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Abstract

The classical Schur algorithm computes the LD LT factorization of a symmet-
ric Toeplitz matrix in O(n?) operations, but requires that all the principal minors
of the matrix be nonsingular. Look-ahead schemes have been proposed to deal
with matrices that have exactly singular principal minors [9], [11]. Unfortunately,
these algorithms cannot be extended to matrices that have ill-conditioned prin-
cipal minors. Consequently, the relative errors obtained using the classical Schur
algorithm on matrices having ill-conditioned principal minors is very poor. In
this paper, we propose a look-ahead scheme for such matrices and present empiri-
cal results which demonstrate the improvement over the classical Schur algorithm
for symmetric Toeplitz matrices with ill-conditioned principal minors.!

1 Introduction

Look-ahead techniques were originally proposed to improve the numerical robustness
of the Lanczos algorithm applied to an indefinite matrix 7" in the presence of singular
and nearly singular leading principal minors in 7' [10]. Most of the techniques related
to these developments are based on the theory of orthogonal polynomials [7] or
equivalently on that of T' conjugate directions. This theory is in turn closely connected
to that of Hankel matrices and the Padé algorithm [1] and of Toeplitz matrices
and the Levinson algorithm [6]. In both cases one constructs the decomposition
L'TL™" = D where T is the given Toeplitz matrix. The rows of L™ are the
conjugate directions or also contain the coefficients of the orthogonal polynomials.
Look-ahead techniques have been proposed and yielded algorithms with satisfactory
numerical behavior, [1], [2],[6], [10].

General look-ahead techniques have not been proposed for the Schur algorithm,
which computes the decomposition 7' = LDL" of a given symmetric Toeplitz matrix
T (only the exact singular case was treated in [5], [9]). The Schur approach for
symmetric Toeplitz matrices has three basic advantages over the Levinson approach
: (i) it directly constructs the matrix L rather than its inverse, (ii) it has a derivation
solely based on standard matrix operations rather than on orthogonal polynomials,
(iit) it is more amenable to parallel implementation (partly because of its matrix-
based interpretation).
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Foundation under grants CCR 9209349 and CCR 9120105
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In this paper we derive a look-ahead Schur algorithm which is entirely based
on matrix operations. The pivoting techniques used do not require the polynomial
machinery of the Levinson algorithm. This is an advantage in the sense that it is
easily extended to symmetric block Toeplitz matrices, whereas we expect difficulties
with the concept of orthogonal polynomial matrices in any look-ahead version of
the block Levinson algorithm. We present here the basic ideas for “scalar” Toeplitz
matrices only. The block case follows by assuming that the entries in our matrices
are blocks and requires only minor modifications.

2 Algorithm

The Schur algorithm is one of the most popular techniques to compute the LDLT
decomposition of a general symmetric Toeplitz matrix 7. In this section we outline
one step of the look ahead technique required to improve the stability of this algorithm
when the leading principal minors are ill-conditioned. Consider a Toeplitz matrix
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of dimension (n 4+ 1) x (n 4+ 1). Define a shift matrix 7 with 1’s along the first
subdiagonal. It follows that the matrix 7' — Z7T'Z7 has rank 2, which is called the
displacement rank of the Toeplitz matrix T'. Matrices that have a displacement rank
2 are called quasi-Toeplitz matrices [8]. Fast algorithms [3], [4] to factor such matrices
use the generator matrix G defined from the rank 2 factorization :

(1) T—ZT7ZT = GEXG.

For an (n 4+ 1) x (n + 1) Toeplitz or quasi-Toeplitz matrix 7' (with nonzero (1,1)
element) the generator and signature matrices are of the form

(2) Gozlhoo h01 hoz hOn] 20:[001 0 ]

goo 9go1 Yoz - YGon 0 o002

The algorithm then proceeds by applying a ¥ —unitary transformation U (UL $4,Uy =
Yo) to G such that

(3) éozUOGOZ[iLOO 7L01 7L0~2 }NLOn] 21:[011 0 ]
0 Jor Go2 -+ Gon |~ 0 oy

In the factorization 7= LDLT, the first row of Gy is the first row of the triangular
factor LT and oy is the first element of D. The generator for the next step of the
algorithm is obtained by shifting the first row of Gy one place to the right :

(4) [0 7L00 iLOI %On—1‘|i[0 th hll hln—l]i[ 0

. N - Gy .
0 go1 Go2 --- Yon 0 gio 911 - Gin—1 0 1]
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Again, a ¥ — unitary transformation Uy (UlTE-zUl = Y;) is applied to Gy to zero
out the first entry in the second row. The first row of the resulting matrix is the
second row of the upper triangular factor LT and o4, is the second diagonal element
of D. Following this procedure recursively, the factorization is completed. We refer
the reader to [3], [4] for a more detailed description and proof of the algorithm.

It is interesting to note that if k2,001 + g3g002 = 0 then the algorithm cannot
proceed. This situation arises when the (1, 1) element of the Toeplitz or quasi-Toeplitz
matrix T' is zero. More generally, it could be that the first £ — 1 leading principal
minors of T' are exactly singular but the k%" leading principal minor not. In such cases
the algorithm in [5] and [9] with a look-ahead step of k can be used. A weakness
of this approach is that the algorithms in [5] and [9] cannot be used when the first
k — 1 leading principal minors of T" are ill-conditioned rather than exactly singular.
We propose here an alternate method to do a look-ahead step of size k& when the
minors are ill-conditioned. This look-ahead step groups the first £ rows of 7" and the
corresponding k x k diagonal block, and proceeds with one block elimination step.

The algorithm relies on an important property of Toeplitz and quasi-Toeplitz
matrices. For such matrices, the displacement rank of the Schur complement of
a nonsingular leading principal minor is also 2, i.e. the Schur complement is
quasi-Toeplitz. This indicates that if we compute the Schur complement of the
nonsingular leading principal minor, then two steps of the Bunch-Kaufman algorithm
on the displacement of the Schur complement gives us the generators for the Schur
complement. The Schur algorithm can then proceed as normal till another look-
ahead step needs to be done. If we choose to use the immediate update form of the
Bunch-Kaufman algorithm we would have to compute the entire Schur complement
of the k x k leading principal minor. This would require O((n — k)?) storage and
an approximately equal amount of computation. On the other hand, if we use the
delayed update version of the Bunch-Kaufman algorithm we would be computing the
rows of the displacement of the Schur complement as we need them. This requires
only O(n — k) storage and an approximately equal amount of computation.

Let us assume that the first (k—1) leading principal minors of T" are ill-conditioned
and the k' leading principal minor is well conditioned. If we were to use a look-
ahead algorithm, we would have to compute the corresponding & rows of the upper
triangular factor LT and the k x k diagonal block of the diagonal matrix D. By
construction it can be seen that the first k£ rows of T' can be obtained as follows. Let

(5) h = hOO h01 PR hOn i| and g ) [ 900 g01 PR QOn
then using the colon notation of MATLAB we have

(001 hoo) h + (002 goo) g
(001 ho1) b+ (002 go1) g+ T'(1,:) * ZT
(6) T :k,:) = (001 hoz) b+ (002 go2) g + T(2,:)  ZT

| (001 hok—1) h + (002 gor—1) g + T'(k —1,:) zZt |

where 7 is the lower shift matrix. It can be seen from the above equation that
we require approximately 3kn operations to compute the first k& rows of T. We use
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this to obtain the first & rows of the upper triangular factor, denoted as LT, and
the corresponding diagonal block, denoted as Dj. This computation requires k*n
operations. If & is small, then this computation has O(n) complexity.

The next step in the look-ahead method involves obtaining the factorization of the
displacement of the Schur complement of 7' with respect to its k%" leading principal
minor Dj. As discussed earlier, the preferred method is the delayed update version of
the Bunch-Kaufman algorithm. Since the displacement rank of the Schur complement
is 2, we would need either one or two steps of the Bunch-Kaufman algorithm to obtain
its generators. This requires the computation of only a few rows of the displacement
of the Schur complement. The Schur complement T'*) of the k' leading principal
minor is given as

(7) TW =T — L,.D,LT.

Its displacement can be rewritten using (1) as :

TW — 721" 7T = T — 27727 — LDy LT + 2L, Dy LT 27
(8) = GIN0Go— LipDyLi + Z LDy LE 77T,

From (8) we now construct the p* row of the displacement of the Schur complement.
For notational simplicity, we omit the subscript “0” corresponding to the first step
of the Schur algorithm.

th
p TOW = (01 hp—l—k—l) hk—l—l:n—l—l + (02 gp-l—k—l) Gk+1:n41
- Lp—l—k,l:k * Tl:k,k—l—l:n—l—l
(9) + | Tepprors Dikprkt * Trkpsrn |

The first two terms in (9) correspond to the first term in (8). The third and fourth
term in (9) correspond to the second and third term in (8).

From (9) it can be seen that this computation requires (n — k) +2(n—k)+2k(n —
k)4 2k(n — k) = (4k + 3)(n — k) operations. If £k is small then the complexity again
is O(n). This indicates that producing one row of the displacement of the Schur
complement of the k' leading principal minor requires O(n) computation. Fach
step of the Bunch-Kaufman algorithm produces one or two rows of the factorization.
Since the rank of the matrix is two, we would need either one or two steps. This
computation would require a maximum of 4 rows of the displacement of the Schur
complement to be generated. Hence, the total number of operations required to
obtain the generators of the Schur complement via the Bunch-Kaufman algorithm is
4(4k +3)(n — k) + 4(n — k). The second term in this expression is the work done in
the Bunch-Kaufman algorithm to produce the generators. The total work required
to do one look-ahead step of k£ on a generator of length n using the method described
above is approximately O(k*n).

This gives us the generator (G}, and the signature matrix ¥z, and allows us to carry
on with the Schur algorithm if the first column of (&, does not have a very small ¥
norm. If it does, then we have to do another look-ahead step with a well-conditioned
diagonal block. In our method, the decision to do a look-ahead step rather than the
regular Schur algorithm step is based on the condition number of the diagonal block
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Dy. Tf the condition number is larger than a predetermined threshold, we choose to
go to a larger look-ahead step.

The above discussion indicates that the Bunch-Kaufman algorithm can be used
to obtain the generator of the Schur complement following a look-ahead step. We
present an alternate organization of the computation. We can rewrite (8) as :

S 00 Glo
T 7210 7T = [GF Ly ZL || 0 —Dp 0 I8
0 0 D) If7T

(10) = G"WGE

This indicates that we can readily obtain a generator for the Schur complement. The
problem we face is that the generator shown above has a rank of at most 2k + 2.
We know that the minimal generator of the Schur complement of a Toeplitz matrix
has rank at most 2. We, therefore, have to reduce the generator shown above so
that a minimal generator of lowest rank is obtained. This is done using hyperbolic
Householder matrices U satisfying the property

UTWu =w

such that the generator G is reduced to an upper triangular matrix. This scheme is
very similar to a rank revealing Q) R factorization. The difference being that the norm
used here is the hyperbolic norm. If we use column permutations to bring the column
with the highest hyperbolic norm to the pivot column, we would essentially be doing
an LDLT factorization with symmetric pivoting. We know that such a scheme may
not always exist. Alternately, we could use the Bunch-Kaufman algorithm and select
either one pivot column or “two” pivot columns to carry out the skew eliminations.
This would provide us with a rank revealing factorization of the displacement of the
Schur complement.

3 Numerical Experiments

Consider the symmetric Toeplitz matrix whose first row is given by,

(11) T=11.0 0999 0.8 09 098 1.165 0.5 0.6 0.1 —0.1

The leading principal minors of size 2 and 6 have condition numbers 1.9990 * 10° and
1.4415 % 10* respectively. The matrix T itself has a condition number of 1.4472 % 10°.
All the other minors are relatively well-conditioned. This indicates that a look-ahead
step would have to be done at step 2 and 6. The step size was 2 in both cases since
the next leading principal minors were well-conditioned. We compare this look-ahead
factorization with the regular Schur algorithm by comparing the relative error

| ‘ Leomputed — Lexact | ‘

(12) relative error =
erl’actl‘

For the look-ahead algorithm, the relative error was 2.2566 * 10™'* whereas for the
regular Schur algorithm, the error was 3.4322 % 107%. Since the condition number of
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the Toeplitz matrix was 1.4472 % 10°, we have obtained the best relative error one
would expect in the look-ahead case. The regular Schur algorithm would require
iterative refinement to obtain such a small relative error.

4 Concluding remarks

The development of the look-ahead scheme above only considered Toeplitz matrices
with scalar entries. For the case of Toeplitz matrices with m x m block entries, all
the above is readily extended. The shift operator 7 is taken to be a block shift and
the displacement rank is then bounded by 2m, resulting in a 2m X n generator &
and a 2m x 2m matrix ¥. The displacement of the Schur complement (8) will also
have rank at most 2m, which then becomes the maximum number of Bunch-Kaufman
steps to be performed.

The main advantage of the Schur approach over the Levinson approach is its
simplicity, which is inherited from its interpretation in terms of simple matrix
operations, rather than polynomial operations for the Levinson approach. The Schur
approach has also the important property of computing directly LDLT rather than
the matrices L™! and D as in the Levinson approach. This has the following two
consequences :

(i) for banded matrices (say with bandwidth r << n) the factor L will also have the
same bandwidth, resulting in a O(nr) rather than O(n?) Schur algorithm.

(ii) for semi-definite Toeplitz matrices of low rank (say with rank r << n), the Schur
algorithm terminates after r steps, resulting again in a O(nr) Schur algorithm, rather
than O(n?). The obtained decomposition 7' = L, D, LT then provides the range space
of T, which proves useful when solving, for example, least squares problems.
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