if

Vg4 and wy, lie parallel to r,E 1) and q("+1 respectively. In performing the

2 The kth order reduced-order model is defined in this paper to be the restriction of (1) by the pro-
jector V,WT. For the special case where k = £, (13) holds and thus the reduced-order model can
equivalently be defined via (14). It is stressed that one cannot in general define the reduced-order
model in the form of (14) for k < £.
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(k + 1)st iterations (computing v, and wy_,), one can thus choose from among i
residual pairs. This ability to select from among i residual pairs per iteration reflects
the freedom provided by multiple interpolation points. The goal is to choose the
residual pair in the (k4 1)st iteration so that the (k+ 1)st order model is in
some sense the best possible improvement over the kth order model.

Motivated by the discussion of the previous paragraph, algorithm 3 is proposed
as a version of the rational Lanczos algorithm suited for the model reduction prob-
lem. Algorithm 3 is a twist on algorithm 2 which does not require that all of the
moments corresponding to a given interpolation point be computed consecu-
tively. Nor does algorithm 3 demand that the same number of moments be com-
puted about each interpolation point. Rather, algorithm 3 attempts to select
from among the i interpolation points to acquire an acceptable reduced-order

Algorithm 3 Rational Lanczos for model reduction

For:=1 to7,

Input: r(()i) = 7’8‘) =(A-0;E)"'b and q(()') = 63‘) =cand 7 =1;

end
For k=1 to k,
(A3.1) set i} to be the value of i = 1,2,...,7 which maximizes 02|r{"] () |;
(A3.2) ARV
(A3.3) v = (U5 /208 1) and wy = sign(r{E) (%)) - (g0R) A0 )
(A3.4) 7 o = (A~ 0.2 E)~'Evg and gy Y = BT(A~ 052 E)~Tuy;
(A3.5) for t =1 to k,
if t > Tir
s =l and F = o1
else
'75;’:‘) =0 and ﬁ(l") 0;
end
end
(A3.6) 7, () _ 'Ef") Z, e vn( ¥ and qk“) = ’(i:) —ELT. ‘ﬁe ;
(ABT) e = k5 *

(A3.8) for i # i},
it k=1, ¢\ =4 = ET(4 - 0;E)~Twy; end

r;:) = rgc) ukwTr( ) and qi') = qgj) - wkuz‘qi)l;
-(l) _ -(41_) and § -(i) _ qgct)l;
( _ ) T8 .
[’71111 ’Yik] = [’Yg'))c 1° “'Ecl 1,61 Yk Tk—l]’
end

end

(iy) , (1) (CON. GHT G
Vg1 = (r‘.:l /’Yic-:l,l.c) where ’Yl—c-:-l |ch‘ ql-c1 |
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model. Its ability to do so is demonstrated with an example at the end of this
section. However, we first consider several features of algorithm 3. The values of

v and w _in (27) and (28) must be specified. The criterion used to select from
among the 7 interpolation points in each iteration (A3.1) must be developed.
And the structure of the kth order model generated by algorithm 3 must be
presented.

Algorithm 3 specifies that the vectors v and w") in (27) and (28) be the right-
most columns of ¥ and W), respectively which also correspond to the interpolation
point o;. This choice insures that the order-k model generated by algorithm 3 is still
a multi-point Padé approximation of the original system. Speciﬁcally, 2j; moments
are matched about o; where j; is the total number of times i{ = i in step 1 of algo-
rithm 3 for k= 1,...,k. A proof of this statement will not be provided as it is
simply a more tedious version of that which is already in section 4. All of the
results developed in section 4 can be adapted for algorithm 3; only the quantity
and ordering of the moments computed about each o; vary from before.

The prescnbed choice of v) and w also leads to one other interesting point.
Note that 7 pairs of residuals, "’ and ¢,"), are carried from one iteration to the
next. But only one pair of resxduals is actually incorporated into the projector in
each iteration (the pair which hopefuily leads to the greatest improvement between
the kth and (k + 1)st order models). Only two new residuals are computed in steps
(A3.4) through (A3.6) to replace the pair selected in (A3.1). The other residual pairs
can be carried over into subsequent iterations after cheap updates in step (A3.8).
Hence only one pair of residuals (only the solutions to two linear equations)
need be computed per iteration. The other residuals pairs can be carried over
from one iteration to the next because the values of v and w used m computing
the ith residual pair depend on o; but not k. The vector v) used in rk is chosen to
be the most recent column of ¥V, which was also formed via multiplication by
(A—o,E)'E

One of the most important components of algorithm 3 is (A3.1). Based on the i
values of o | rk ) qk . | an interpolation point is selected for use in the kth itera-
tion. A justification for this selection criterion arises out of the following resuit.

Theorem 3

Let V. W, be the projector formed via the first k < k iterations of algorithm 3 and
assume o; was chosen to be the desired 1nterpolat10n point of (A3.1) in j; of these
previous k iterations. If i # i, then (qk ) r,E is proportional to the difference
between mzj“( 0;) =c"{(4d-0,E)"'E}’* (4~ 0,E)"b and (o). Other-
wise, (qk NT r!" is proportional to (CTR (o) — m21,-; (0:2).

Proof

The distinction between i = if and i # i{ is a minor technicality arising out of the
fact that the first vector in W} needs to be c rather than E*(4 — o, +)” T¢. A proof is
only provided for i # i,
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Given the definitions of r{") and ¢ in (27) and (28),

g =W (4 - 0, EY " EYv® —wO (4 - 0, E) T EV, W (4 - 0,E) " Ev®.
(29)

From theorem 1, it is know_n that v*) is a linear combination of vectors which serve

as a basis for the union of i Krylov subspaces. In particular, because o; was chosen

to be the interpolation point in j; of the previous k iterations, v can be written as

79 + 5% where

59 =" (4 = o) ' E} (4 — 0,E)"'b € colsp(Vy)
and
7" € A;_(4—0,E)'E,(4 — 0,E)"'b)| | #;((4— 0,E)'E,(4 - 0, E)'b)
I#i
C colsp(V}).

Combining the expression for ¢} with lemma 1 ylelds ( —o;E )“Eﬁ(':) €
colsp(V;) 50 that VWl (4—0,E) ' Ev® = VW I ()™ (4 — ;) E5") +
(A—0,E)""Eo®, Although not essential to the proof, an 1nspect10n of algo-
rithm 3 shows that ) = =154 Y1, 1-1 whgre Ft.1-1 =Y-1 ifi' =i ahd Vi1 = 0
otherwise. Similarly, one can write w® as w® +w® where w® = (8%)!
{E"(4 — 0,E) T }ie, (#) (4 = 0)" EV,W = (#0)7(4 = 0)™'E, and By =
i'yn Using all of these facts in (29) yields
(@) r = WO)T{(4 - 0, E) " EYs") — (#) (4~ 0, E) " EV, W

x (A — o, E) " E5®

+ () HeT{(4 = 0 E)EYT (I - VW ){(4 - 0, E)'EY
X (4 - a.E)-‘b). (30)
As my; +1( D) =c{(4-g; EP 1E}zf'“( — 0,E)'b, the proof is complete if

the term ¢’ {(4 — 0, E)~ lE}" ViWI{(4-0,E)” 'E}f'( —0;E)"'b in (30) is

11y;,41(0;). To quickly demonstrate this last fact, we employ a small trick from
[7]. Note that the original system (1) can be rewritten as

(A= 0,EY'Ex(t) = (A — 0;E) " 4x(t) + (A — 0,E)'bu(t) and y(t) = c"x(r)
so that the restriction of (1) by V, W, becomes
WI(4-0,E) ' EVk(t) = Wl (A —0,E)" AV,x(t) + W (4 — 0,E) ™ bu(?);
P(t) = cTVx(2). (31)
Taking the Laplace transform of (31) yields that the transfer function of the order-k
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model is
g(s) =c"Vi[WI (A -0, E) ' 4V, —sWI (4 — 0, E)'EV,| "W (4 — 0,E)'b
=c"Vill + (0, — ) WT (4 — 0, E)'EV,] "' W] (4 — 6,E)"b. (32)

The (2j; +2)nd coefficient of the power series expansion of (32) in terms of
(s—- o)) is TV {wT (A—O'E) 'EV ' Wi (4 — 0,E)"'b which is equal to
¢"{(4- o E)Y'EYViwI{(4 - 0,E)'E} (A - 0,E)'b. 0O

The quantity (r ('))Tq,g’ is proportional to the absolute error between the first
unmatched moment about o; of the orlgmal system and the reduced-order
model of dimension k. In fact, ( ) (qk )T ) is an exact expression for the
absolute error. The use of the absolute moment error appears to be best suited
for imaginary interpolation points and will be reported on elsewhere in the
future. In this paper, real shifts are employed (recall the discussion at the beginning
of thlS sectlon), and an approximation of the relative error in the moments,
o; (qk ) r,£ )| seems to be most useful. The scalar o? normalizes the residuals
against the distance from the interpolation point to the iw axis.

Given no other information, it makes little sense to match a moment in the
(k+ 1)st iteration if the error between that moment and the corresponding
moment of the order-k model is already small. Rather, one should logically
direct their effort towards a value of o; where the error in the first unmatched
moment (e.g., my;,1(0;) versus i ,1(0;)) is large. After choosing o; as the inter-
polation point for the (k + 1)st iteration, and performing this iteration, theorem
2 tells us that this error, m,; ., (0;) — i1y, ,1(0;), becomes 0. This concludes our justi-
fication of step 1 of al%orlthm 3. By choosing a g; among the i possibilities which
maximizes o’ qk , one hopes to add as much beneficial information as pos-
sible to the reduced order model in the (k+ 1)st iteration. The selection at
(A3.1) is in some sense locally optimal and is perhaps the best one can hope for
given the limited quantity of information available at the (k + 1)st iteration.

Finally, one should note that the dot-product of the residuals is an infamous
quantity in the standard (single interpolation point) non-symmetric Lanczos algo-
rithm. The occurrence of a zero or near zero dot-product with r, # 0, g, # 0 is
termed a serious breakdown [22] as it leads to division by zero in the algorithm.
A large amount of effort has been placed towards working around this breakdown
in the standard non-symmetric Lanczos algorithm, e.g., the look-ahead Lanczos
method [9,21]. The serious breakdown itself is known to be connected with
system theory [22]. For example, if 7/, ,gs,; =0, the order-k and order-(k + 1)
models of the single-point Lanczos method would share the same minimal realiza-
tion. This fact is entirely consistent with theorem 3. Rational Lanczos tends to
avoid such breakdowns since one works to maximize a scaled version of
(rk'))T 0, Selecting an interpolation point with the goal of maximizing the
amount of new information included in the order-(k + 1) over the order-k model
leads to a fortuitous by-product: a tendency to naturally avoid breakdowns. Of
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course, given that one can only reasonably access a finite number of interpolation
points < n, pathological cases exist where none of the i points yield new informa-
tion at the kth iteration. Look-ahead or additional, new interpolation points would
be required in this case. Such a situation has not yet been encountered in practice
and is seemingly unlikely unless the reduced-order model has actually converged
over the specified frequency range.

The last topic to be covered with respect to algorithm 3 is the structure of the
matrices making up the reduced-order model of dimension k. This reduced-order
model again takes the form of (14). Related to (9) and (11), the kth columns of
Hg,y g and K, ¢ are defined for algorithm 3 through the expression

[ Gy ] [ Ge) ]
M,k 1,k
_ : Cy) _ :
=g || =aife| = | o, - )
(ig41) (1)
K1,k Ve+1,k
e 0 - = 0 =
hy ky

if ity & {if,...,i }. Otherwise,

-’Yl(’i]%_l) T _,yl(’i;;}.l) T
(A—Ul;E)VE+1 ’ :EVE+1 : (Olil:+l - 1;)-}-67,
(1) (1)
k+1,k V+1,k
- 0 - - 0
N—— ~ - ~- o
hy ki

As in section 4, a number of the « elements making up H ; and K ; are zero due to
step (A3.5). Figure 4 provides as an example the structure of a simple H,,;; matrix
constructed by switching back and forth between interpolation points o; and o,.
Hp ; is primarily tridiagonal with nonzero elements only appearing above the tri-
diagonal when a change in the interpolation point occurs. These changes in the
interpolating point are indicated by the dashed partitioning of Hy,,, in figure 4.
Using arguments similar to those provided in section 4, one can show that the
first nonzero element in the kth column of Hy ; is in the kth row. The value of &
is the index of the next to last column vector of ¥, which was constructed using
the same interpolation point as v ;. This next to last behavior is a generalization
of the three-term recurrences of single-point, nonsymmetric Lanczos. In single-
point Lanczos, the next to last column vector of ¥V} is always v;_;.

From the definition of k, the upper bandwidth of H, ; can be restricted to 7 if the
interpolation points are perfectly interspersed, i.e., if the interpolation points are
chosen so that the difference k — k is always equal to i. Algorithm 2, on the
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Figure 4. Structure of a sample matrix Hy,,,. The first four columns of H,,; correspond to the vec-
tors v, through v5 with interpolation point o,. The last three columns of H),, also correspond to o,
while the middle four columns correspond to o,.

other hand, computes all of its iterations corresponding to a given interpolation
point in order. Hence the strategy of algorithm 2 leads to off-tridiagonal spikes
which always rise to the first row. In between these two extremes, the interpolation
points are chosen with respect to improving the reduced-order model and struc-
tures similar to figure 4 typically result. It may be advantageous in future work
to achieve shorter recursions by compromising between the proposed interpola-
tion selection strategy (based on theorem 3) and perfectly interspersed interpola-
tion points.

It must be stressed that the structure of the Hy; and Kj; matrices holds in
theory. In practice, the use of short recurrences in any Lanczos type algorithm
will lead to a gradual loss of biorthogonality between ¥V, and W) as k increases.
Super-tridiagonal elements of Hj ; will in turn be non-zero. The loss of biortho-
gonality between V) and W, is well-known [13] and complete fixes (e.g., complete
reorthogonalization) are expensive. In the following example, ignoring the loss of
biorthogonality versus complete reorthogonalization had a negligible impact on
the results. A more detailed study of the effects of loss of orthogonalization in
the context of model reduction remains an area of current and future work.

As a second example, we consider a 120th order SISO system which describes the
dynamics between the lens actuator and radial arm position of a portable compact
disc player discussed in [31]. The transfer function of this system is shown as a solid
line in figure 5. Due to physical constraints on the size of the system’s controller, a
model with k£ < 15 is desired. Rational Lanczos (algorithm 3), using in order the 15
interpolation points {10°, 10%, 100, 10*, 104, 10, 10°, 10°, 100, 100, 100, 100, 100, 100,
100} yields a frequency response which is nearly identical to that of the actual
system. On the other hand, the difference between the frequency responses of an
order-15 single-point Lanczos model about o = 0 and the original system is signifi-
cant for w > 100. The transfer function for a single point model about w,,,, = 10’ is
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Figure 5. Frequency response for example 2.

also displayed in figure 5. The error for this single-point model is large for

w < 1000. The convergence of the single-point models is delayed by the difficulties
discussed in section 3.

6. Modeling error

A knowledge of the error between the original system and reduced-order model
is important for several reasons. In simulation, one needs to know that the response
of the reduced-order model is sufficiently close to that of the original system. In
control, one hopes to construct a controller from the reduced-order model which
is robust enough to yield acceptable performance with the actual system. Even in
performing model reduction with rational Lanczos, we would like to make
improved choices for future interpolation points based on the error up to the kth
iteration. In all of these cases, it is desirable to quantify the error in terms of the

differences between the frequency responses of the original system, g(s), and of
the reduced-order model, g(s).

Theorem 4
If g(s) is the transfer function of the reduced-order model defined via (14),
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then

) = £() = £(6) = {c6E - 4) "5} (), (33)

where b = (A — pE)rg f(s) = ef (Hzz — sKi. ) "e;m1,0 and pu is the first interpola-
tion frequency, e.g., Oy in algorithm 3.

Proof
From (14) and the definition of the transfer function,

8(s) = &(s) = ¢"(sE — A)™'b — cViK; (Hi (s — 1) — Kgg) "' W (A — pE)b
=c"(sE— A)" (4 — pE){(4 - pE)'b
+ (4 — pE) T E(s — p) — I VK i (Hi (s — 1) — Ki o) ermo}-
(34)
Adapting an argument from [17, theorem 3.4], recall (12) and rewrite (34) as
€(s) = ¢"(sE — A)™ (4 = pE){Vi — (V1 Hepr (s — 1) — ViKe )
X (Heels — ) — Keo) ™' Yerno
=c"(sE - A)—I(A — pE){(s — p) "Eeg(HE (s — ) — KE,E)_lel’Yl,o}
:.CT(SE — A4 - WE ) reef (H, ke — (s — )" Kk 0 16’1’71,0- O

The error expression (33) is in fact identical in form to the rational interpolation
error already derived in [18, section 3]. However, the rational interpolation algo-
rithm of [18] assumes no more than one moment is matched about each interpola-
tion frequency o; and does not make use of the Lanczos algorithm. Analogous to
the comments of [18, section 3], several points should be made concerning the
modeling error, €(s). First, f(s) corresponds to a k-dimensional system which can
be evaluated cheaply. Thus the modeling error can be expressed as a scalar
function times the frequency response of the original system except that the
input vector & is replaced by b. As a rough estimate of the error is typically
sufficient, one can approx1mate (33) as f(1/(s—p)) times some low-order
approximation for ¢”(sE — 4)~'5. The restriction of {4,E,b,c} by I, is not a
good candidate for this approx1mat10n though because the error is orthogonal to
the projection, e.g., Wl (4 — pE)'b=0.

As suggested by the proof of theorem 4, the modeling error (33) is also related to
the residual errors derived in [17] It is proposed in [17] that the norm of the residual
error, b — (sI — A)Vk(sl Hi p)"'W{b, should be made small when performing
model reduction via the nonsymmetrlc Lanczos method (note that [17] assumed
E =TI and an expansion point at infinity so that H ; is a tridiagonal, low-order
approximation for A in that paper). For rational Lanczos and thus rational
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interpolation, the methods of [17] can easily be adapted to express the appropriate
residual error as

&(s) = (4~ uE)"'b — (4 = pE) ' E(s — p) — I\ VK ¢(Hg e(s — 1) — K g) Wi
x (4~ pE)'h

= reef (Hee— (s — 1) "' Ke o) "ervio

1
N rEf(S-ﬂ)'

Striving for a small residual error as suggested in [17] can therefore be thought
of as approximating e(s) with ¢.(s) where ||r¢|| is used as an estimate for
cT(sE — 4)7'b.

With error expressions, one should be able to actively adapt the set of interpola-
tion points as k increases to rapidly address those frequencies where large error still
exists. With the standard Lanczos algorithm on the other hand, one can do nothing
to promote convergence away from the interpolation point except increase the
value of k. The use of error expressions in conjunction with rational Lanczos is
currently being explored.

7. Con_clusion

This paper showed that the rational Lanczos method (algorithm 2) leads to Padé
approximants about multiple interpolation frequencies. The approach of [7] is a
special case of the rational Lanczos method where only one interpolation point
is allowed. The earlier methods of [4,20,27] are an even more specialized case of
the rational Lanczos approach where only an interpolation point at zero is per-
mitted. Given multiple interpolation points, this paper presented an easily com-
putable criterion based on the inner-product r/g, for choosing among the
possibilities. Two examples were provided to indicate why model reduction via a
rational Lanczos method has the potential for significant improvement over exist-
ing single-point Lanczos approaches. Utilizing multiple interpolation points pro-
vides the freedom to search out the dominant dynamics of the system. The
convergence of a single-point interpolant, on the other hand, can be slowed by
the presence of non-dominating dynamics.

Linear time-invariant, SISO systems were considered for model reduction. A
block rational Lanczos algorithm has been developed and will be available in a
forthcoming paper. However, other issues still require additional work. Complex
interpolation points, the moment error expressions of section 5 and the transfer
function error expressions of section 6 should be better utilized to increase the effec-
tiveness of the rational Lanczos method. Approaches for inverting (4 — 0, E) are
also needed. Sparse matrix factorizations or iterative techniques must be utilized
to avoid large computational costs.
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Appendix
Lemma 1
If o and ¢ are two nonidentical interpolation points, then
(4—0E)'E{(4-CE)'E}Y (4 - CE)'D (35)
- € {span{(4 - 0E) b} UA;((4 — CE)"'E, (A~ CE)'b)}  (36)
and

E"(A—oE)YT{ET(4-CE) T} ¢
€ {span{E"(4 — 0E) "} UAH(ET(4A—CE) ", c)} (37)

for any value of j > 1.

Proof
We prove (36). The key is to note that (4 — 0E)~" can be rewritten as

(4—0E)" =(A—0E) (4 —CE)(4—(E)™
, =(4-0E) " (4—0E+(0-()E)(4—(E),
which yields
(0~¢)(A—0E)'E(d—CE) ' =(4—0E)™ — (4 - CE)™". (38)

Using (38), (36) follows via induction. If j = 1, multiplying (38) on the right by &
gives

(A—0E)'E(4—(CE)'b=(0— () {(A4—0E)™"' — (4—CE)"}b

and (36) is satisfied. Next assume that (36) holds forj = 1,..., (j — 1). Multiplying
(38) on the right by E{(4 — CE)'E}" (A4 — CE)™'b yields

(6—C)(A4—0cE) 'E{(4—CE)'E}Y " (4= CE)'"b=(4-0E)"'E
x {4 —CE)'EY (A —CE)"'b—{(A—CE)'E}Y (4 —CE)'b.  (39)

Thus under the assumption that (36) holds for j = j — 1, (39) shows that (36) also
holds for j = j. The induction step and thus (36) hold in general. The proof of (37) is
the dual to that provided for (36). O

Lemma 2 ~
Let W1, Vis1, Kiy1 « and Hy i be the results of algorithms 2 or 3with k = k (i.e.,
the algorithm is run to completion), then

WkT(A - UiE)_l(A —0E)V;
= [Kix — W (A= 0,E) (A — 0, E)rpefl (01 — 0,)] Ji (40)
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and
W (4 —0,E)" EViKyx = Ki i Ji kHic i
+ Wi (4 - 0,E)" (A — 01 E)reeg {I + I i Hic k(01 — 01)}, (41)
where Jj,, = [Ki s + He k(01 — 0))] 7. ,

Proof
Recalling (12) gives (4 — 01 E)'E Vi1 Kis1 & = Vir1Hyyr, k- Multiplying both sides
of this expression by (0; — 0;) and adding V}, K., x to both sides yields

I+ (4 —0E) " E(0) — 0)|Vis1 Kirr,k = Vierr [Kiei1, ik + Herr k(01 — 7)),
which can be rearranged as
VisrKiprx = ([ + (4 — 01 E) " E(0y = 0)] " Vit [Kisr 6 + Higr, (01 — 03)]. (42)

Multiplying both sides of (42) on the left by W], recalling that Vi1 Kis1.k = ViKi ks
and noting that Vi, Hyy = Vil + el since Hy,\ , is upper-Hessenberg
yields

Kix = Wil + (4 - 0,E) " E(0y — ;)] {VilKic.x + Hi (01 — 07)]
+ (o1 — o) red },
so that .
Wl +(4—0,E) " E(o; — a)] "' Vi
= K xJik + Wi [[+ (4= 01E) ' E(0y — )] reei Jii(oy — 03) - (43)
=K1 Jiox+ Wi (A= 0,E) " {(4— 0,E) + E(o1 — 0,)}] ' rie Ty (01 — 0)
= Ky Jip + Wi (4= 0,E)™ (4 — 01 E) el Ji k(01 — 0). (44)
To acquire (41), note that multiplying (12) on the left by W' (4 — o, E)™" yields
Wl (A-0,E) " EV,K; = Wi (4 - 0,E)" (A - 01E) Vi Hepr i
=W (4—0,E)" (A - 01E)ViHyx
+ Wl (A-0,E) (A —0,E)ref.
Rewriting W[ (4 — 0,E)™' (4 — 0,E)V}H, . as in (43) yields (41). O

Lemma 3

Let Wiy, Vists Kiprx and Hiy ; be the results of algorithm 2 with k = & (i.e., the
algorithm is run to completion), then

WkT(A - UiE)—l(A - UlE)"k{ekT(Jk,ka,k)j_l-]k,kel} =0 (45)
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and
VWl (A -0, E)'EV,Y ' W (A-0,E) (A - E)re =0 (46)
fori= 1,2, ces ,l_,] = 1,2, ces ,fand where Jk,k = [Kk,k +Hk,k(al - O'i)]_l.

Proof
For the case i=1, both (45) and (46) are trivial since W (4 —0,E)™"
(A — 0,E)r, = Wl'r, = 0 by the imposed biorthogonality condition.

For i>1, (45) can be demonstrated by first noting that the leading
(i—1)j x (i — 1)j submatrix of [K; , + H, x(o; — 0;)] is upper-Hessenberg while
from (11), columns I = (i — 1)j+ 1,...,ij — 1 of [K; ; + H, 1 (0, — 0;)] are

N, M,1
Yit,1 (o1—on)+e ] - ’71+11 (01 =) = e
0 0
Thus [K, , + H, x(o; — 0;)] takes the form
x,|o
o[ (x| @7)
oo

where X; € RODXE-DJ x, e RF*EDH1 and 1 € RUD*G7Y js an identity matrix.
By simple inspection, J; , must also take on the general form of (47). Thus for
i>1,

k
Za,e,T for (i—1)j <1< ij,
e,TJk,k = = (48)

k
Za,e,T for I > ij,

1=ij

because columns (i — 1) + 1 through ij — 1 of Ji ; = [K; ;. + H i (0 — 0;)] " are
standard unit vectors. Since Hy ; is upper-Hessenberg,

k
e Hyp =) o€ (49)
t=I-1

for any value of /. Through repeated use of (48) and (49), one obtains

k
ex Ui iHe i)™ T er = < Z atetT)el =0

t=ij—j+1

for i > 1 and j < so that (45) is shown.
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To show (46) for i > 1, we begin by rewriting the left hand side of (46) as (similar
to (44))

VW (4~ E)EV Y ' WI{I+(4-0,E) ' E(0; — o)}ny
= (0;—01)cTV{Wi(4 - 0;E)'EV} ' W (4 — 0, E) " Ery. (50)

Now since V, W[ is a biorthogonal projector with the column spaces of ¥} and W,
defined in theorem 1, ¢"{(4 - 0;E)'E}Y 'V W =c"{(4 - 0;E)'E}/"" for
j=1,2,...,]. Repeated use of this last fact on (50) yields that the left hand side
of (46) is equivalent to

(01— 1) ¢"{(4 - 0,E) 'E}n. (s1)
But (51) is zero for 1< j< j since ¢"{(4—0,E)"'E} €rowsp(W,') and
WkTrk =0. l:|
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