PARALLEL
COMPUTING

ELSEVIER Parallel Computing 22 (1996) 1291-1333

Solving large nonsymmetric sparse linear systems
using MCSPARSE

K.A. Gallivan **"', B.A. Marsolf *', H.A.G. Wijshoff "

3 Center for Supercomputing Research and Development, University of lllinois at Urbana-Champaign,
Urbana, IL 61801, USA
b High Performance Computing Division, Department of Computer Science, Leiden University, Leiden, The
Netherlands

Received 2 June 1994; revised 12 October 1994, 8 May 1995, 28 May 1996

Abstract

In this paper, the methods and implementation techniques used for the nonsymmetric sparse
linear system solver, MCSPARSE on the Cedar system are described. A novel reordering scheme
(H ™) upon which the solver is based is presented. The tradeoffs discussed include stability and
fill-in control, hierarchical parallelism, and load balancing. Experimental results demonstrating the
effectiveness of the solver with respect to each of these issues are presented. We also address the
implications of this work for other parallel processing systems.

Keywords: Linear algebra; Sparse linear systems; Cedar system; Implementation; Parallel processing systems

1. Introduction

Several techniques have been proposed to solve large nonsymmetric sparse systems
of linear equations on parallel processors. In this paper, we present a new method for
solving such linear systems using novel reordering and pivoting schemes; we also
discuss the issues involved in mapping this method onto a parallel processor. The

* Cormresponding author.

! Supported by the National Science Foundation under Grant No. US NSF CCR-9120105 and by ARPA
under a subcontract from the University of Minnesota of Grant No. ARPA /NIST 60NANB2D1272.

? Supported by Esprit DGXIII Grants ASPCA and APPARC (No. 6634).

0167-8191 /96 /$15.00 © 1996 Published by Elsevier Science B.V. All rights reserved
PII SO0167-8191(96)00047-6

1292 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

discussion focuses on the tradeoffs involved with an implementation on the Cedar
system [42], a multicluster architecture (four clusters, each with eight processors), but
will also include comments on the applicability of the techniques to other systems.

A key task which determines the effectiveness of these techniques is the identification
and exploitation of the computational granularity appropriate for the target multiproces-
sor architecture while maintaining the stability and sparsity of the factorization. For
example, the architecture of the Cedar system requires the exploitation of multiple levels
of parallel task granularity due to the cluster-based organization. In addition, careful
consideration of data layout is necessary to effectively use the hybrid memory system
comprising private cluster memories and a shared global memory.

Many approaches for solving nonsymmetric sparse systems in parallel have been
investigated. One of these, the multifrontal scheme [4,7,12,13,39], has been used for
both symmetric and nonsymmetric systems. A multifrontal scheme constructs a directed
acyclic graph (called an assembly DAG) to organize the parallel work. A node in the
assembly DAG represents a certain computation, which may include handling the
information from the node’s successors and performing some pivot eliminations. All
nodes without successors in the assembly DAG may be computed in parallel, while
internal nodes can be computed only after their successors have completed. A pool of
the available work (i.e., the nodes in the assembly DAG that can be computed) is
maintained in shared memory. When any process needs work, it retrieves a node from
the pool. After all the successors of a node have finished, the node is then placed in the
pool of available work. This approach, if correctly organized, can provide large and
medium grain parallelism. However, the method tends to work well when the pivot
sequence is constrained to the frontal matrix — which can cause stability concerns. In
order to improve stability, a lost pivot recovery strategy has been added to multi-frontal
schemes [31].

Another approach to parallel sparse solvers exploits the dynamic identification and
application of parallel pivots [1,9,19,45]. At each stage, a set of pivots that can be
applied in parallel is constructed and the appropriate updates performed. These codes
typically concentrate on medium and fine grain parallelism and tend to be most efficient
on a moderate number of processors with fairly tight coupling. There is also previous
work on performance improvements of direct sparse solvers on vector supercomputers
[4]. The results indicate that vectorization can sometimes be used to improve the
performance. Both of these approaches can be used as part of an algorithm which
exploits multiple levels of parallelism.

Tearing techniques have been proposed to expose large grain structure and paral-
lelism by reordering the matrix into a bordered block triangular matrix [15,21,33]. This
effectively partitions the problem into small subproblems (the diagonal blocks) and then
eliminates all connections between the subproblems (the border blocks). Unfortunately,
the associated factorization routines are often unable to preserve stability and sparsity
without destroying this structure.

The approach taken in this paper uses the H* ordering to identify a priori large and
medium grain parallelism and to restructure the matrix into bordered block upper
triangular form. This is used in combination with a factorization routine, utilizing the
pivoting technique casting, which preserves this structure while maintaining stability

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1293

and sparsity at acceptable levels. We describe the implementation and performance
tradeoffs for the multicluster solver MCSPARSE on the Cedar system. Specifically, we
address the issues of stability and fill-in control, hierarchical parallelism, and load
balancing.

The paper is organized as follows. We first review other reordering methods and then
present the H™* ordering, followed by an overview of the MCSPARSE solver. Each of the
issues listed above is then considered in turn with their performance tradeoffs on Cedar.
The implications which these issues have on other parallel processors will be discussed.
Finally, conclusions and the applicability of the results to further work on solvers such
as MCSPARSE are presented.

2. Comparison of different approaches

During the introduction, the H™ ordering for transforming a matrix into bordered
block upper triangular form was described as novel. This is not to say that the use of the
bordered triangular form, or the bordered block triangular form, for solving sparse
nonsymmetric systems is a new idea.

Research on orderings for transforming matrices into the bordered triangular form has
been done using graph theory methods to find the minimal essential set [6,41]. These
methods rely on the fact that the sparse system is positive definite, so that pivots can be
chosen from the elements of the diagonal without losing stability. In the case of
nonsymmetric systems, which are not necessarily positive definite, these methods are
not always successful.

For nonsymmetric systems, the bordered block triangular form is preferable when
pivot selection 1s restricted to within the diagonal blocks since the overall structure of
the system is not destroyed. Several different methods for finding the bordered block
triangular form have been proposed. Partitioning and tearing methods [43] can be used,
and algorithms such as P* [33], P® [14], the Hierarchical Partition by Lin and Mah [37],
and the level set algorithm by Arioli and Duff [2] were introduced for ordering the
matrix into the desired form. Although these methods are rather successful at transform-
ing the system into the bordered block triangular form, the associated factorization
phases lack stability when the pivot search is constrained to the diagonal block;
therefore, these methods are not recommended for use on general nonsymmetric
systems.

In the remainder of this section, we briefly describe the major steps of the algorithm
and relate them to previous work. Within MCSPARSE, the necessary provisions are made
to guarantee a suitable level of stability within the factorization phase. First, the initial
phase of H* is used to transfer relatively large elements of the matrix to the diagonal.
This transformation is based on the transversal algorithm, which is also used in the level
set algorithm of Arioli and Duff. The main difference, however, is that in the level set
algorithm the transversal is not constrained to contain relatively large elements.

After this initial phase, H” proceeds by reordering the system into the desired form
while preserving the initial diagonal structure via the use of symmetric permutations.

1294 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

This is in contrast to the methods on which P*, P>, and the Hierarchical Partition rely.
Symmetric orderings are, of course, not as flexible as nonsymmetric orderings, and the
dimensions of the diagonal and border blocks in the resulting permutated matrix might
not be as small. This can be observed in the results of the level set algorithm in Table 2.
H* mitigates this difficulty by using different basic algorithms (i.e., Tarjan’s algorithm
and nested dissection) in successive ordering phases designed to complement each other.
As shown below, the complementary nature of the phases results in a significant
increase in the power of the symmetric permutations.

In the factorization phase, precautions have to be taken to guarantee a reasonably
stable solution method. P®, the Hierarchical Method, and the level set algorithm
guarantee structurally nonsingular blocks. However, these methods are still potentially
unstable. Iterative refinement can be used to improve the instability (see [2]). In our
method, stability is guaranteed by allowing pivots to be taken within the diagonal blocks
as well as the border. This was also attempted with the pP* ordering [3]; however, the
overhead incurred prevented this approach from being competitive with other direct
solvers. Within MCSPARSE, border pivoting relies upon a symmetric permutation, referred
to below as casting, which minimizes the associated overhead. Also, because the initial
phase of the ordering moves large elements to the diagonal, the amount of casting can be
significantly reduced (casting still may be necessary because the magnitudes of the
elements may diminish as the factorization proceeds). This approach enables MCSPARSE
to be competitive with other direct solvers, see Section 8.

Descriptions of the algorithms used within H* are presented in the next section. A
preliminary algorithmic description of the H* ordering is in [47].

3. The H* ordering
3.1. Background

The interpretation of the actions of H* depends upon the notion of a graph associated
with a sparse matrix.

Definition 3.1. Given a nonsymmetric (N X N) sparse matrix A, the digraph associated
with A is defined to be the graph G(V, E) with |V | =N such that (i, j) € E if and
only if a;; is a non-zero entry in A.

The hybrid ordering H* is composed of two different types of orderings: nonsym-
metric and symmetric. Nonsymmetric orderings are obtained by independent row and
column interchanges of the matrix, and can change certain properties of the sparse
matrix that are preserved by symmetric orderings (e.g., eigenvalues and diagonal
dominance). A nonsymmetric ordering, therefore, can be used to enhance the numerical
properties of the factorization of the matrix if the values in the matrix are considered
when determining the row and column orderings. In H*, an initial nonsymmetric
ordering is used to enhance the numerical properties of the factorization, and subsequent
symmetric orderings are used to obtain a bordered block triangular matrix.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1295

In order to obtain the desired structure, H ™ exploits the concepts of a node separator
set and a quasi-separator, a generalization applicable to directed graphs, which are
defined as follows.

Definition 3.2. Given a graph G = (V, E), a node separator set S of G is a subset of V
such that there exists sets B and C with
(a) B, C, and S disjoint,
(b) BUSUC=YV, and
(c) there exist no edges (x, y) € E with
(1) yeBand x€C, and
(2) x€Band yeC.
If (c.1) is fulfilled but {(c.2) is not, the set S is a quasi-separator.

There are four phases in the hybrid ordering H". The first phase, HO, is a
nonsymmetric ordering which permutes onto the diagonal the largest elements available
at each decision point of the production of the transversal. This guarantees that all
elements on the diagonal are nonzero. The second phase consists of applying Tarjan’s
algorithm to transform the matrix into triangular block form. The third phase, HI, is
applied to each diagonal block produced by Tarjan’s algorithm that is considered too
large. H1 attempts to change each of these blocks into bordered block triangular form
via a modified Tarjan’s algorithm. The last phase, H2, is also applied to only the large
diagonal blocks remaining in the matrix to change them into bordered block triangular
form via a modified dissection algorithm. After H1 and H2 have been applied, the
borders that were generated for each of the large diagonal blocks are combined to form a
single border, thereby converting the entire matrix into the bordered block upper
triangular form. Tarjan’s algorithm, H1, and H2 are all symmetric orderings.

It is important to note that all ordering phases, with the exception of Tarjan’s, are
heuristics in the sense that they cannot be proven optimal. Since each of these heuristics
is based on complementary techniques, we need four phases in H". Also, as a direct
consequence, these heuristics are governed by certain threshold parameters: « in HO;
Tyones Tiong> Tmine> Tmaxp> a0d T o, in H1; and B and T,,,,,;, in H2. The number of
threshold parameters might seem somewhat excessive (for instance for the H1 phase)
but, as can be seen below, they are all functional and, as such, are necessary. Although
each of these parameters can be individually controlled by the user, in our implementa-
tion we used a fixed, problem-independent set of values (see Section 3.6).

3.2. HO

HO is a transversal algorithm for permuting nonzero entries onto the diagonal using a
nonsymmetric ordering. The transversal algorithm has been modified to permute large
elements to the diagonal in an attempt to enhance the stability of the subsequent
factorization.

The transversal ordering is a matching between the columns and the diagonal
positions of the matrix, which can be found using many different algorithms. Algorithms

1296 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

for finding set representation [32] or solutions to the assignment problem [35] could be
used. An alternative algorithm involves finding maximal matchings in bipartite graphs
[34].

HO is based on work by Duff and Gustavson {10,11,30]. The algorithm uses a
depth-first search of the matrix to determine a series of column interchanges. The
algorithm creates a transversal by assigning a unique diagonal position to each column
of the matrix. These assignments determine a column permutation which places nonzero
elements on the diagonal.

At step j, the algorithm has a transversal for columns 1 through j— 1 and attempts to
extend the transversal to include column j. The algorithm first determines if an easy
insertion is possible. An easy insertion occurs when column j has a nonzero element in
row i where diagonal i is not currently assigned to another column. To determine if an
easy insertion is possible, a sequential search is made of the nonzero elements in column
J- If the nonzero element in row i is in a row whose index is not one of the currently
assigned diagonal positions, then diagonal i is assigned to column j, the search is
stopped, and the algorithm proceeds to column j+ 1. If an easy insertion is not
possible, then the algorithm must determine if an insertion can be realized by a suitable
permutation of columns 1 through j (backtracking).

The algorithm continues until either an easy insertion is made, in which case the
algorithm can proceed to the next column, or until it has considered all possible
insertions for column j. If at any stage it is not possible to extend the transversal, then
the matrix is structurally singular and there is no permutation to make all the diagonal
entries nonzero.

This transversal algorithm was modified to enhance the chances of a stable factoriza-
tion of the matrix with pivots selected from the diagonal blocks. The enhanced version
of the algorithm attempts to place large elements along the diagonal. This is accom-
plished by permuting an element q;; to the diagonal only if its value is within a bound,
0 < a < 1, of the largest element in the column, i.e.,

Ia,.j|>a*m3x(|akj|). (1)

Only a few changes to the transversal algorithm are required to support this
enhancement. An initial step is added to the algorithm to find the maximum absolute
value in each column. During the search phase, for both the easy insertion and the
replacement insertions, an element will be selected only if it satisfies (1). Also, instead
of taking the first element that is found by the search, the algorithm searches through all
the possible elements and uses the element with the largest absolute value.

The algorithm starts with an initial bound « = 0.1, which corresponds to the stability
factor typically used in sparse direct solvers, and tries to find a transversal. If a
satisfactory bounded transversal cannot be'found, then an estimate of the necessary
bound is made by examining the columns where the current bound failed. The values in
each failed column are examined to determine the maximum value of the bound that
would have allowed an insertion to take place for that column. The new bound is then
set to the minimum of the bound estimates from all the failed columns and the algorithm
is restarted. If a bound less than a preset limit is tried and a transversal is still not found,

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1297

then the bound is totally eliminated and the bounded transversal algorithm finds any
transversal. However, even with the bound removed, the algorithm still tries the
elements with the largest absolute value first. The performance of the HO algorithm
relies upon the ability to quickly find an adequate bound for the transversal.

3.3. Tarjan’s algorithm

Tarjan’s algorithm [44] finds the strongly connected components of the digraph
associated with the matrix in time complexity linear to the number of nodes and edges. *
Renumbering the nodes of the digraph, corresponding to the decomposition of the graph
into strongly connected components, yields a symmetric ordering that transforms the
matrix into a block upper triangular form.

The strongly connected components are found with a depth-first search of the nodes
using a stack to maintain the nodes whose processing has not been completed. The
algorithm starts by setting the current node equal to an unprocessed node, placing it on
the stack, and marking the node as being processed. In addition, a pointer, low, is kept
for each node on the stack, indicating the lowest position on the stack reachable from
that node. This pointer is initialized to the node’s position on the stack.

Each edge, (current, y), originating from node current is considered in turn. If node
y has already been processed, then it is checked to see if it is still on the stack. If it is,
the low pointer of node current is set to the minimum of the low pointers for nodes
current and y. If node y is not on the stack, then it has been removed earlier and can be
skipped. The algorithm now goes on to the next edge.

If the node y has not been processed, then it is added to the stack, initializing its low
pointer to its position, and saving a pointer to its predecessor, node current. The current
node is now set to be the new node and a depth-first search of its edges begins.

Once all of the edges from the current node have been processed, the algorithm
examines the low pointer for the current node to determine if a strongly connected
component has been found. If low,,,,.,, equals the node’s position on the stack, then a
strongly connected component has been found, including the current node and all the
nodes above it on the stack, which are then removed from the stack. If low_,,,,,, does
not equal the node’s position on the stack, then the low pointer of its predecessor is set
to the minimum of the low,,,,,,, and the low pointer of the predecessor. The predeces-
sor is then taken to be the current node and the search of the predecessor’s edges is
resumed.

Once all of the nodes that can be reached from the root node have been processed,
the algorithm starts over with a new node that has not been processed. When all nodes
have been processed, the algorithm terminates.

*A description of this algorithm is included in this paper so that the modifications on which H1 relies can
be properly discussed.

1298 KA. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333
34. HI

A problem with most sparse matrices is that they do not allow a decomposition into
strongly connected components that evenly distributes the nodes and, therefore, Tarjan’s
algorithm, by itself, will not provide a suitable decomposition. A typical case is a matrix
whose associated digraph contains a large cycle. The third phase of H*, H1, addresses
this problem. It is based on Tarjan’s algorithm and extracts from the digraph associated
with the matrix a small set of nodes such that the remaining graph allows a better
decomposition into strongly connected components. During the H1 phase, the size of
each potential strongly connected component is monitored during its construction, and,
whenever the size grows too large, an attempt is made to delete a small number of nodes
from the graph such that the strongly connected component will not grow any further.
H1 is applied to each diagonal block that is larger than a threshold, T,,,,,, resulting from
Tarjan’s algorithm. When possible, each diagonal block is separated into two or more
smaller blocks and a quasi-separator set. The union of these quasi-separators is placed in
the border for the entire matrix.

H1 uses the same depth-first search as Tarjan’s algorithm for placing nodes on the
stack (as described in the previous section). However, for each node, x, on the stack,
two additional pointers are required. The first, denoted nlow,, is a pointer to the position
of the lowest node on the stack that is reachable by a single edge from x. The second,
denoted mlow,, is a pointer to the position of the lowest node on the stack that is
reachable by a single edge from any of the nodes higher than x on the stack. When a
new node is placed on the stack, both of these pointers are initialized to the position of
the new node.

In Tarjan’s algorithm, the value of low, for a node x indicates a lower bound for the
size of the strongly connected component being constructed. Whenever this size is less
than 7,,,, Hl proceeds identically to Tarjan’s. However, when this threshold is
exceeded, the mlow,,,,., pointer is used to define an initial quasi-separator set
consisting of the nodes on the stack from mlow,,,,,,, to pos(current)—1 (where
pos(j) indicates the position of node j on the stack).

Throughout the algorithm, whenever an edge to a node y, (current, y), is encoun-
tered such that mlow,,,,,,, — pos(y) > T,,,, for some threshold value T,,,,, the node
current is identified as having a long edge which increases the size of the quasi-sep-
arator set by an unacceptable level. So, in order to minimize the size of the quasi-sep-
arator set, the pointer mlow,,,,,.,, is not updated with the position of the node y; rather,
the node current itself is marked as a node to later consider moving into the
quasi-separator set. This potentially increases the quasi-separator set by one node as
opposed to keeping the current node in the strongly connected component and including
all of the nodes from min(mlow,,,,,,,, pos(y)) to pos(current) —1 in the quasi-sep-
arator set. The pointer nlow, is maintained for the current node and the nodes above it
on the stack to allow the actual transfer of the marked nodes into the quasi-separator set.
Whenever the initial quasi-separator set is constructed, as described above, it is
augmented with the nodes which have been marked as having long edges.

In the implementation of H1, the pointers nlow and mlow are updated in a manner
similar to that used to update low, in Tarjan’s algorithm. When an edge pointing to a

K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333 1299

node y that is lower on the stack than the current node is encountered during the
depth-first search, the pointers are updated as follows:

lowcurrem =

min(low

current?

lowy) ,

nlowcurrenr = min(nlowcurren!’ pos(y))’

and the pointer mlow,,,,,,,, 1s not updated.

When moving down in the stack to resume the examination of the edges of the
predecessor of the current node (denoted below with the subscript prev), the updates
performed are:

o If mgowcnrrenf - nlowcurren{ < T?ong then mlowcurren: =
min(mlowcurren/’ nlowcurrenl)’

e mlow, ., = min(mlow,,,,, mlow,,,,,,,), and

o low, = minllow,, . loW.,, .,.)-

Note that the decision of whether a node has a long edge is postponed until all of the
edges of the node have been examined. This implies that only the longest edge of a
node, represented by nlow, is used to decide whether the node is moved to the
quasi-separator.

After these updates, the decision is made as to whether: no action is required, in the
case that a true strongly connected component has been found (low,,,, ..,
pos(current)); or, the threshold on the size of the strongly connected component has
been exceeded. In the last case, an attempt is made to reduce the size of the strongly
connected component. The nodes are divided into three sets: the new block, a border
block, and the remaining block. The new block includes the current node and the nodes
above it on the stack. The border block contains the nodes starting from mlow,,,,,,, 10
pos(current) — 1. As noted above, the border block is augmented with any nodes
marked as having a long edge in the new block. The bordered block is accepted only if:

o The new block is greater than a minimum size, 7,,;,,, and smaller than a maximum

size, T,,, .-

o The size of the augmented quasi-separator set relative to the size of the new block

islessthan 7, -

If the bordered block is accepted, all three blocks are removed with the nodes in the

remaining block marked as still fo be considered. A new starting node is found and the
algorithm restarts on the nodes yet to be considered.

If a true strongly connected component has been found, or if the strongly connected
component under construction is still less than its allowed size, the same actions are
taken as in Tarjan’s algorithm.

When all of the nodes that can be reached from the starting node have been
processed, the algorithm selects a new root node that has not been processed and
continues. When all of the nodes have been processed, the last block will empty the
stack and the algorithm is finished. It is important to note that H1 attempts to reduce all
diagonal blocks to smaller than the threshold T,,,; however, the restriction (T, .. ,) on
the size of the separator sets allowed might cause the size of some of the diagonal
blocks to still be greater than T,,,, after H1 has been applied.

An example of how the H1 algorithm finds a quasi-separator set can be found by the

1300 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

5 6
T1
21
31 4 7
41
51 3 8
1 61
71
81 2 9
1 9 1
1 1 . 10

Fig. 1. A 10X 10 sparse matrix and its associated digraph.

application of the H1 algorithm to the 10 X 10 sparse matrix in Fig. 1. The associated
directed graph for the 10 X 10 matrix is also included in this figure.

Fig. 2 is the current state of the algorithm when it has just completed all the edges
from node 6. The current block of completed nodes contains nodes 6, 7, 8, 9 and 10.
There are three back edges from the nodes in the block; these are the edges {10, 1},
{9, 5}, and {6, 4). The back edge {10, 1}, however, was determined to be a long edge
and is not included in determining the size of the quasi-separator set. Therefore, for node
6, the one edge low pointer for the node points to node 4 (nlow, = 4); and the one edge
low pointer for the nodes above node 6 points to node 5 (mlows = 5). This yields an
initial bordered block size of 5, a quasi-separator size of 2, and a remaining block size of
3.

Assuming the block sizes meet the necessary constraints, a search for the long back
edges is made. This search finds the edge {10, 1} and places node 10 in the quasi-sep-
arator set. The current block size becomes 4, the quasi-separator set becomes 3, and the
remaining block stays at 3. The current block contains nodes 6, 7, 8, and 9, and the

bt |
Node 10 ~-i- - Top of Stack

Long !
Back Edge ~~"7°°7 > Node 9 '
Node 8 > Current Block
Node 7)
1
Back Edges 2222211 Node 6 ===~ Current Node
Block Low Pointer --~ =
Node 5
Node Low Pointer ==-=f===f~ > Current Separator
Node 4 '
-
Node 3
Node 2

Low Pointer ~ ----- ‘

Node 1 -~ Bottom of Stack
Fig. 2. H1 stack.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 129]1-1333 1301

11

-
o0 b=
O =

1 1

Fig. 3. Reordered matrix.

quasi-separator block contains the nodes 4, 5, and 10. Next, H1 is applied to the
remaining nodes, which results in the three independent blocks 1, 2, and 3. The
reordered matrix that H1 produces is shown in Fig. 3.

3.5. H2

The H1 algorithm described above approaches the problem of creating quasi-sep-
arator sets starting from an algorithm that is clearly intended for structurally nonsymmet-
ric systems (Tarjan’s algorithm). It is also possible to approach the problem starting
from the standard techniques used to produce separator sets for structurally symmetric
matrices (e.g., nested dissection [24,26)).

As in the standard approaches, the ordering H2 starts with the construction of
separator sets for the adjacency matrix of A + A”. In our implementation of H2, we used
a straight forward implementation of automatic nested dissection [27]. However, other
initial orderings could have been used, such as one-way dissection [25], more sophisti-
cated implementations of automatic nested dissection [38], or the graph bisection
heuristics proposed in [36].

H2 is applied only to the diagonal blocks that H1 failed to reduce to a size less than a
user-specified threshold, T,,,,,. The algorithm starts with the graph (G = (V, E)) that is
associated with the adjacency matrix of the diagonal block under consideration, M = (A
+ AT), with the self-edges generated by the diagonal elements removed and where E,
represents the directed edges from A present in G. Before starting the dissection, the
nodes are examined to determine if any have a large number of edges. If the number of
edges connected to the node is greater than B, the node is placed into the border and
removed from further consideration. A fimit, 3, is placed on the number of nodes
that will be placed in the border from any particular diagonal block by using this test.
The values used for 8 and B, are based upon our experiences with the nonsymmetric
matrices in the Harwell-Boeing collection.

Nested dissection generates a submatrix of bordered block form. However, since the
objective of the H2 ordering is to bring the submatrix into bordered upper triangular
block form, nested dissection is too restrictive and the constraints on the separator set
can be relaxed. This fact is exploited by the H2 ordering. After each stage when a
separator set S is constructed, H2 reduces the number of nodes in the separator set by
allowing additional fill-in to be created in the upper triangular part of the submatrix,
thereby producing a quasi-separator set.

1302 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

a d 0 £ a f
b o g b g
co e O h cO e h
S C B S C
Before reduction After reduction

Fig. 4. Reduction of the separator set.

After a separator set S has been produced by the version of automatic nested
dissection mentioned above, the graph G has been decomposed into a separator set S
and two disjoint sets B and C. H2 attempts to reduce the size of S by looking only at
the directed edges from A, E,, and moving nodes out of S into either B or C as long as
there are no edges from nodes in C to nodes in B. Edges are allowed from nodes in B
to nodes in C. More formally, the reductions can be described as follows:

(1) If there exists no edge (y, x) €E, such that y€ S and x € B, then y may be

moved to C.
(2) If there exists no edge (z, y) € E, such that y€ S and z € C, then y may be
moved to B.

An example of the reduction of the separator set can be seen in Fig. 4. The node d
may be moved into B since there is no edge from any node in C directed to the node d
in S. The node e may not be removed from S since it does not meet the requirements
for either of the reductions; and moving it out of S would destroy the desired structure.

An optimization to the reduction above involves moving nodes from B to C, or from
C to B, so that the first two reductions can be applied to nodes for which the conditions
of the reductions were not met with the initial contents of B and C. This is implemented
by following the initial reductions with two enhancement phases.

The first phase consists of moving nodes from B to C together with applying the
initial reduction techniques. A set of nodes D CB is moved to set C if all of the
following conditions are met:

(1) There are no edges (d, b) € E, where d€ D and b € B.

(2) There exists RC S such that there are edges (y, d) €E, where d€D and

y €R; and there are no edges (y, b) € E, where y€ R and b € (B — D).
(3) The size of the remaining part of set B is greater than the minimum size,
IB -D|> Tremain'
After D is moved from B to set C, the initial reduction techniques on the separator set
are repeated.

Symmetric conditions can be defined to allow the motion of a set of nodes from C to
B before repeating the initial reduction techniques. A set of nodes D C C is moved to B
if all of the following conditions are met:

(1) There are no edges (¢, d) €E, where d€D and c€ C.

(2) There exists RC S such that there are edges (d, y) €E, where d€D and

y €R; and there are no edges (¢, y) € E, where y€R and c € (C— D).

(3) The size of the remaining part of set C is greater than the minimum size,

|C—-D|>T,

remain®

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1303

* : o\f‘o . °i | §> °!
b og b Ot b d o
c o e o h all e c e
B S C B S C B S C
1. Before reduction 2. After enhancement 3. After reduction

Fig. 5. Enhanced separator set reduction.

If all of these conditions are met, then the set D can be moved from C to B and the
initial reduction techniques can be applied.

An example of this enhancement is provided in Fig. 5. None of the reductions may be
applied to the initial separator set. However, the node f can move from C to B and, as a
result, S can be reduced by moving the node 4 into B.

After the separator set has been reduced, it is removed from the graph and the
algorithm is applied recursively to the two sets B and C until the resulting blocks are
less than the desired maximum block size, T,

one*

3.6. Results for H™

This section presents the results for the hybrid ordering H* that were collected on
one cluster of Cedar, an Alliant FX /8. These results include border size, diagonal block
sizes, and performance results which include the ordering time. The interested reader
should consult [21] for details concerning the tuning of the heuristics that produced the
data presented below.

In this paper, we restrict ourselves to the description of the following parameter
settings which were used for each of the phases of H”. The choice for each of these
parameters is based on the arguments below, utilizing the following definitions:

e N = the size of the original matrix;

® bsize,,;, = the size of the block at the beginning of this algorithm phase; and

e bsizeg,,,, = the size of the new block which has been found at the current stage of

the algorithm.

HO parameters.
® = 107" This value was chosen since it is the typical value used for the
stability bound in sparse direct solvers.
® «,,, = 107", The selection of this value is a tradeoff between performance and
stability. The value chosen was based upon the experiments conducted with the

test matrices.

H1 parameters.

e T,,,.=N/10. This value is based upon the target architecture. To achieve a good
load balance on the four clusters of Cedar, a target of at least 2 blocks per cluster
was set. With this parameter value, the size of the border can be up to 20% of the
matrix and there should still be at least 8 blocks to be divided among the clusters.

1304 KA. Gallivan et al. / Parallel Computing 22 (1996) 12911333

® 7j,,,=5. This value was chosen based upon the experiments with the test
matrices.

e T,...,=N/20. The value chosen for the minimum block size is 1/2 of the
maximum block size T,,,,. This value was chosen to keep the total number of
blocks from growing too large.

® T, =bsize,;, *3/4. This value is used, in conjunction with 7. ., to make
sure that the size of the block left after removing the new diagonal block and the
separator block is adequate. These values are set such that after removing the
rows, at least 20% of the rows in the original block will be left in the remaining
block. The values chosen were based upon the experiments conducted with the test
matrices.

® T, ossep = bsizes,,,q/20. This value is used to control the size of the border and is
used in conjunction with 7, , . to control the size of the remaining block.

H2 parameters.
e T,,..=N/10. This is the same parameter as is used by H1.
e B=N/10. This value was chosen based upon the experiments with the test
matrices.
® Biimi = bsize,,;,/15. This value was chosen based upon the experiments with the
test matrices.

o T, ...=N/25 This value is 40% of the value used for 7, ,,. This guarantees
that when a block is divided into two new blocks, each block is at least 40% of
T, > With a separator block that is at most 20% of 7,,,,,. This is done to keep the
total number of blocks from growing too large.

The tests were conducted using matrices from the Harwell-Boeing test collection. All
the matrices chosen were from the real, nonsymmetric, assembled (RUA) set. The RUA
set has 95 matrices, of which three are structurally singular and are not considered.
Because H* is meant to identify large grain parallelism, results for H* will be
presented for only fourteen of the matrices having at least 1,000 rows.

Table 1 contains the results for the application of the H” ordering. This table
contains: the transversal bound, «, which was found by HO; the total time for the H"*
ordering (user process time in seconds) on one processor of Cedar; the total number of
diagonal blocks after the ordering; the number of rows in the border; and the order of
the largest diagonal block. The use of an unbounded transversal is indicated in Table 1
by a ““ *”’ in the bound column.

As can be seen from these tests, matrices tend to generate a large number of blocks.
Five of the matrices generate over 900 blocks, whereas only four of the matrices
generate less than 25 blocks. These small blocks are generated by Tarjan’s algorithm,
which finds many small blocks of either one or two nodes. Methods for dealing with
these small blocks efficiently will be discussed in Section 7.

The results of H* can be compared with the related orderings produced by the P*
algorithm [33], the P algorithm [14], and the level set algorithm by Arioli and Duff [2]
on a subset of the Harwell-Boeing matrices, the results of which are available in the
literature [2,3]. This subset comprises the Grenoble matrices and the Westerberg’s
matrices. The matrices range in order from 67 to 2021.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333 1305

Table 1
H* Statistics for large RUA matrices

Matrix name Rows Non-zeroes HObound Total time Total blocks Border rows Max. block

gaff1104 1104 16056 1074 2.14 190 202 108
gematll 4929 33185 1072 4.04 437 348 404
gre_ 1107 1107 5664 107! 3.65 23 324 103
hwatt2 1856 11550 1078 2.23 142 430 158
mahistth 1258 7682 * 1.45 930 74 124
nnci374 1374 8606 107° 3.26 91 244 130
or678lhs 2529 90158 10°° 7.20 2000 355 170
orsreg_ 1 2205 14133 107! 3.07 15 438 160
pores_ 2 1224 9613 1073 2.53 21 245 105
saylrd 3564 22316 107" 5.15 22 634 333
sherman2 1080 23094 1077 5.40 220 352 102
sherman3 5005 20033 107! 4.09 2119 423 394
sherman5 3312 20793 1078 470 1680 303 310
west2021 2021 7353 10°° 5.89 1261 93 188

Table 2 shows the number of rows in the border of the matrix after the application of
the algorithms and the size of the largest diagonal block remaining in the matrix after
the application of the orderings. A value of ‘“N.A.”’ indicates the result was not
available in the literature. The results from P° are omitted from this table since, as
indicated in [2], P> usually generates blocks of size 1 or 2, with an occasional block of
size 3.

Table 2
Number of rows in border and largest diagonal block size
Matrix Order Border size Largest block

H* p4 p? Level set H* p¢ Level set
gre_115 115 33 15 15 18 10 <3 56
gre_ 185 185 86 28 28 52 16 <3 69
gre_ 216 216 73 24 25 53 19 5 82
gre__216 216 70 24 25 N.A. 11 5 N.A.
gre_ 343 343 102 42 52 65 33 9 138
gre_ 512 512 148 50 55 106 49 5 211
gre_ 1107 1107 324 100 113 126 103 4 447
west0067 67 25 11 13 12 6 14 26
west0132 132 15 3 4 6 13 10 <3
west0156 156 3 3 4 4 12 4 2
west0167 167 7 3 4 4 15 14 30
west0381 381 103 52 53 81 38 18 126
west0479 479 85 38 42 45 41 4 69
west0497 497 35 18 20 12 48 18 15
west0655 655 99 54 66 62 65 4 102
west0989 989 69 77 84 106 85 4 48
west1505 1505 79 116 127 112 145 4 79
west2021 2021 93 160 175 156 188 4 455

1306 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

The comparison of the orderings with respect to the resulting block sizes must be
interpreted with care since, in the final analysis, we are interested in their efficacy in
terms of computing time when coupled with a parallel system solver. Nevertheless,
some relevant points can be made.

Clearly, the P* and P> orderings produce smaller borders as well as smaller
diagonal blocks than H* and the level set algorithm. This is not surprising given that
they use nonsymmetric permutations, which are more flexible. Unfortunately, the small
diagonal blocks and border have less than satisfactory properties when coupled with a
factorization algorithm. As Arioli and Duff point out in [2], the small diagonal block
sizes can cause difficulties with both parallelism and the ability to choose stable pivots
when the pivot searches are constrained to the diagonal blocks. Further attempts to
improve stability via pivoting produced a prohibitive cost and the use of simple iterative
refinement did not result in satisfactory recovery of accuracy [3]. Since MCSPARSE would
suffer similar stability problems if the pivot selection was constrained to just the
diagonal blocks, we will present an alternative method for maintaining stability.

The difficulties in the coupling of P* and P> with a stable factorization method
motivated Arioli and Duff to consider other methods, including the level set ordering. It,
like H ", uses symmetric permutations. In general, the level set algorithm creates smaller
borders but significantly larger diagonal blocks than H”.

From this comparison, we see that H" produces a reasonable compromise of
diagonal blocks large enough to serve as the basis for a pivoting strategy and the
exploitation of multiple levels of parallelism without becoming too large, at the cost of a
somewhat larger border.

A few comments about the reuse of the ordering from H* are in order. Though the
H™ ordering uses values from the matrix to determine the transversal, this does not
prevent the ordering from being reused for other matrices with the same structure. The
weighted transversal is used in an attempt to improve the stability, but the transversal
will be valid for any matrix with the same structure. Furthermore, it is possible that
matrices with the same structure may also have similar values, allowing the weighted
transversal to still have a positive effect.

4. MCSPARSE overview

The MCSPARSE solver was designed to be a large grain parallel, sparse, nonsymmetric,
direct solver for the Cedar architecture that complements the H* ordering.

There are many ways to solve a system of equations defined by a matrix with the
structure in Fig. 6. We have chosen to implement a version which isolates the operations
on each type of subblock — D;’s, C;’s, and B;’s — and the coupling block F. This
produces a modular algorithm which lends itself to parallelism and facilitates the
modification of the solver to function as a parallel preconditioner in a direct/iterative
hybrid solver [17,48]. For a discussion of another large grain approach which does not
isolate the border, diagonal, and off-diagonal blocks during the factorization, see the
discussion of LORA in [20].

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1307

§§‘

L
Fig. 6. Bordered block upper triangular form.

It should be noted that though the H™ ordering placed the rows into specific diagonal

blocks, H™ did not determine the final pivot sequence. Pivoting can be done within the
diagonal block to improve stability or fill-in without affecting the overall structure of the
matrix. Furthermore, casting can be used to perform pivoting between the diagonal
blocks and the border.

L

II.

II.

The factorization in MCSPARSE is performed in four stages.
The first stage is the factorization of the diagonal blocks. Pivoting is used within
each diagonal block D; to find pivot elements which satisfy both stability and fill-in
constraints. First, candidate pivots are selected using a modified Markowitz criteria
that estimates expected off-diagonal block C; and border block fill-in (see Section
6). The pivot Pr.m» Which has the lowest count, is then checked for stability. This
test consists of two parts. First, the standard test is made, which is used in most
direct solvers. It compares the magnitude of the candidate to the other elements in
the column of the diagonal block (ie., | p;,, | > u X max, | a,,). All experiments
in this paper use p = 0.1. Second, a check is made to see if the column is to be cast
to the border (see Section 5). Due to the structure of the matrix, the reductions of
the D,’s can be performed simultaneously. Two implementations of the diagonal
block factorization are provided. The first form uses one processor to perform the
factorization on a diagonal block with blocks done in parallel; and, the second form
uses all the processors in one of the four clusters of Cedar to perform the
factorization. During the execution, the decision of which form to use is based upon
the size of the diagonal block and the number of diagonal blocks to be factored by a
given cluster.
In the second stage, after each D, is reduced, the resulting lower triangular
transformation L; can be applied to the off-diagonal block C,.
Next, the border blocks, B,’s, are eliminated and the associated rows in F are
updated using the upper triangular transformations, U,’s, associated with the L,’s
and the updated C,’s. During the elimination, the size of the pivots and the elements
being eliminated are monitored to control error growth (see Section 5).

1308 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

IV. The final stage uses level-3 BLAS-based dense matrix techniques to perform the
factorization of the updated coupling block F; multiple clusters are used if needed.

5. Stability issues

A key problem for solvers such as MCSPARSE is maintaining the stability of the
factorization while utilizing a large grain structure within the system. While the bordered
block upper triangular form provides a large grain structure for the exploitation of
parallelism, it also constrains the set of potential pivots during the first and third stages
of the algorithm. In this section, we review the pivoting strategy used in MCSPARSE and
present results demonstrating its ability to maintain reasonable accuracy in the solution.

Casting. The typical implementation of a large grain solver applies Gaussian elimination
to each diagonal block to calculate a local LU factorization. These local factorizations
are then used, with the same pivot sequence, to eliminate the nonzero elements in the
border. An implementation such as this has several problems. Though the system may
be well-conditioned and nonsingular, there is no guarantee the diagonal blocks will be
the same. In addition, even though the local factorizations may exist and be accurately
computed, the pivot choices may result in substantial error growth when applied to the
rows in the border.

The usual method for generating a stable factorization is to use a global pivoting
strategy, which allows row and /or column permutations within the entire active portion
of the matrix. Such permutations, however, may destroy the bordered block upper
triangular form upon which the large grain parallel solver relies. Permutations which do
not destroy this structure include those which are done within a diagonal block and those
which exchange a row in a diagonal block with a row in the border.

For example, pairwise pivoting could be used to eliminate the rows of the border in
parallel [8]. This preserves not only the general structure, but also the number of rows in
each of the diagonal blocks and the border. There are some drawbacks, however. If the
matrix was, in fact, symmetric in pattern, then the symmetry has been destroyed.
Pairwise pivoting can also permute the relatively dense rows that tend to appear in the
border into the diagonal blocks. This can cause unnecessary fill-in in the border and, if
the border elimination and diagonal block factorization have been intermixed, in the
diagonal and off-diagonal blocks as well. The fact that potentially all of the border rows
eliminated by a diagonal block will require interchanges implies that the overall bound
on the growth factor of the elimination is larger than that for strategies having only one
or two comparisons per pivot column or row. The complexity of the synchronization
during the factorization (particularly if the strategy of S-Blocks discussed below is used)
increases considerably compared to the one adopted by MCSPARSE. Finally, the resulting
factorization cannot be characterized as simply as those that result from MCSPARSE’s
strategy.

Other strategies discussed in the literature have resulted in solvers with either
unacceptable cost or stability control (e.g., [2,3]). The strategy we prefer is one which
preserves, up to a point, the overall structure of the matrix while allowing the

K.A. Gallivan et al. / Parallel Computing 22 (1996) 129]-1333 1309

implementation of a global pivoting strategy that yields a factorization with stability
similar to more conventional nonsymmetric solvers.
The strategy used in MCSPARSE, called casting, is described in detail for both arbitrary
and bordered block upper triangular matrices in [16,21,40]. We review it briefly here.
Casting is a symmetric permutation that decreases the size of the diagonal block
containing the cast pivot by moving a row and column into the border, thereby
increasing its size by one. More formally:

Definition 5.1. A pivot p;; is said to be cast if the system is permuted by the column
permutation

(1,2..i= 1,4, i+1..n)>(1,2...i—Li+1...n, i)

followed by an identical row permutation.

Casting is used in the first stage (the diagonal block factorization) and the third stage
(the border row updates) of the algorithm. Casting in the first stage, referred to as
diagonal casting, is not required to maintain the existence and stability of the factoriza-
tion, but it can help maintain stability and enhance performance. At this point, casting is
effectively delaying the elimination of the row and column until all the diagonal blocks
have been processed. As in pairwise pivoting, local pivots can be used to bound the
elements of the transformation matrices even if the submatrix being transformed is
singular, or nearly so (0 columns are merely left untouched). However, when pivoting
with the elements in the border is highly likely, casting can simplify matters. For
example, if an entire pivot column is small (or 0), either absolutely or relative to a norm
of the submatrix or the entire matrix, then pivoting is very likely (or must be done)
during the border elimination. This pivoting will be done via the second type of casting
discussed below and requires fairly complex synchronization. All such pivots in the
diagonal blocks are marked as cast when encountered and can be permuted to the
border at a convenient time in the algorithm (e.g., after the first stage).

In addition to reducing the complexity of the synchronization needed, diagonal
casting also allows the elimination of the associated column to be completed with only a
single pivot choice, as opposed to border casting which requires two pivots, and thus
helps keep the growth factor down. More formally, after a candidate pivot element, p, ,,
has been selected based on the modified Markowitz count and the magnitude check
relative to other elements in the column of the diagonal block, its magnitude is also
checked relative to a diagonal casting parameter 8,. For simplicity, we assume that a
single &, is used. It could, of course, be selected based on local criteria and be different
for each D; (e.g., || D;|l=). If | p, ;| < 8,, then it is marked as cast and the kth column
is considered no further in the transformation of the associated diagonal block. A simple
modification to this inequality can be made to aid the anticipatory nature of diagonal
casting. One could also compare | p, , | to the element with the largest magnitude in that
column in the border (ie., if | p, , | <8, or | p, . 1/1b,| <§&,, where b, is the element
with the largest magnitude in the k-th column of the border in the original matrix, then it
is cast). Of course, this does not take into account fill-in elements nor changes due to the
updates during elimination.

1310 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

Since the nature of diagonal casting is anticipatory, parameter choice is crucial to its
success. If the parameters are too conservative, performance may degrade due to
excessive growth of the border from elements where the anticipation of pivoting with
the border was wrong. On the other hand, if the parameters are too optimistic, very little
diagonal casting is done and all the pivoting must be completed during the elimination
of the border in a more costly manner. See below where the preferred choices for these
parameters are described.

Casting in the third stage is called border casting and is necessary for the existence
and stability of the factorization. In the border update, a pivot selected in stage 1 is used
to eliminate as many elements of that column in the border as possible. A stability check
similar to that used to select the pivot is made before each attempt at eliminating a
border element. If the ratio of the magnitude of the pivot element to the magnitude of
the border element is less than some parameter &,, the pivot is marked as cast. Of
course, many border rows could be applying the same pivot simultaneously, so when the
actual casting is performed depends upon the form of parallelism used during the
elimination of the border.

The elements of the column in the border that were not eliminated, and the pivot
element itself, add a column to the diagonal border block F. As a result, these elements
are eliminated with no more than one additional pivot selection during the factorization
of F.

Note that casting a pivot from a diagonal block into the border also implies that a
portion of that row is added to the off-diagonal portion of the border. So, in addition to
the second pivot selected for the cast column during the factorization of F, we have
further eliminations to be done on the cast column during the border factorization. Since
this row and column have already been used as a pivot row and column in stage 1, it is
not possible for the computed factorization to be written as the LU factorization of a
permutation of the original matrix. However, since there are at most two pivots per
column, the factorization can be characterized algebraically in a manner very similar to
the standard LU factorization [22]. This simplifies the way in which the factorization can
be saved and used to solve systems with right-hand sides supplied later [21].

Given that there can be at most two pivots per column, if the condition for a pivot to
be considered as a stable pivot is taken to be that of partial pivoting (i.e., the pivot is
larger in magnitude than the elements eliminated), then the growth factor in the error
analysis of the factorization is easily derived. The growth factor for the factorization
algorithms above applied to a dense matrix A € R” is bounded by 2 X 27~} = 2" The
extra factor of 2 is due to the two pivots per column. In the case of sparse matrices, the
growth factor bound can be reduced significantly and depends upon the sparsity of the
matrix [5,23]. When the partial pivoting conditions are relaxed, or another pivoting
strategy is combined with casting, the bound on the growth factor is easily deduced from
modifications to the standard analysis.

It is common for most direct factorization algorithms to use a simple iterative
refinement postprocessing step to mitigate any accuracy problems caused by the
tradeoffs between sparsity and stability. MCSPARSE also makes use of this technique.
However, when the tradeoffs between stability and sparsity become too large, MCSPARSE
can be joined with more sophisticated iterative methods. In addition, the MCSPARSE

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1311

structure can be used with incomplete factorization methods to form an iterative solver
[20].

Stability results. In order to investigate the efficacy of the casting-based pivoting
strategy, MCSPARSE was used to solve systems defined by the large matrices (> 1000
rows) from the RUA portion of the Harwell-Boeing test set. A comparison was made
between MCSPARSE using both border and diagonal casting, MCSPARSE using both border
and diagonal casting and iterative refinement, and MA28 using the stability parameter
setting of w=0.1 and iterative refinement. The tests were performed using one
processor of Cedar. Within MCSPARSE, the following stability parameter settings were
chosen.

e &,=107°. This value was found to work reasonably well for the test matrices.
However, for four of the matrices (hwatt_1, hwatt_2, nncl374, and
sherman3), this type of casting was found to cast too many rows and was
disabled for these matrices only.

e §&,. Casting relative to the original elements in the border was found not to
improve the stability and, therefore, this parameter was not used.

® 6,= 107%. By experimentation, this value was found to work well for most
matrices. However, for nnc1374, this bound cast too many rows and was
changed to 8, =107".

Table 3
Comparison of the relative errors for MCSPARSE and Ma28
Matrix MCSPARSE MA28
Without With With
iterative iterative iterative
refinement refinement refinement
gaff1104 2.0%1077 2.0%1077 4.1%1077
gematt | 5.1%107"! 5.0%107" 23%10" 1"
gemat12 40%1077 3.1x107" 4.4x10" "
gre_ 1107 6.7+107¢ 9.0x107'° 11x107°
hwatt_ 1 1.8%10™ 1 1.8%10° ' 72510713
hwatt_ 2 48%107 1 48+107 14 2.7%1077
mahistth 12%107° 68+10° "2 6.3+107 1
nnc1374 5.8%10' 5.9%107 4 1.7%107°
or678lhs 3.0+107 4 3.0+107 14 2.8%10° 12
orsirr_ 1 2.1%10713 2.1%107 "3 1.5%107 13
orsreg_ | 22%107 13 2210 " 1.5%107 13
pores_ 2 35%1077 5.4%107 " 46%10° "
saylrd 12107 " 1.2%107 1 7.8%107 12
sherman 1510713 1.5%107 13 5.0%107 '
sherman?2 13%1073 1.3%10" 1 3.1%107°
sherman3 58%10713 58+10° 13 58+10° 13
sherman4 3.4%10713 3451071 20%107 14
sherman$ 6.2%1078 7.5%10° "% 15107 %
west1505 4.1+1078 25410710 1.2+10°°

west2021 48+1077 1.6+107 10 1.4%107°

1312 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

[3
o = Without Refinement |1
O}e = Before Refinement :
-4 = After Refinement '
L 9 :
' 4
]
Sk 9:
L(mcsp) ¢ ;?E
14 H II
3 L2 : 1
-0 0 i/ 3
Y T A
I ! !
A
o
/! © e
) a
A
-15 -10 -5 0
L(ma28)

Fig. 7. The log of the relative error for MCSPARSE (L{"¢3P)), with and without iterative refinement, as compared
to the log of the relative error for Ma28 (L{™2®),

For both MCSPARSE and Ma28, the iterative refinement stopping criterion were set to
achieve high stability. The refinement continued until the estimate of the relative error
was reduced to less than 10™'%, or until the convergence rate had slowed such that the
decrease in the maximum norm of the correction vector was less than 1%. The results of
these tests are presented in Table 3.

As can be seen from the table, MCSPARSE without iterative refinement produces a
solution that is essentially as good or better than Ma28 for eight of the twenty matrices.
Indeed, for one of the matrices, hwatt2, the local pivot searches of MCSPARSE yield an
error considerably better than MA28 — E("¢5?) = 10~ '* and E"%?® = 10", Of the other
twelve matrices, iterative refinement improves the MCSPARSE solution to at least as good
as that of Ma28 for seven. Five of the matrices do not yield results better than Ma28,
despite the use of iterative refinement. For four of these, E™°*?) < 107'! so that the
solution, even though not as good as MA28, is very accurate. For the other matrix,
nncl374, EP = 1074, which is not satisfactory. However, note that E("928) = 1073,
indicating that the matrix is a fairly difficult problem.

To better show the stability results, these results are compared graphically in Fig. 7.
The log of the relative error when solved with MCSPARSE is plotted against the log of the
relative error when solved with ma28. If iterative refinement was not needed for the
MCSPARSE solution, or if it did not improve the relative error, then only one mark, the
“Without Refinement’ mark, is plotted for the matrix. If iterative refinement was
used to improve the relative error of the MCSPARSE solution, then both relative errors,
with and without refinement, are plotted and connected by a vertical line.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1313

For all matrices where MCSPARSE ends up below the diagonal line, the MCSPARSE error
is better than the MA28 error. As can be seen from the graph, for only two matrices,
nncl1374 (which is discussed above) and mahistlh (where the MCSPARSE error of
107" is already considered good), is the MCSPARSE error less than the Ma28. The
MCSPARSE error is close to, or better than, the MA28 error for the other eighteen matrices.

6. Methods for fill-in control

Fill-in control is more difficult for a large grain parallel solver than for its medium grain
counterparts due to the reduced amount of information available when performing the
pivot selection in each subsystem. This is due to the fact that the number of fill-in
elements generated outside of the subsystem is not known. To improve the overall
effectiveness of the local method, estimates of the amount of fill-in generated outside the
subsystem may be incorporated into the pivot selection criteria.

Most dynamic methods of pivot selection for nonsymmetric systems are based on the
Markowitz count of an element. The Markowitz count for the element «; ;, M(i, 7, is
defined as follows:

M(i, j)=(r;—=1)*(c;— 1),
where

the number of nonzero elements in row i and

,
i

the number of nonzero elements in column j.

The pivot is taken to be the element within the active portion of the system with the
smallest Markowitz count (pivot=a, , where M(m, n)=min(M(i, Vi, j) and
which satisfies acceptable stability constraints. These counts must be updated as the
factorization proceeds by removing from the counts elements in the pivot row and pivot
column as well as adding any fill-in produced when applying the associated pivot.

This count can be easily modified to use estimates of the amount of fill-in outside of
the diagonal blocks as follows:

M(i, j)=(r;=1+Bxor)*(c,—1+y=oc),

where
r, = the number of nonzero elements in row i inside the subsystem,
or; = estimate of the number of nonzero elements in row i outside the subsystem,
¢; = the number of nonzero elements in column j inside the subsystem, and
oc; = estimate of the number of nonzero elements in column j outside the

subsystem.

The multipliers B and +y are used to vary the influence of the estimates on the
Markowitz counts. As with the original Markowitz counts, the number of elements in
the rows and columns inside the subsystem must be updated whenever a pivot is applied.

1314 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

But now, with the modified Markowitz counts, the estimates for the number of elements
outside the subsystem must also be updated.

The estimates are initialized to the number of elements outside the subsystem for
each row and column in the original matrix. Each time a pivot element is chosen, the
estimates for the pivot row and pivot column are used to update the estimates for the
target rows and target columns. Specifically, the updates for the target rows and columns
are of the form:

or;=or;+ a*or

pivot? oc,=oc;tw*oc

pivot?
where 0 < @, w< 1. When « and w are O, this represents no fill-in elements being
generated outside the subsystem. When a and w are 1, this represents all elements in
the pivot row generating a fill-in element in the target row. In the current version of the
MCSPARSE, the fill-in parameters were chosen to be:
e a=1.0, to perform a worse case estimate for the fill-in generation in the
off-diagonal block.
e = 1.0, to equally weight the fill-in in the off-diagonal block with the fill-in in
the diagonal block.
e w= 1.0, to perform a worse case estimate for the fill-in generation in the border.
e y= 1.0, to equally weight the fill-in in the border with the fill-in in the diagonal
block.

Fill-in results. Tests were run with MCSPARSE to determine the effectiveness of the
modified Markowitz count and to compare the fill-in performance of MCSPARSE to a

Table 4

Fill-in ratio comparison of MCSPARSE and MA28

Matrix R(mesp) R{(ma28) R(mesp) 7 glma2s)
hwatt_ 1 16.69 21.79 0.77
sherman3 15.52 18.39 0.84
hwatt_ 2 21.03 21.39 0.98
sherman4 4.99 491 1.02
saylr4 24.52 20.22 1.21
sherman1 7.47 5.40 1.38
gaff1104 6.64 3.89 1.71
sherman?2 19.07 10.44 1.83
orsreg_ 1 18.46 9.66 191
sherman5 14.77 6.35 2.33
orsirr_ 1 18.83 6.56 2.87
pores_ 2 9.82 3.03 3.24
nnci374 22,97 5.05 4.55
mabhistlh 1.62 0.36 4.56
gre_ 1107 32.37 6.61 4.90
west1505 3.10 0.49 6.34
west2021 3.50 0.48 7.30
gematl 424 0.56 7.54
gematl2 6.81 0.56 12.17

or678lhs 2.45 0.15 15.91

K.A. Gallivan et al. / Paralle!l Computing 22 (1996) 12911333 1315

standard sparse solver, MA28. These tests were run using the same 20 matrices that were
used for the stability experiments in Section 5 and were conducted on one processor of
Cedar.

Table 4 contains, for each matrix, the ratio of the number of fill-in elements to the
number of elements in the original matrix for Ma28 using ¥ =10.1 and MCSPARSE,
denoted R{"9?® and R{™<*P) respectively, as well as the ratio R("**?)/R{™a28) Two
lines were drawn on the table to help describe how MCSPARSE compares to MA28. The
matrices above the upper line are the matrices where the MCSPARSE fill-in is less than or
equal to the Ma28 fill-in. The matrices between the upper line and the lower line are the
matrices where the MCSPARSE fill-in is greater than the Ma28 fill-in, but not more than
twice the Ma28 fill-in.

For three of the matrices, MCSPARSE is doing at least as well as Ma28, and for another
six of the matrices, MCSPARSE is generating no more than twice the fill-in of MaA28. For
these nine matrices, then, MCSPARSE seems to be doing a satisfactory job of controlling
fill-in. For the other eleven matrices, however, MCSPARSE does not appear to be doing as
well.

One reason MCSPARSE appears to generate more fill-in than MA28 is the use of dense
storage for the border diagonal block in MCSPARSE. In the counts above, the border
diagonal block was assumed to be fully dense. Since these elements are processed using
a high-performance parallel dense solver, they do not contribute as much per element to
the overall execution time as the sparse elements, and care should be taken with the
comparison. A switch to dense techniques can also be done dynamically during the

Table 5

Fill-in ratio comparison of MCSPARSE and Y12Mm

Matrix R™esp R(ylan) R(mcxp)/R(yllm)
sherman3 15.52 43.19 0.36
sherman4 499 13.14 0.38
gaff1104 6.64 16.78 0.40
saylr4 24.52 59.28 0.41
hwatt _ 1 16.69 37.19 0.45
orsreg_ 1 18.46 40.22 0.46
pores_ 2 9.82 17.02 0.58
hwatt _ 2 21.03 34.90 0.60
sherman 7.47 11.70 0.64
sherman5 14.77 2295 0.64
orsirr_ 1 18.83 21.70 0.87
or6781lhs 2.45 2.25 1.09
nnc1374 2297 18.64 1.23
gematl] 4.24 3.07 1.38
sherman?2 19.07 12.85 1.48
gre_ 1107 32.37 21.70 1.49
west2021 3.50 2.00 1.76
mahistlh 1.62 0.85 1.91
west1505 3.10 1.57 1.98

gemat12 6.81 3.25 2.09

1316 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

Table 6
Comparison of the total element counts after factorization for MCSPARSE and Y12Mm
Matrix MCSPARSE Yi2m

Sparse Dense Dense Total Sparse Dense Dense Total

elems block elems elems elems block elems elems
gaff1104 56560 254 64516 121076 15059 520 270400 285459
gematl 1 52664 349 121801 174465 36616 313 97969 134585
gemat]2 78632 426 181476 260108 36787 322 103684 140471
gre_ 1107 83691 324 104976 188667 9545 345 119025 128570
hwatt_ 1 65550 368 135424 200974 24221 640 409600 433821
hwatt_ 2 69300 430 184900 254200 26484 623 388129 414613
mabhistlh 14320 76 5776 20096 6275 89 7921 14196
nncl374 51176 370 136900 188076 15766 391 152881 168647
or6781hs 184643 355 126025 310668 43832 499 249001 292833
orsirr_ 1 25798 332 110224 136022 13536 377 142129 155665
orsreg_ 1 79346 438 191844 271190 36499 739 546121 582620
pores_ 2 25781 282 79524 105305 16422 396 156816 173238
saylr4 166530 634 401956 568486 63881 1132 1281424 1345305
sherman1 10147 147 21609 31756 5205 206 42436 47641
sherman2 171154 519 269361 440515 25048 543 294849 319897
sherman3 154186 423 178929 333115 42578 918 842724 885302
sherman4 12066 103 10609 22675 4248 222 49284 53532
sherman$ 201848 359 128881 330729 23280 689 474721 498001
west]1505 11234 100 10000 21234 5456 92 8464 13920
west2021 17062 117 13689 30751 7264 121 14641 21905

factorization rather than being confined to the predefined dense border diagonal block. A
parallel Ma28-like solver which exploits such a technique is the parallel version of Y12m
developed for the Alliant FX /8 [19].

The fill-in ratios for v12m, R{*'?™, are presented and compared to those for
MCSPARSE in Table 5. Again, a line has been drawn in the table to help compare the two
solvers. The matrices above the line are those where MCSPARSE had fewer fill-in elements
than v12M™; and, the matrices below the line are those where Y12M had fewer fill-in
elements. As can be seen from this comparison, MCSPARSE had fewer fill-in elements for
eleven of the matrices, and Y12M had fewer fill-in elements for nine of the matrices. Of
the nine matrices where Y12M had fewer fill-in elements, the MCSPARSE fill-in rate was
not more than twice the Y12M fill-in rate for eight of these matrices. The remaining
matrix was just barely more than twice the fill-in rate of Y12m.

Since MCSPARSE and Y12M both perform a switch to dense matrix techniques, a simple
comparison of the overall fill-in ratios is not complete enough. In Table 6, the numbers
of elements in the dense and sparse portions of the matrices after factorization are
separated. MCSPARSE tends to have more sparse elements than y12M, which is also
expected due to the fact that MCSPARSE preserves the block structure of the reordered
matrix and therefore has less flexibility. Also note that for seventeen of the matrices,
MCSPARSE has a smaller dense block than Y12m.

In reviewing the fill-in results for MCSPARSE, several observations relative to the effect

K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333 1317

on final performance can be made. When comparing the number of fill-in elements
between MCSPARSE and MA28, one should recall that MCSPARSE is a parallel solver and
that MAa28 is a sequential solver. A sequential solver attempts to keep the number of
fill-in elements as small as possible in order to minimize the number of floating point
operations. A parallel solver, however, can achieve better performance when generating
more fill-in elements as long as sufficient parallelism is available in both the machine
and computational dependencies. By using a reordering that allows the fill-in to be
constrained to certain areas of the matrix structure, large grain parallelism can also be
exploited with minimal synchronization cost. Furthermore, on a high-performance
machine, dense matrix structures and techniques can be utilized more efficiently than
sparse techniques for certain problem sizes. As a result, MCSPARSE on a parallel computer
can outperform MA28 and Y12M even when generating significantly more fill-in ele-
ments. When comparing the number of fill-in elements between MCSPARSE and a solver
with a switch to dense matrix capabilities, Y12M, the fill-in results appear favorable, with
MCSPARSE generating fewer fill-in elements for just over half of the matrices.

Given that the fill-in affects the performance of the solvers in many different ways, a
fill-in comparison is only one part of the performance comparison between solvers. In
Section 8, the comparison between the solvers will be continued using the timing results
of experiments on Cedar.

7. Load balancing

The major performance problem with a large grain solver is the difficulty in
achieving a good load balance, which can also accommodate the way a sparse matrix
may change during the factorization. The fill-in elements generated by the factorization
may be unevenly distributed, leaving some rows unaffected while making other rows
dense. In addition, matrices with similar structure but different numerical values can
generate different fill-in patterns as each matrix may need its own pivot ordering for
stability reasons.

Reblocking. The first step of the load balancing procedure is to determine what objects
are to be partitioned. The bordered block upper triangular form consists of a series of
diagonal blocks with corresponding off-diagonal blocks and a border. The solver may
use the set of diagonal blocks provided to it, or it can combine consecutive diagonal
blocks to form larger blocks.

Reblocking consists of taking the original diagonal blocks from the ordering,

D{”) = {all rows r, in diagonal block j},
and combining consecutive diagonal blocks to form new blocks D{” such that
D" =D\ UDP U - UDLY,.

Reblocking can be done to make the size of the diagonal blocks, | D}’) |, more uniform.
Whether or not the solver should combine diagonal blocks is dependent upon the
target machine. When using a few large blocks, less communication may be required,

1318 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

but balancing the load at the block level may be more difficult. Smaller blocks may be
easier to load balance at the block level, but the increased number of blocks may require
more communication. A machine with many processors may require a large number of
small blocks to keep the processors busy, and a machine with fewer processors may be
faster with fewer blocks.

Work count. The next load balancing step involves assigning the diagonal blocks to the
clusters. To perform this assignment, the algorithm should consider how much work will
be done with the diagonal block. This includes both the work that will be done to
calculate the local factorization for the diagonal block, and the work that will be done to
apply the local factorization to the border. The information available for estimating the
work includes the number of rows in the diagonal block, the number of nonzero
elements in the diagonal block, and the original number of border rows the diagonal
block needs to update. (The diagonal block may actually update more border rows due
to rows being cast into the border.)

Two different work estimates have been developed for the partitionings. The first
work estimate combines the number of rows in the diagonal block with the number of
border rows to be updated. For A € R™*", define border row b; as:

b= {ck | e, # O}.

The border rows which need to be updated by diagonal block i are defined as
Ui = {bjlbj(min) < dgmax)}

where

b{™=minc;€b, and d{™ =maxr,€D{".
J j
In other words, U, is the set of border rows such that each row has a nonzero to the left
of d{"*? and D is assumed to update all border rows in U,. The work count w{"®) for
diagonal block D" can therefore be defined as:

Wi = | DO |0 .

This estimate is simple, yet it attempts to weight both the size of the diagonal block
and the number of border rows updated. This work estimate is used to assign nearly
equal amounts of estimated work to each cluster during the partitioning.

One problem with this work estimate is it assumes that diagonal blocks with a similar
number of rows will be factored in roughly the same amount of time. This assumption
ignores how the diagonal blocks were generated. Though the new diagonal blocks may
have a similar number of rows, the amount of work to factor these new diagonal blocks
may vary greatly due to the differences in the size of the original diagonal blocks which
were combined to form the new diagonal block.

A second work count was developed to combine the size of the new diagonal block
with the information about the original diagonal blocks. The largest diagonal block from
the ordering contained within a reblocked diagonal block is found as

| D). | =max| D{”| VD{?cD{".
k

i,max

K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333 1319

The work count w{°” for diagonal block D!") is calculated as
Wi = | D@, 1+ | D).
One factor these work estimates ignore, however, is the sequential nature of the
border updates. (A border row can only be updated by one diagonal block at a time.)

The partitioning algorithm can incorporate whichever diagonal block each border row
starts with to determine where the most parallel work is available.

Static partitioning. Four different partitioning algorithms have been developed using
the work estimates described above.

Partition 21: This algorithm assigns the diagonal blocks associated with the start of
a border row to the Cedar clusters in a round robin fashion. As a result, the diagonal
blocks are interleaved among the clusters. The remaining diagonal blocks are distributed
in an effort to keep consecutive diagonal blocks assigned to the same cluster, while
keeping the amount of work assigned to each cluster equal. The work count w{"® is
used.

Partition 9P2: This algorithm divides the diagonal blocks associated with the start of
a border row into groups, where each group has the same number of blocks and the
blocks are kept in order (i.e., the first cluster will receive the first n blocks). The
remaining diagonal blocks are distributed in an effort to keep consecutive diagonal
blocks assigned to the same cluster, while keeping the amount of work assigned to each
cluster equal. The work count w{"? is used.

Partition 3: This algorithm assigns a consecutive group of diagonal blocks to each
cluster, where each group has about the same work amount. The work count w!"” is
used.

Partition 24: This algorithm assigns a consecutive group of diagonal blocks to each
cluster, where each group has about the same work amount. The work count w}”’) is
used.

Each of these partitionings makes slightly different assumptions about how to balance
the work load. For example:

e Partition &1 assumes the border rows can be cheaply transferred between clusters

when updating the border rows with the diagonal blocks.

e Partition %2 assumes the cost of transferring the border rows is high and therefore

attempts to keep the number of transfers low.

e Partition 73 assumes that balancing the parallel border work is not important.

e Partition %74 assumes that balancing the parallel border work is not important, but

that the origin of the diagonal blocks is important.

All of these partitionings have a similar problem, which is a bottleneck caused by the
sequential nature of the updates. Since a border row must be updated in order by the
diagonal blocks, the last diagonal block will be the last block to update each border row.
After all the other clusters have finished their updates, the cluster containing the last
diagonal blocks will still be doing updates; and, since the border rows have had repeated
updates already applied, it is likely the border rows will be denser.

Dynamic load balancing. One solution to this bottleneck is to allow other clusters to
help with the updates using the last diagonal blocks. By placing the local factorizations

1320 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

of the last diagonal blocks into global memory, the other clusters can share the work to
be done by these blocks, called S-Blocks. Any cluster which has finished its work can
help by applying the S-Blocks to the border rows which still need updated. This method
has been implemented within MCSPARSE to help with the load balancing problem.

Processor load balancing. One last load balancing question is the determination of how
many processors should be used to factor a diagonal block. A cluster is assigned a set of
diagonal blocks and a number of processors which it may use to factor the blocks. The
cluster may factor a block using all of its processors, or it may factor multiple blocks at
a time using one processor per diagonal block. The goal for the cluster is to factor ail of
the blocks in the minimum amount of time. It is also important to realize that the
processors within a cluster will share the cache on the cluster.

A threshold, o, is set by the user to indicate the maximum size of a diagonal block to
be factored with one processor. The factorization of any diagonal block with a size
greater than ¢ uses all processors in a single cluster.

Though it may be more efficient to solve the small blocks in parallel, if there are
fewer than n * P blocks available, where P is the number processors, then (1 — n)* P
processors would be idle during the factorization. In this case, it may be quicker to use
the parallel solver to factor each of the diagonal blocks in turn as it can utilize more
processors. The number of diagonal blocks assigned to the cluster below the threshold
are found,

D “{D,-||D,~|<a'}.

small —
If |D,,,;| = mn*P, then the diagonal blocks in D,,,, will be factored with one

processor per diagonal block. However, if | D,,,,,;| < 7 * P, then the diagonal blocks in
D, ... will be factored using all P processors per diagonal block. All other diagonal
blocks assigned to the cluster are factored in turn using all processors in the cluster.

Currently the parameters are set to:

e o =100. This is based upon the parallel performance of the processors within a
Cedar cluster. Due to the overhead in the parallel diagonal block factorization, it is
efficient to solve a diagonal block on multiple processors only when its size is
greater than 100. For diagonal blocks whose size is less than 100, it is more
efficient to solve multiple blocks in parallel.

e 7= 1/3. This parameter is also based upon the parallel performance of the
processors within a Cedar cluster and the parallel performance of the diagonal
block factorization. Therefore, as long as 1/3 of the processors will be busy, the
small diagonal blocks will be solved in parallel.

Load balancing results. This section presents the results from testing both the static and
dynamic load balancing methods. The static load balancing methods, &;’s, are com-
pared first and then the effects of S-Blocks will be examined. In addition, during all
testing both reblocking and processor load balancing were performed.

To determine the effectiveness of the different partitionings, the four partitionings
were tested on Cedar, using all four clusters and eight processors per cluster, and
compared against MCSPARSE on one cluster using eight processors. Because these

KA. Gallivan et al. / Parallel Computing 22 (1996) 12911333 13214

Table 7
The speedup of the 4 cluster code over the 1 cluster code for the different partitionings .%°

£ Matrices ordered by sequential factorization time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1.3 12 13 13 1.7 16 14 15 19 1.5 1.8 1.9 20 25 29 26 2.1 25 24 25
1.8 16 12 16 19 16 15 17 22 15 20 18 26 31 25 27 20 28 28 28
1.2 15 1.1 1.5 1.5 15 1.6 1.9 21 1.4 15 15 26 1.8 20 20 1.8 19 16 L7
1.6 1.4 1.8 14 16 1.7 1.6 1.8 23 21 21 21 25 26 30 27 22 30 3.1 26

AW N =

partitionings are designed to balance the work load between clusters and to address
intercluster issues, the cluster speedup provides an indication of how well each partition-
ing performs. In Section &, comparisons will be made for MCSPARSE on 1 and 32
processors, as well as comparisons to other one-cluster solvers.

The four cluster factorization times were used with the factorization time for the
single cluster code to calculate the cluster speedups, with a maximum possible speedup
of 4. These tests were performed for the 20 large matrices, and the number of S-Blocks
was chosen to be 1/2 of the diagonal blocks (this choice is based upon the results of the
dynamic load balancing tests presented below). The resulting speedups are presented in
Table 7, with the best speedup for each matrix highlighted. (The matrices are ordered as
they appear in Table 9.)

Though all of these partitionings have their advantages, for our target machine
Partition %2 was anticipated to be the best since it considered the overhead of
transferring data between clusters. As can be seen from the data, however, partition .4
provides better results for more matrices than 422 and 3. Given that #3 and &4 are
better than 922 for 12 of the matrices, this shows that the other overheads are just as
important as the data transfer between clusters. Because of the different work counts
used by partitions £2 and 4, these results also suggest there are two different load
balancing problems. For some matrices it is more important to balance the border
updates, and for other matrices it is more important to balance the diagonal block
factorizations. It should be noted that during the testing of the different partitionings,
half of the diagonal blocks were S-Blocks. This indicates that the partitionings have a
dramatic performance effect even when dynamic load balancing is used during the
border update.

To investigate the effects of the dynamic load balancing with S-Blocks, tests were run
with MCSPARSE on the four clusters of Cedar using partition %4 (since it provided the
best performance during the static load balance tests) with a varying number of
S-Blocks. The number of S-Blocks used during the tests was calculated as a fraction of
the total number of diagonal blocks. (Where S = {the set of S-Blocks} and D = {the set
of diagonal blocks}, the fraction of blocks which are S-Blocks is calculated as | S| /1 D1.)
The factorizations of the twenty large matrices were calculated using no S-Blocks and
with |S|/ID|=1/4, 1/3, and 1/2. After the tests were run, the speedups were
calculated by comparing the factorization time to the time for the one cluster code using
eight processors. The speedups are presented in Table 8, with the best speedup per
matrix being highlighted. (The matrices are ordered as they appear in Table 9.)

1322 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

Table 8
The speedup of the 4 cluster code over the 1 cluster code for the different number of S-Blocks

| St/ D] Matrices ordered by sequential factorization time
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0 1.2 08 15 1.6 14 12 1.1 1.7 15 1.7 1.9 20 13 24 27 24 14 22 24 24
1/4 14 14 17 14 15 15 14 14 1.8 20 1.8 21 13 2.6 30 25 1.4 28 23 26
1/3 14 12 1.7 14 1.7 15 13 1.8 19 20 22 22 25 2.6 29 26 13 29 32 28
1/2 16 14 18 14 16 1.7 1.6 1.8 23 21 21 2.1 25 26 3.0 2.7 22 30 3.1 26

This table shows that the use of S-Blocks helps the performance for 19 of the 20
matrices, as compared to using zero S-Blocks. Therefore, using S-Blocks does not hurt.
The performance degradation which results from not using S-Blocks is drastic for
several of the matrices, with two of the matrices (numbers 13 and 17) having their time
increased by about 40% when S-Blocks are not used. Of the different parameter values,
using | S{/| D| =1/2 provided the best result for 14 of the 20 matrices. Whereas the
next best value, |S|/|D|=1/3, provided the best results for only 8 of the 20
matrices.

Tests were not performed with more than half of the diagonal blocks being S-Blocks
for architectural reasons. As more S-Blocks are used, more shared global memory must
be allocated to hold the blocks. When solving larger and larger problems, however, the
memory available for the S-Blocks will decrease, assuming the border size and/or
density increases. For S-Blocks = 1, MCSPARSE essentially defaults to a shared memory
approach running in global memory which, due to memory size constraints and
communication costs, would not be efficient on the clustered Cedar architecture.

These results show the importance of determining the correct load balancing strategy
for the individual problem being solved, with a combination of dynamic and static load
balancing methods necessary for MCSPARSE to perform well on Cedar. Note that though it
is convenient to implement S-Blocks using the shared global memory of Cedar, the
global memory is not required. S-Blocks can be implemented on a distributed memory
machine by replicating the S-Blocks on the nodes, although this does alter the choice of
diagonal blocks placed in the set of S-Blocks (i.e., the set will no longer be contiguous).

8. Hierarchical parallelism

In order to achieve acceptable performance on a target machine, a solver must be able
to effectively match the architectural resources (e.g., vector units, multiple processors
and hierarchical memories) to the correct level of algorithmic parallelism. If the machine
has only vector units, then fine grain parallelism is sufficient; if the machine consists of
several tightly coupled processors, then medium and fine grain parallelism suffice; or,
given multiple loosely coupled processors or clusters of processors, large grain paral-
lelism is necessary.

More complex architectures often possess all three levels of parallel coupling and a
complex memory system and thereby require the simultaneous exploitation of multiple

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1323

levels of algorithmic parallelism. Cedar is such an architecture. It consists of processor
clusters loosely coupled through a shared memory. Each cluster contains eight tightly
coupled vector processors which share a cache, and a local cluster memory which is not
accessible by any processor outside the cluster.

The mapping of the bordered block upper triangular form of the matrix onto the
Cedar architecture to utilize the multiple levels of parallelism is straightforward. The
diagonal blocks map onto the cluster for large grain parallelism; the rows map onto the
processors for medium grain parallelism; and the elements within a row map to the
vector units of the processors for fine grain parallelism. This mapping demonstrates one
way to utilize the features of the architecture, but this is not the only possible mapping.
When implementing the solver, several assumptions about the mapping must be
examined. The mapping assumes there are enough rows in the diagonal block for the
processors of the cluster to be effective. The current H* ordering [40], however, usually
generates a large number of small diagonal blocks containing between one and four
rows. Since a full Cedar cluster contains eight processors, such diagonal blocks would
be unable to use more than half of the processors. A method for overcoming this
problem was described in Section 7. Hierarchical parallelism, in combination with these
methods, allows the solver to take advantage of the available resources of the Cedar
architecture when operating on the diagonal blocks. The solver, however, must operate
on more than just the diagonal blocks. The factorization of the border presents a similar
performance problem.

The border consists of multiple rows which contain the connections between the
diagonal blocks. Each nonzero border element in an off-diagonal column must be
eliminated by applying the local factorization of the corresponding diagonal block. For
example, consider a border row / with nonzero elements in columns j, &, and m. If
column j is in diagonal block x, column £ is in diagonal block y, and column m is in
diagonal block z, then diagonal blocks x, y, and z must be applied to row i. In
addition, any fill-in elements generated in the off-diagonal border columns by the
application of the diagonal blocks must also be eliminated.

If j <k < m, then diagonal block x is the first diagonal block which must be applied
to the border row. There is no need to apply any diagonal block before block x to the
border row because there are no nonzero elements before column ; that need to be
eliminated. A logical grouping of the border rows, therefore, is to group the border rows
together into blocks such that all the border rows in a block have their first nonzero
element in a column within the same diagonal block. With respect to the example,
border row i would be placed in a border block with all the other border rows that need
diagonal block x as the first diagonal block applied to the rows.

Having grouped the border rows into blocks, the parallel mapping onto the Cedar
architecture is straightforward. A border block is associated with a particular cluster, a
border row with a processor, and the elements of a row with the vector units. As a result,
when the border blocks can be grouped such that they contain a number of rows that is a
multiple of the processors available in a cluster, or a much larger number, reasonable
efficiency is achieved.

This mapping allows multiple border blocks to be updated in parallel, one border
block per cluster, and multiple border rows to be updated in parallel, one per processor.

1324 K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

Within a cluster, the rows in the border block are placed in a work queue. A processor in
the cluster removes a border row from the queue, updates the row with the appropriate
diagonal blocks on the cluster, and then returns the row to the border block. The
processor must check a flag for each diagonal block row before it is used to determine if
it has been cast and, if it has been cast, proceed to the next update within the border row
(this is a simple read, not an indivisible access). If, during the update, a processor
decides to cast a diagonal block row instead of updating the border row, it must notify
the other processors in the cluster of its decision. Since the border row updates are not
synchronized, the other processors in the cluster may have already used the cast row to
update some other set of border rows. This results in the nondeterministic application of
a diagonal block row before it is cast to the border rows within the cluster. In fact, when
using S-Blocks, several clusters can be using the same diagonal block to concurrently
update multiple border blocks. If a row within an S-Blocks is cast, the nondeterministic
application of the cast row occurs across multiple border blocks.

Though the applications of the diagonal block rows are not synchronized, the casting
of a diagonal block row is synchronized to avoid multiple copies of the row being cast
into the border (possibly into different border blocks). Some arbitration strategy is
needed to identify which of the potentially many processors that decided to cast the
diagonal block row will actually perform the casting operation. This is easily accom-
plished by making the indication of the intention to cast a row, mentioned above, via an
indivisible update of the flag associated with the row. The first processor to succeed in
updating the cast flag for the row is responsible for actually casting it into the border
block by performing the appropriate data structure updates.

In order to maintain efficiency, the processor that acquires responsibility for casting
the row immediately places it into the work queue associated with the current border
block being processed by the cluster. This allows any idle processor on the cluster to
begin the update of the cast row while the casting processor finishes the update of its
border row. As a result, synchronization is only required for removing a border row
from the work queue and for placing the row back into the border block after it has been
updated by all the appropriate diagonal blocks on the cluster, or when a processor is
involved in casting a row. The resulting pivoting/synchronization strategy, when
combined with the anticipatory diagonal casting discussed above, preserves the structure
of the matrix while considerably reducing the amount and complexity of synchronization
as compared to other strategies. For example, pairwise pivoting requires synchronization
before each elimination, as the processor acquires the pair of rows needed for a single
elimination operation.

Parallelism results. In the previous sections, the experimental results demonstrated that
MCSPARSE is competitive in terms of stability and is potentially competitive in terms of
fill-in with other parallel solvers that exploit dense matrix techniques when appropriate.
In this section, we present the performance of MCSPARSE in terms of paralle]l execution
time on various configurations of the Cedar multiprocessor for the 20 large matrices
from the RUA section of the Harwell-Boeing test set used earlier.

Table 9 contains the single-user mode wall-clock time in seconds for three different
codes on various configurations of Cedar. The first code is Ma28, which does little to

K.A. Gallivan et al. / Parallel Computing 22 (1996)-1291-1333 1325

Table 9
Factorization times sorted by the MCSPARSE execution time on one processor

Matrix MCSPARSE MA28 v12m TEY12M f Tgmese)
3 28 12 12
Tl(mcsp) Témc.\p) T_«Eé"”p) T(ma)] Tl(,v m) Ts(,\' m)y

1. mahistlh 3.23 0.74 0.46 3.78 5.59 1.19 1.60
2. shermant 377 0.75 0.55 6.55 4.01 1.16 1.54
3. sherman4 4.11 0.94 0.62 497 4.05 1.17 1.24
4. west1505 4.20 1.04 0.75 2.16 3.85 1.10 1.05
S. west2021 6.87 1.69 1.10 292 5.49 1.46 0.86
6. pores _ 2 11.15 2.19 1.34 20.03 17.51 4.53 2.06
7. orsirr_ 1 13.73 274 1.67 26.52 12.43 3.81 1.39
8. nncl374 19.98 4.18 2.50 28.59 11.68 4.29 1.02
9.gre_1107 2053 3.81 1.73 29.42 11.47 2.89 0.75
10. gaff1104 24.56 5.47 2.58 56.44 25.62 6.71 1.22
11. hwatt _ 1 27.78 5.78 273 83.87 41.61 11.17 1.93
12. hwatt_ 2 33.57 6.40 3.08 79.68 41.68 11.15 1.74
13. or678lhs 39.06 7.45 3.02 67.03 130.26 11.87 1.59
14. gematl1 40.32 11.01 4.21 12.79 28.47 6.48 0.58
15. orsreg _ | 41.77 9.88 3.19 121.04 67.40 17.05 1.72
16. gemat12 57.12 14.27 5.53 15.19 28.98 6.66 0.46
17. sherman2 78.42 14.49 6.26 565.07 33.82 8.97 0.61
18. saylrd 114.19 23.58 7.79 313.46 193.08 42.45 1.80
19. sherman3 125.69 28.59 9.73 318.37 57.46 12.78 0.44
20. sherman3 127.78 28.53 10.47 191.81 108.71 24.88 0.87

expose exploitable parallelism. It does make use of an initial reordering of the matrix to
create a block triangular form which, along with pivot selection to maintain sparsity in
the factorization, keeps the number of operations low. For MA28, the table contains the
factorization times using u = 0.1 and nsrch = 4, for the improved pivot search (i.e., at
most four rows were searched when selecting a pivot) as compared to the classical MA28
pivot search that could consider all remaining columns and rows. Postprocessing with
iterative refinement is used to enhance the accuracy of the mMa28 solution. The times
listed in the table are for MA28, restructured for parallelism by the Alliant compiler
running on all eight processors in a single Cedar cluster. Unfortunately, they are
virtually identical to those for MA28 on a single processor. This, of course, is merely a
confirmation of the well-known fact that current restructuring technology is not ad-
vanced enough to handle such complex code constructs, although promising research
continues on the topic. It is therefore important that an efficient eight processor code for
a single Cedar cluster is used in the comparison with MCSPARSE.

In order to exploit the parallel and memory resources of the single cluster, it is
necessary to alter the pivot search and application procedures as well as to switch to
dense techniques and exploit high performance library code designed specifically for
one cluster of Cedar. Fortunately, the parallel Y12Mm code used in the earlier comparisons
exploits all of these techniques [19].

The v12M times were obtained using the version of the code which searches, in
parallel, for a set of nearly independent pivots; applies the pivots in parallel; switches to

1326 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

high performance BLAS3-based dense matrix techniques when appropriate; and uses
postprocessing with iterative refinement to enhance the accuracy of the solution. The
stability factor for Y12M was 10 (this is basically the same as u = 0.1 in MA28). The
pivot search has various options depending on the number of processors used and the
degree of sparsity maintained in the active portion of the matrix (before the switch to
dense techniques). The best wall-clock time observed for the different options is listed
for each matrix. This code was developed and hand-tuned for parallel execution on one
cluster of Cedar and exploits the same linear algebra kernels that are used as the basis
for the multicluster dense solver in MCSPARSE. The parallel Y12M represents a reasonably
aggressive use of parallelism in a sparse solver for an arbitrary nonsymmetric system on
a moderate number of tightly coupled processors. When its techniques are extended to
multicluster parallelism, however, the mismatch in parallel granularity implied by the
algorithm, and required by the parallel control overhead on Cedar, yields very little
speedup for the moderately sized matrices in the test suite. As a result, techniques such
as MCSPARSE must be used to extend the speedup due to parallelism across clusters.

The MCSPARSE results are the wall-clock time for the factorization, solve, and iterative
refinement phases and were performed using w = 0.1; the pivot search in the diagonal
block was allowed to search all rows in the block if necessary. This speedup in the
factorization time comes with a price, however. The time to reorder the matrix for
multicluster factorization is nontrivial, and reuse of the ordering on several matrices is
typically needed to amortize its cost for the moderate system orders considered here.
The four cluster results presented in Table 9 are for the version which uses the
hierarchical parallelism described earlier. A comparison with a multicluster MCSPARSE
version which does not exploit the hierarchical parallelism is presented later.

The labels in Table 9 are of the form T °*“*), where code indicates the program
timed and p indicates the number of processors. The hardware configurations repre-
sented by different p values are: p = 1 one processor execution, using cluster memory;
p = 8 single cluster (eight tightly coupled processors); and p = 32 four clusters of eight
processors each.

The timing data illustrates the remarkable fact that MCSPARSE can be a very effective
solver on a single processor and a single cluster assuming the cost of the H* ordering is
not considered or that it can be amortized over several factorizations. As expected, the
single processor results are a mixed set where each of the three solvers is best for some
set of matrices. However, in general, MCSPARSE is the best, or a reasonably close second,
in sixteen cases.

More surprising is the fact that even though the structure of the reordered matrix was
mainly intended to expose large grain multicluster parallelism, MCSPARSE is fairly
competitive with Y12M on eight processors in a single cluster. This can be seen by
examining the ratio T§*'*™/T{™**") (i.e., the speedup of MCSPARSE over YI2M on a
single cluster given in the table). For all but four of the problems, MCSPARSE is either
better than or very close to Y12M (within 25%) in execution time.

The main purpose of developing MCSPARSE was the need for a multicluster direct
sparse solver on Cedar. As noted above, the medium and fine grain parallelism, along
with the unstructured dynamic pivot search strategies of v12M, do not extend well
beyond one cluster. The effectiveness of the multicluster version of MCSPARSE, which

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1327

Table 10
Speedup of MCSPARSE over the one processor version and one cluster version on Cedar
Matrix Tl(mcsp)/ Ts(mcsp) T]('"”P)/ T:S"C»\'P) TS('"CSP)/ T%"CA‘P)
1. mahistth 4.36 7.02 1.60
2. shermanl 5.02 6.85 1.36
3. sherman4 4.37 6.62 1.51
4. west1505 4.03 5.60 1.38
5. west2021 4.06 6.24 1.53
6. pores _ 2 5.09 8.32 1.63
7. orsirr_ 1 5.01 8.22 1.64
8. nnci374 4.77 7.99 1.67
9. gre_ 1107 5.38 11.86 2.20
10. gaff1104 4.48 9.51 2.12
It. hwatt _ 1 4.80 10.17 211
12. hwatt__ 2 5.24 10.89 2.07
13. or678lhs 5.24 12.93 2.46
14. gematl 1 3.66 9.57 2.61
i5. orsreg _ 1 4.22 13.09 3.09
16. gemat12 4.00 10.32 2.58
17. sherman2 5.41 12.52 231
18. saylr4 4.84 14.65 3.02
19. sherman5 4.39 12.91 2.93
20. sherman3 4.47 12.20 2.72

exploits the hierarchical parallelism described earlier, can be seen from the speedups
presented in Table 10. The processor and cluster speedups for MCSPARSE on one and four
clusters are presented. These are relative to MCSPARSE on one processor and relative to
MCSPARSE on one cluster respectively. The second is the main measure of the success of
MCSPARSE given the design goal above.

The speedup for MCSPARSE on one cluster relative to its execution time on one
processor is between four and five for all but one problem. This indicates that while
reasonable parallel performance has been achieved for both MCSPARSE and Y12M in one
cluster, scaling Cedar with more processors in a cluster is probably a losing proposition
for the moderately-sized problems of the test suite. This leaves the question of how
effective MCSPARSE can be if Cedar is scaled up in the number of clusters (the original
design goal).

The second and third columns contain the speedups which address this issue relative
to one processor and one cluster respectively. Both show a difference between the first
eight to ten smaller problems (in terms of one processor execution time), with the
speedups relative to one processor execution illustrating it more strikingly. Within this
column, the speedups range from 5.60 to 14.65, but the first ten matrices have an
average speedup of 7.82, and only one matrix with a speedup greater than 10. The last
ten matrices all have speedups greater than 9.5, with an average of 11.93. The cluster
speedups in the third column have similar trends, but indicate the preferred scaling of
Cedar. The cluster speedups for the matrices range from 1.36 up to 3.09 out of 4; the
first eight matrices, however, all have speedups less than 2 for less than 50% cluster

1328 KA. Gallivan et al. / Parallel Computing 22 (1996) 12911333

efficiency, while the last twelve matrices all have speedups greater than 2 with most of
them having cluster efficiency near 60% or higher.

The experiments clearly show that MCSPARSE has achieved the goal of extending the
performance improvement possible via parallelism when solving a nonsymmetric sparse
linear system of moderate size on a cluster-based architecture.

The above results use the version of MCSPARSE which exploits the hierarchical
parallelism available in factoring the matrices reordered by H". It is possible, however,
to use multiple clusters in a non-hierarchically parallel manner in a much less complex
version of MCSPARSE. The next set of results demonstrate that the added complexity is
worth the effort and, in fact, necessary to achieve reasonable multicluster speedup. To
test non-hierarchical parallelism, an experimental version of MCSPARSE was developed
which viewed Cedar as a ‘‘flat’’ shared memory machine with 32 processors. This was
accomplished by executing the parallel loops across all 32 processors and using the
shared global memory in a manner similar to that used for the cluster memory when
executing the hierarchical version of MCSPARSE on a single cluster.

Fig. 8 contains a graph which shows the four cluster speedups for the hierarchical
code and the flat code. The times T{™*”), T{m?P), and T{{'*" are all factorization and
solve times (i.e., the time to perform iterative refinement has been removed from both
codes).

The results clearly show that just using H* to expose the bordered block triangular
form is not enough. Hierarchical parallelism exploitation must be designed into the code.
The cluster speedup for the hierarchical code ranges from 1.5 to 3.1, with a mean
speedup of 2.2, while the flat code cluster speedup ranges from 0.7 to 2.2, with a mean

4
T{mesp)
[= Tg(zmc.sp)
T(mcsp)
o -u-o=
Flat
;"
Cluster 2L b
Speed Up !
1 ¢
. v i
P NG N h\
o-d ¥ v Ny \
1-0‘” \v’ ‘5’ \‘Il S
]
0 L L 1 Lt L 1 L 1 [[l] i '} L 1 1 1 L

2 4 6 8 10 12 14 16 18 20

Matrices Ordered by Sequential Factorization Time

Fig. 8. Comparison of hierarchical and flat parallelism.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1329

Table 11
Performance comparison of the sequential and parallel H# * ordering
Matrix TUH) T4
1. mahistth 1.45 0.68
2. shermanl 0.75 0.50
3. sherman4 0.69 0.46
4. west1505 2.47 0.58
5. west2021 5.89 0.85
6. pores_ 2 2.53 1.21
7. orsirr_ 1 1.22 0.76
8. nnc1374 3.26 1.21
9. gre_ 1107 3.65 1.72
10. gaff1104 2.14 1.25
1. hwatt_ 1 2.31 1.46
12. hwatt_ 2 2.23 1.49
13. or678lhs 7.20 3.88
14. gematl ! 4.04 2.87
15. orsreg_ 1 3.07 2.13
16. gemat12 4.50 3.33
17. sherman2 5.40 2.59
18. saylr4 5.15 3.70
19. sherman$ 4.70 2.36
20. sherman3 4.09 3.00

speedup of 1.3. In fact, the flat code on 32 processors is slower than the 8 processor
code for five of the twenty matrices.

All of the discussion above assumed that the time required to run H™ to reorder the
matrices was amortized over solving several systems. Table 11 contains the execution
time for H* on one processor of Cedar. Clearly, if this sequential reordering time is not
assumed to be amortized, serious degradation in the ordering /factorization/solution can
occur. One approach to improve this performance is to investigate the use of parallel
versions of the algorithms. This can be done with various levels of complexity. A simple
approach is to utilize the loop-based parallelism available in the algorithms described
above. For instance, instead of trying one bound at a time in HO, a different bound can
be tried on each processor in parallel. Within the H1 and H2 phases, the initialization of
data structures, the updating of data structures, and the searches that occur can be done
in parallel. Table 11 also contains the one cluster execution time, 75"), when utilizing
the loop-based parallelism within H *. Some moderate improvements are seen. Note that
parallelizing H* can change the resulting ordering of the matrices. For most matrices in
the test suite, the change in the ordering has little effect on the performance of the
solver, usually less than 10%. For the two matrices with larger degradation in time, the
size of the border in the parallel H™ matrix is significantly larger than that from the
sequential H *. For one matrix, the factorization time decreases due to a smaller border
from the parallel H* and a reduction in the amount of casting.

The main problem with a parallel H” is the depth-first search nature of the Tarjan
and H1 phases. Wijshoff and Geschiere have considered more aggressively parallel
forms of the phases of H*, but a discussion of their results is beyond the scope of this

1330 KA. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333

paper; the interested reader is referred to [28,29]. It is also possible to use a faster, but
usually less successful, reordering strategy which results in a matrix that can be factored
by a different parallel algorithm, or whose form can be made consistent with the
bordered block triangular form assumed by McSPARSE [20].

9. Conclusions

A new ordering technique H* and an associated parallel factorization algorithm,
MCSPARSE, for solving sparse nonsymmetric linear systems on a multicluster architecture
have been presented. The design tradeoffs on the experimental Cedar system have been
considered and the resulting performance demonstrated via experiments on the system
for a suite of moderately-sized nonsymmetric systems from the Harwell-Boeing matrix
collection.

The H* ordering combines four different orderings to transform a matrix into
bordered block upper triangular form: HO, Tarjan’s algorithm for finding strongly
connected components, H1, and H2. Except for HO, these orderings are symmetric,
which distinguishes H* from other tearing techniques. The effectiveness of the H”
ordering, in terms of producing small borders and improving the stability of the
factorization, has been demonstrated.

The issues of stability and sparsity in MCSPARSE have been addressed successfully.
For stability, the H* ordering has been combined with a pivoting technique, casting,
based on the delay of pivoting decisions in such a way that: the application of unstable
pivots during the factorization is avoided; the overall structure of the matrix is
preserved; complex synchronization policies are avoided; and multilevel parallelism is
exploited. The restriction on the number of pivot elements per column results in a
factorization that is LU-like but much simpler and possessing a worst-case growth factor
less than the factorization and growth factors associated with a pairwise or blockwise
pivoting strategy often used in parallel nonsymmetric sparse solvers. The use of this
method, in conjunction with the application of iterative refinement, allows MCSPARSE to
obtain stable factorizations comparable to standard robust factorization routines, such as
that employed in MA28, used on sequential processors.

To improve sparsity while maintaining large grain parallelism, a modified version of
the Markowitz count was developed which includes the fill-in generated inside the
diagonal block and estimates the fill-in to be generated outside the diagonal block.
Though generating more fill-in elements than the sequential methods, the improved
performance of the large grain parallelism combined with an implicit switch to dense
methods allows MCSPARSE to effectively use the parallel resources available in single and
multiple cluster execution modes on Cedar.

Both static and dynamic methods of load balancing were implemented to improve the
performance of MCSPARSE on Cedar. Reblocking is combined with multiple work counts
and static partitioning to determine the initial allocation of diagonal blocks to clusters.
Within a cluster, the diagonal blocks are evaluated to determine if a processor or a
cluster should be used to factor the diagonal block. S-Blocks are used within the update
of the border blocks to dynamically balance the work. While combinations of these
methods were tested on the Cedar system, they are adaptable to other parallel systems.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 1291-1333 1331

The use of hierarchical parallelism was tested and compared to a flat multicluster
solver for the matrices reordered by H™. The version of MCspARSE which exploits
hierarchical parallelism was found to deliver reasonable performance improvements as
the number of clusters increased, even for the moderately-sized problems in the test
suite.

There are several other avenues of investigation left to pursue with respect to
MCSPARSE. As noted earlier, a parallel implementation of the H* ordering would
improve the overall performance of the solver by mitigating the need to assume the
ability to amortize the cost of H* over several problems with similar structure. The code
is adaptable to multivector and multicluster processors other than the single experimen-
tal Cedar system, and several potential improvements are possible. The most important
is more fully exploiting the hierarchical structure of the border. The Cedar version of
MCSPARSE essentially treats the border as a collection of submatrices at the same level. It
is clear, however, from the H™ ordering, that there is a hierarchical relationship between
the portions of the border produced at different stages of the algorithm.

At some point, the performance improvement due to the multilevel parallelism will
decline and a hybrid strategy of direct and iterative methods similar to that used in a
code based on the parallel Y12M code used in the experiments here should be considered
[17,18]). Initial results, {46], indicate that MCSPARSE can be adapted to use a combination
of positional dropping (i.e., ignoring a fill-in element due to its position in the matrix)
and numerical dropping (i.e., ignoring a fill-in element because of its relative magnitude)
to produce a preconditioner for iterative methods for nonsymmetric systems.

References

[1] G. Alaghband, Parallel pivoting combined with parallel reduction and fill-in control, Parallel Computing
11 (1989) 201-221.

[2] M. Arioli and LS. Duff, Experiments in tearing large sparse systems, in: M.G. Cox and S. Hammarling,
eds., Reliable Numerical Computation (Oxford University Press, New York, 1990) 207-226.

[3] M. Arioli, 1.S. Duff, N.LM. Gould and J.K. Reid, Use of the P* and P° algorithms for in-core
factorization of sparse matrices, SIAM J. Sci. Statist. Comput. 11 (5) (1990) 913-927.

{4] C.C. Ashcraft, R.G. Grimes, J.G. Lewis, B.W. Peyton and H.D. Simon, Progress in sparse matrix
methods for large linear systems on vector supercomputers, Internar. J. Supercomputing Appl. 1 (4)
(1987) 10-30.

[5] J.R. Bunch, Analysis of sparse elimination, SIAM J. Numer. Anal. 11 (5) (1974) 847-873.

{6] L.K. Cheung and E.S. Kuh, The bordered triangular matrix and minimum essential sets of a digraph,
IEEE Trans. Circuits Systems 21 (5) (1974) 633-639.

[7] T.A. Davis, Users’ guide for the unsymmetric pattern multifrontal package (UMFPACK, Version 1.1),
Tech. Rept. TR-95-004, CISE Department, University of Florida, 1995.

[8] T.A. Davis and E.S. Davidson, Pairwise reduction for the direct, parallel solution of sparse unsymmetric
sets of linear equations, /EEE Trans. Comput. 37 (12) (1988) 1648—1654.

[9] T.A. Davis and P.C. Yew, A nondeterministic parallel algorithm for general unsymmetric sparse LU
factorization, SIAM J. Matrix Anal. Appl. 11 (3) (1990) 383-402.

{10] LS. Duff, Algorithm 575, Permutations for a zero-free diagonal, ACM Trans. Math. Software 7 (3)
(1981) 387-390.

[11] LS. Duff, On algorithms for obtaining a maximum transversal, ACM Trans. Math. Software 7 (3) (1981)
315-330.

1332 K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333

[12] 1.S. Duff, Parallel implementation of multifrontal schemes, Parallel Computing 3 (1986) 193-204,

[13] LS. Duff and J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equations, ACM
Trans. Math. Software 9 (1983) 302-325.

[14] AM. Erisman, R.G. Grimes, J.G. Lewis and W.G. Poole, A structurally stable modification of
Hellerman—Rarick’s P* algorithm for reordering unsymmetric sparse matrices, SIAM J. Numer. Anal. 22
(2) (1985) 369-385.

[15] AM. Erisman, R.G. Grimes, J.G. Lewis, W.G. Poole and H.D. Simon, Evaluation of orderings for
unsymmetric sparse matrices, SIAM J. Sci. Statist. Comput. 8 (4) (1987) 600-624.

[16] K. Gallivan, B. Marsolf and H. Wijshoff, A large-grain parallel sparse system solver, in: Proc. 4th SIAM
Conf. on Parallel Proc. for Scient. Comp. Chicago, IL, (1989) 23-28.

[17] K. Gallivan, A, Sameh and Z. Zlatev, Parallel hybrid sparse linear system solver, Computing Systems in
Engineering 1 (1990) 183-195.

[18] K. Gallivan, A. Sameh and Z. Zlatev, Solving general sparse linear systems using conjugate gradient-type
methods, in: Proc. 1990 Internat. Conf. on Supercomputing, Amsterdam, The Netherlands (ACM Press,
New York, 1990) 132-139.

[19] K. Gallivan, A. Sameh and Z. Zlatev, Parallel direct method codes for general sparse matrices, in:
Spedicato, Bertocchi and Vespucci, eds., Proc. NATO ASI on Linear Systems, 1991.

[20] K.A. Gallivan, P.C. Hansen, T. Ostromsky and Z. Zlatev, A’ locally optimized reordering algorithm and
its application to a parallel sparse linear system solver, Computing 54 (1) 39-67.

[21] K.A. Gallivan, B.A. Marsolf and H.A.G. Wijshoff, MCSPARSE: A parallel sparse unsymmetric linear
system solver. Tech. Rept. CSRD Report No. 1142, Center for Supercomputing Research and Develop-
ment, University of Illinois, Urbana, IL, 1991.

[22] K.A. Gallivan, B.A. Marsolf and H.A.G. Wijshoff, The parallel solution of nonsymmetric sparse linear
systems using the H" reordering and an associated factorization, in: Proc. 8th ACM Internat. Conf. on
Supercomputing Manchester, England (1994) 419-430.

[23] C W. Gear, Numerical errors in sparse linear equations, Tech. Rept. UIUDCS-F-75-885, Department of
Computer Science, University of Illinois, Urbana, IL, 1975.

[24] A. George, Nested dissection of a regular finite element mesh, SIAM J. Numer. Anal. 10 (2) (1973)
345-363. :

[25] A. George, An automatic one-way dissection algorithm for irregular finite element problems, SIAM J.
Numer. Anal. 17 (6) (1980) 740-751.

[26] A. George and J.W.H. Liu, An automatic nested dissection algorithm for irregular finite-element
problems, SIAM J. Numer. Anal. 15 (1978) 1053-1069.

[27] A. George and J.W. Liu, Computer Solution of Large Sparse Positive Definite Systems (Prentice Hall,
Englewood Cliffs, NJ, 1981).

[28] J.P. Geschiere, Research on parallelizing the reordering phase of MCSPARSE, a large grain parallel
sparse unsymmetric linear system solver, Master Thesis, Tech. Rept. INF/SCR-92-23. Department of
Computer Science, Utrecht University, 1992.

[29] J.P. Geschiere and H.A.G. Wijshoff, Exploiting large grain parallelism in a sparse direct linear system
solver, Tech. Rept. 93-18, High Performance Computing Division, Leiden University, 1993.

[30] F.G. Gustavson, Finding the block lower triangular form of a matrix, in: J.R. Bunch and D.J. Rose, eds.,
Sparse Matrix Computations (Academic Press, New York, 1976).

[31] S.M. Hadfield and T.A. Davis, A distributed memory, multifrontal method for sequences of unsymmetric
pattern matrices, in: Proc. 1995 Internat. Conf. on Parallel Processing, Volume 3: Algorithms and
Applications (1995) 42-45.

[32] M. Hall Jr, An algorithm for distinct representatives, Amer. Math. Monthly 63 (10) (1956) 716-717.

[33] E. Hellerman and D.C. Rarick, The partitioned preassigned pivot procedure (P*), in: D.J. Rose and R.A.
Willoughby, eds., Sparse Matrices and their Applications (Plenum, New York, 1972).

[34] J.E. Hoperoft and R.M. Karp, An n*/? algorithm for maximum matchings in bipartite graphs, SIAM J.
Comput. 2 (4) (1973) 225-231.

[35} H.W. Kuhn, The Hungarian method for the assignment problem, Naval Research Logistics Quarterly 2
(1) (1955) 83-97.

[36] C.E. Leiserson and J.G. Lewis, Orderings for parallel sparse symmetric factorization, in: Proc. 3rd SIAM
Conf. on Parallel Proc. for Scient. Comp., Los Angeles, CA (1987) 27-31.

K.A. Gallivan et al. / Parallel Computing 22 (1996) 12911333 1333

[37] T.D. Lin and R.S.H. Mah, Hierarchical partition — A new optimal pivoting algorithm, Marhematical
Programming 12:260-278, 1977.

[38] R.J. Lipton, D.J. Rose and R.E. Tarjan, Generalized nested dissection, SIAM J. Numer. Anal. 16 (1979)
346-358.

{39] J.W.H. Liu, The multifrontal method for sparse matrix solution: Theory and practice, SIAM Review 34
(1) (1992) 82-109.

[40] B. Marsolf, Large grain parallel sparse system solver, Master Thesis, Tech. Rept. CSRD Report No.
1125, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1991.

[41] A. Sangiovanni-Vincentelli, An optimization problem arising from tearing methods, in: J.R. Bunch and
D.J. Rose, eds., Sparse Matrix Computations (Academic Press, New York, 1976) 97-110.

[42] Staff, The Cedar project, Tech. Rept. CSRD Report No. 1122, Center for Supercomputing Research and
Development, University of Illinois, Urbana, IL, 1991.

[43] D.V. Steward, Partitioning and tearing systems of equations, SIAM J. Numer. Anal. 2 (2) (1965)
345-365.

[44] RE. Tarjan, Depth-first search and linear graph algorithms, SIAM J. Compur. 1 (1972) 146-160.

[45] AF. van der Stappen, R.H. Bisseling and J.G.G. van de Vorst, Parallel sparse LU decomposition on a
mesh network of transputers, SIAM J. Matrix Anal. Appl. 14 (1993) 853-879.

[46] X. Wang, private communication.

[47] H.A.G. Wijshoff, Symmetric orderings for unsymmetric sparse matrices, Tech. Rept. CSRD Report No.
901, Center for Supercomputing Research and Development, University of Illinois, Urbana, IL, 1989.

{48] U. Meier Yang, Preconditioned iterative solver for nonsymmetric linear systems, Ph.D. Thesis, University
of Illinois at Urbana-Champaign, 1994.

