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PARALLEL ALGORITHMS FOR DENSE LINEAR ALGEBRA
COMPUTATIONS*

K. A. GALLIVANt, R. J. PLEMMONS?!, AND A. H. SAMEH!

Abstract. Scientific and engineering research is becoming increasingly dependent upon the
development and implementation of efficient parallel algorithms on modern high-performance com-
puters. Numerical linear algebra is an indispensable tool in such research and this paper attempts
to collect and describe a selection of some of its more important parallel algorithms. The purpose is
to review the current status and to provide an overall perspective of parallel algorithms for solving
dense, banded, or block-structured problems arising in the major areas of direct solution of linear
systems, least squares computations, eigenvalue and singular value computations, and rapid elliptic
solvers. A major emphasis is given here to certain computational primitives whose efficient execution
on parallel and vector computers is essential in order to obtain high performance algorithms.

Key words. numerical linear algebra, parallel computation

AMS(MOS) subject classifications. 65-02, 65F05, 65F15, 65F20, 65N20

1. Introduction. Numerical linear algebra algorithms form the most widely-
used computational tools in science and engineering. Matrix computations, including
the solution of systems of linear equations, least squares problems, and algebraic
eigenvalue problems, govern the performance of many applications on vector and
parallel computers. With this in mind we have attempted in this paper to collect and
describe a selection of what we consider to be some of the more important parallel
algorithms in dense matrix computations.

Since the early surveys on parallel numerical algorithms by Miranker [133], Sameh
[153], and Heller [91] there has been an explosion of research activities on this topic.
Some of this work was surveyed in the 1985 article by Ortega and Voigt [138]. Their
main emphasis, however, was on the solution of partial differential equations on vector
and parallel computers. We also point to the textbook by Hockney and Jesshope [100)
which includes some material on programming linear algebra algorithms on parallel
machines. More recently, Ortega, Voigt, and Romine produced an extensive bibliog-
raphy of parallel and vector numerical algorithms [139]; and Ortega [137] published
a textbook containing a discussion of direct and iterative methods for solving linear
systems on vector and parallel computers.

Our purpose in the present paper is to provide an overall perspective of parallel
algorithms for dense matrix computations in linear system solvers, least squares prob-
lems, eigenvalue and singular-value problems, as well as rapid elliptic solvers. In this
paper, dense problems are taken to include block tridiagonal matrices in which each
block is dense, as well as algorithms for banded matrices which are dense within the
band. In particular, we concentrate on approaches to these problems that have been
used on available, research and commercial, shared memory multivector architectures
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with a modest number of processors and distributed memory architectures such as
the hypercube.

Since the amount of literature in these areas is very large we have attempted to
select representative work in each. As a result, the topics and the level of detail at
which each is treated can not help but be biased by the authors’ interest. For exam-
ple, considerable attention is given here to the discussion and performance analysis
of certain computational primitives and algorithms for high performance machines
with hierarchical memory systems. Given recent developments in numerical software
technology, we believe this is appropriate and timely.

Many important topics relevant to parallel algorithms in numerical linear algebra
are not discussed in this survey. Iterative methods for linear systems are not men-
tioned since the recent text by Ortega [137] contains a fairly comprehensive review of
that topic, especially as it relates to the numerical solution of partial differential equa-
tions. Parallel algorithms using special techniques for solving generally sparse prob-
lems in linear algebra will also not be considered in this particular survey. Although
significant results have recently been obtained, the topic is of sufficient complexity
and importance to require a separate survey for adequate treatment.

The organization of the rest of this paper is as follows. Section 2 briefly discusses
some of the important aspects of the architecture and the way in which they influence
algorithm design. Section 3 contains a discussion of the decomposition of algorithms
into computational primitives of varying degrees of complexity. Matrix multiplica-
tion, blocksize analysis, and triangular system solvers are emphasized. Algorithms
for LU and LU-like factorizations on both shared and distributed memory systems
are considered in §4. Parallel factorization schemes for block-tridiagonal systems,
which arise in numerous application areas, are discussed in detail. Section 5 concerns
parallel orthogonal factorization methods on shared and distributed memory systems
for solving least squares problems. Recursive least squares computations, on local
memory hypercube architectures, are also discussed in terms of applications to com-
putations in control and signal processing. Eigenvalue and singular value problems
are considered in §6. Finally, §7 contains a review of parallel techniques for rapid
elliptic solvers of importance in the solution of separable elliptic partial differential
equations. In particular, recent domain decomposition, block cyclic reduction, and
boundary integral domain decomposition schemes are examined.

2. Architectures of interest. To satisfy the steadily increasing demand for
computational power by users in science and engineering, supercomputer architects
have responded with systems that achieve the required level of performance via pro-
gressively complex synergistic effects of the interaction of hardware, system software
(e.g., restructuring compilers and operating systems), and system architecture (e.g.,
multivector processors and multilevel hierarchical memories). Algorithm designers
are faced with a large variety of system configurations even within a fairly generic
architectural class such as shared memory multivector processors. Furthermore, for
any particular system in the architectural class, a CRAY-2 or Cedar [117], the algo-
rithm designer encounters a complex relationship between performance, architectural
parameters (cache size, number of processors), and algorithmic parameters (method
used, blocksizes). As a result, codes for scientific computing such as numerical linear
algebra take the form of a parameterized family of algorithms that can respond to
changes within a particular architecture, e.g., changing the size of cluster or global
memory on Cedar, or when moving from one member of an architectural family to
another, e.g., Cedar to CRAY-2. The latter adaptation may, of course, involve chang-
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ing the method used completely, say from Gaussian elimination with partial pivoting
to a decomposition based on pairwise pivoting.

There are several consequences of such a situation. First, algorithm designers
must be sensitive to architecture/algorithm mapping issues and any discussion of
parallel numerical algorithms is incomplete if these issues are not addressed. Second,
one of the main thrusts of parallel computing research must be to change the situa-
tion. That is, if scientific computing is to reap the full benefits of parallel processing,
cooperative research involving expertise in the areas of parallel software development
(debugging, restructuring compilers, etc.), numerical algorithms, and parallel architec-
tures is required to develop parallel languages and programming environments along
with parallel computer systems that mitigate this architectural sensitivity. Such co-
operative work is underway at several institutions.

The architecture that first caused a widespread and substantial algorithm redesign
activity in numerical computing is the vector processor. Such processors exploit the
concept of pipelining computations. This technique decomposes operations of inter-
est, e.g., floating point multiplication, into multiple stages and implements a pipelined
functional unit that allows multiple instances of the computation to proceed simulta-
neously — one in each stage of the pipe.! Such parallelism is typically very fine-grain
and requires the identification in algorithms of large amounts of homogeneous work ap-
plied to vector objects. Fortunately, numerical linear algebra is rich in such operations
and the vector processor can be used with reasonable success. From the point of view
of the functional unit, the basic algorithmic parameter that influences performance is
the vector length, i.e., the number of elements on which the basic computation is to
be performed. Architectural parameters that determine the performance for a partic-
ular vector length include cycle time, the number of stages of the pipeline, as well as
any other startup costs involved in preparing the functional unit for performing the
computations. Various models have been proposed in the literature to characterize
the relationship between algorithmic and architectural parameters that determine the
performance of vector processors. Perhaps the best known is that of Hockney and
Jesshope [100].

The Cyber 205 is a memory-to-memory vector processor that has been success-
fully used for scientific computation. On every cycle of a vector operation multiple
operands are read from memory, each of the functional unit stages operate on a set
of vector elements that are moving through the pipe, and an element of the result of
the operation is written to memory. Obviously, the influence of the functional unit on
algorithmic parameter choices is not the only consideration required. Heavy demands
are placed on the memory system in that it must process two reads and a write (along
with any other control I/0) in a single cycle. Typically, such demands are met by
using a highly interleaved or parallel memory system with M > 1 memory modules
whose aggregate bandwidth matches or exceeds that demanded by the pipeline. Ele-
ments of vectors are then assigned across the memory modules in a simple interleaved
form, e.g., v(i) is in module ¢ mod M, or using more complex skewing schemes [193].
As a result, the reference pattern to the memory modules generated by accessing
elements of a vector is crucial in determining the rate at which the memory system
can supply data to the processor. The algorithmic parameter that encapsulates this
information is the stride of vector access. For example, accessing the column of an
array stored in column-major order results in a stride of 1 while accessing a row of

! The details of the architectural tradeoffs involved in a vector processor are somewhat surprisingly
subtle and complex. For an excellent discussion of some of them see [174].
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the same array requires a stride of lda where Ilda is the leading dimension of the array
data object.

Not all vector processors are implemented with the three computational memory
ports (2 reads/1 write) required by a memory-to-memory processor. The CRAY-
1, one CPU of a CRAY-2 and one computational element of an Alliant FX/8 are
examples of register-based vector processors that have a single port to memory and,
to compensate for the loss in data transfer bandwidth, provide a set of vector registers
internal to the processor to store operands and results.? Each of the registers can hold
a vector of sufficient length to effectively use the pipelined functional units available.
The major consequence of this, considered in detail below, is that such processors
require careful management of data transfer between memory and register in order to
achieve reasonable performance. In particular, care must be taken to reuse a register
operand several times before reloading the register or to accumulate as many partial
results of successive computations in the same register before storing the values to
memory, i.e., reducing the number of loads and stores, respectively.

Some register-based vector processors also use two other techniques to improve
performance. The first is the use of parallelism across functional units and ports.
Multiple instructions that have no internal resource conflict, e.g., adding two vector
registers with the result placed in a third and loading of a fourth register from memory,
are executed simultaneously, making as much use of the available resources as possible.
This influences kernel design in that careful ordering of assembler level instructions
can improve the exploitation of the processor.

The second technique is essentially functional unit parallelism with certain re-
source dependences managed by the hardware at runtime. The technique is called
chaining and it allows the result of one operation to be routed into another operation
as an operand while both operations are active. For example, on a machine without
chaining, loading a vector from memory into a register and adding it to another reg-
ister would require two distinct nonoverlapped vector operations and therefore two
startup periods, etc. Chaining allows the elements of the vector loaded into the first
register to be made available, after a small amount of time, for use by the adder before
the load is completed. Essentially, it appears as if the vector addition was taking one
of its operands directly from memory. For processors that handle chaining of instruc-
tions automatically at runtime, careful consideration of the order of instructions used
in implementing an algorithm or kernel is required. Some other vector processors,
however, make the chaining of functional units and the memory port an explicit part
of the vector instruction set. For example, the Alliant FX/8 allows one argument of a
vector instruction to be given as an address in memory, thereby chaining the memory
port and the appropriate functional units. The best example of this is the workhorse
of its instruction set, the triad, which computes v; «— vy + az, where v; and v, are
vector registers, « is a scalar, and z is a vector in memory. This instruction explicitly
chains the floating point multiplier and adder and the memory port. Such instruction
constructs greatly simplify the exploitation of the chaining capabilities of a vector
processor at the cost of the loss of a certain amount of flexibility.

While vector processors have been used and can deliver substantial performance
for many computations, the quest for even more speed led to the availability and
continuing development of MIMD multiprocessors and multivector processors. The
processors on such machines are capable of executing arbitrary code segments in

2 Some register-based vector processors also have multiple ports to memory in an attempt to have
the best of both worlds, e.g., one CPU of a CRAY X-MP.
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parallel and therefore subsume, assuming appropriate overhead levels, the fine-grain
parallelism of vector processors. Shared memory architectures have the generic struc-
ture shown in Fig. 1(a). They are characterized by the fact that the interconnection
network links all of the processors to all of the memory modules, i.e., a user-controlled
processor can access any element of memory without the aid of another user-controlled
processor. There is no concept of a direct connection between a processor and some
subset of the remaining processors, i.e., a connection that does not involve the shared
memory modules. Of course, in practice, few shared memory machines strictly adhere
to this simple characterization. Many have a small amount of local memory associated
with, and only accessible by, each processor. The aggregate size of these local memo-
ries is usually relatively insignificant compared to the large shared memory available.
As local memory sizes increase, the architecture moves toward the distributed end
of the architectural spectrum. Not surprisingly, the ability of the network/memory
system to supply data to the multiple processors at a sufficient rate is one of the key
components of performance of shared memory architectures. As a result, the orga-
nization and proper exploitation of this system must be carefully considered when
designing high-performance algorithms.

M1 ® oo Mk

t ©
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©

cee () D@

(a) shared memory (b) ring connection

/

(c) mesh connection (d) 4-D hypercube

FIG. 1. Some memory/processor topologies.

The generic organization in Fig. 1 shows a highly interleaved or parallel mem-
ory system connected to the processors. This connection can take on several forms.
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For a small number of processors and memory modules, p, a high-performance bus
or crossbar switch can provide complete connectivity and reasonable performance.
Unfortunately, such networks quickly become too costly as p increases. For larger
systems, it is necessary to build scalable networks out of several smaller completely
connected switches such as (s x s)-crossbars. The Q-network of Lawrie [119] can
connect p = s* processors and memory modules with k network stages. Each stage
comprises s*~1 (s x s)-crossbars, for a total of O(plog, p) switches. As with vector
processors, data skewing schemes and access stride manipulation are important in
balancing the memory bandwidth achieved with the aggregate computational rate of
the processors. Ideally, the two should balance perfectly; in practice, keeping the two
within a small multiple is achievable for numerical linear algebra computations via the
skewing and stride manipulations or with the introduction of local memory (discussed
below). As p increases, however, the latency for each memory access grows as O(k).
Fortunately, the addition of architectural features such as data prefetch mechanisms
and local memory can provide some mitigation of this problem.

As mentioned above, one of the ways in which the performance of a large shared
memory system can be improved is the introduction of local memories or caches with
each processor. The idea is similar to the use of registers within vector processors
in that data can be kept for reuse in small fast memory private to each processor.
If sufficient data locality® is present in the computations the processor can proceed
at a rate consistent with the data transfer bandwidth of the cache rather than the
lower effective bandwidth of the large shared memory due to latency and conflicts.
One difference between local memories/caches and vector registers, however, is that
registers have a prescribed shape and must be used, for the most part, in vector
operations; they must contain and be operated on as a vector v € R™ where m is
the vector length. On the other hand, local memory or caches can contain, up to a
point, arbitrary data objects with no constraint on type or use. These differences can
strongly affect the way that these architectural features influence algorithm parameter
choices.

Another feature which can significantly influence the performance of an algo-
rithm on a shared memory machine is the architectural support for synchronization
of processors. These mechanisms are required for the assignment of parallel work
to a processor and enforcing data dependences to ensure correct operation once the
assignment is made. The support found on the various multiprocessors varies consid-
erably. Some provide special purpose hardware for controlling small grain tasks on a
moderate number of processors and simple TEST-AND-SET? synchronization in mem-
ory, e.g., the Alliant FX/8. Others provide more complex synchronization processors
at the memory module or network level with capabilities such as FETCH-AND-OP or
the Zhu-Yew primitives used on Cedar [196]. Finally, there are some which are ori-
ented toward large-grain task parallelism which rely more on system-software-based
synchronization mechanisms with relatively large cost to coordinate multiple tasks
within a user’s job, often at the same time with the tasks of other users.

The discussion above clearly shows that the optimization of algorithms for shared
memory multivector architectures involve the consideration of the tradeoffs concern-

3 A computation is said to have high data locality if the ratio of the data elements to the number
of operations is small.

4 The TEST-AND-SET operation allows for the indivisible action of accessing a memory location,
testing its value, and setting the location if the test succeeds. It can be used as the basic building
block of most synchronization primitives.
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ing the influence of architectural features, such as parallelism, load balancing, vector
computation, synchronization and parallel or hierarchical memory systems, on the
choice of algorithm or kernel organization. Many of these are potentially contradic-
tory. For example, increasing data locality by reorganizing the order of computations
can directly conflict with the attempt to increase the vector length of other computa-
tions. The modeling and tradeoff analysis of these features will be discussed in detail
below for selected topics.

Many shared memory parallel and multivector processors are commercially avail-
able over a wide range of price and performance. These include the Encore, Sequent,
Alliant FX series, and supercomputers such as the CRAY X-MP and Y-MP, CRAY-2,
and NEC. The Alliant FX/8 possesses most of the interesting architectural features
that have influenced linear algebra algorithm design on shared memory processors re-
cently; see the cluster blowup in Fig. 2. It consists of up to eight register-based vector
processors or computational elements (CE’s), each capable of delivering a peak rate
of 11.75 Mflops for calculations using 64-bit data (two operations per cycle) implying
a total peak rate of approximately 94 Mflops. The startup times for the vector in-
structions can reduce this rate significantly. For example, the vector triad instruction
v « v + az (the preferred instruction for achieving high performance in many codes)
has a maximum performance of 68 Mflops. Each CE has eight 32-element vector reg-
isters and eight floating point scalar registers as well as other integer registers. The
CE’s are connected by a concurrency control bus (used as a synchronization facility).
This mechanism allows an iteration of a parallel loop to be assigned to a processor
within in time equivalent to a few floating point operations and provides synchroniza-
tion support from lower iterations to higher iterations with a cost of a few cycles. As
a result, the CE’s can cooperate efficiently on parallel loops with iterations with a
granularity of a small number of floating point operations.

There is only one memory port on each CE, like the CRAY-1 and a single CPU of
the CRAY-2, therefore management of the vector registers is crucial. The CE’s share
the physical memory as well as a write-back cache that allows up to eight simultaneous
accesses per cycle. The size of the cache can be configured from 64KB up to 512KB.
The cache and the four-way interleaved main memory are connected through the
main memory bus. Most of the detailed performance information for shared memory
machines given below was obtained on this machine.

Distributed memory architectures can be roughly characterized in a fashion sim-
ilar to that used above for shared memory. In particular, there are two major factors
that distinguish them from shared memory architectures. These are the mode of
memory access and the mode of synchronization.

On p-processor distributed memory machines with an aggregate memory size M
each user-controlled processor has direct access to its local memory only, typically of
size M/p. Accessing any other memory location requires the active participation of
another user-controlled processor. As a result of this idea of direct interaction between
processors to exchange data, distributed memory architectures are often identified by
the topology of the connections between processors. Figure 1 illustrates three popular
connection schemes. The ring topology (b) uses a linear nearest—neighbor bidirectional
connection, essentially a linear array with a wrap-around connection between the first
and last processor, while the mesh connection (c) provides two-dimensional nearest
neighbor connections (wrap-around meshes are also used extensively). Both of these
simple topologies work quite well for many numerical linear algebra algorithms. In
particular, several algorithms are presented below for ring architectures. The hyper-
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cube connection is perhaps the most discussed distributed memory topology recently.
A four-dimensional cube is illustrated in (d). The connection patterns are, as the
name implies, local connections in an arbitrarily dimensioned space. In general, a
k-dimensional cube has 2% processors (vertices) each of which is connected to k other
processors. It can be constructed from two (k — 1)-dimensional cubes by simply con-
necting corresponding vertices. As a result of this construction, the nodes have a
very natural binary numbering scheme based on a Gray code. This construction also
demonstrates one of the basic scalability problems of the hypercube in that the num-
ber of connections for a particular processor grows as the size of the cube increases
as opposed to the constant local connection complexity of the simpler mesh and ring
topologies. Many of the more common topologies, such as rings and meshes, can be
embedded into a hypercube of appropriate dimension. In fact, many of the hyper-
cube algorithms published use the cube as if it were one of the simpler topologies.
Commercially available hypercubes include those by Ametek, Intel, and NCUBE.

Cluster Cluster e o o Cluster Cluster

Cluster Memory
Memory Bus ]
IP Cache CE Cache TR
' ' L [ 1 |
Interactive Interactive .
Processor Processor [ Cluster Switch ]
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Fi1G. 2. The Cedar multiprocessor.

Synchronization on a distributed memory architecture, due to the memory access-
ing paradigm, is accomplished via a data flow mechanism rather than the indivisible
update used in a large shared memory system. Computations can proceed on a pro-
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cessor when due to its position in its local code the processor decides a computation
is to be performed and all of the memory transactions involving operands for the
computation in remote memory modules are complete. (These transactions are the
interaction between the processors associated with the local memory and the remote
memory modules mentioned above.) Clearly, since the synchronization is so enmeshed
in the control and execution of interprocessor communication, the major algorithmic
reorganization that can alter the efficiency of the synchronization on distributed mem-
ory machines is the partitioning of the computations (or similarly the data) so as to
reduce the synchronization overhead required.

As we would expect, the algorithm/architecture mapping questions for a dis-
tributed memory machine change appreciably from those of shared memory. Since
the machines tend to have more, but less powerful, processors, a key aspect of al-
gorithm organization is the exposure of large amounts of parallelism. Once this is
accomplished the major task is the partitioning of the data and the computations
onto the processors. This partitioning must address several tradeoffs.

To reduce total execution time, a suitable balance must be achieved between the
amount of communication required and efficient spreading of the parallel computa-
tions across the machine. One indicator of the efficient partitioning of the computa-
tions and data is the relationship between the load balance across processors and the
amount of communication between processors. Typically, although not necessarily, a
more balanced load produces a more parallel execution of the computations, ignoring
for a moment delays due to communication. On the other hand, dispersing the com-
putations over many processors may increase the amount of communication required
and thereby negate the benefit of parallelism.

The property of data locality, which was very significant for shared memory ma-
chines in the management of registers and hierarchical memory systems, is also very
important for some distributed memory machines in achieving the desired balance.
Ideally, we would like to partition the data and computations across the processors
and memory modules in such a way that a small amount of data is exchanged be-
tween processors at each stage of an algorithm, followed by the use of the received
data in operations on many local data. As a result the cost of communication is com-
pletely amortized over the subsequent computations that make use of the data. If the
partitioning of the computations and data also results in a balanced computational
load the algorithm proceeds near the aggregate computational rate of the machine.
This is, of course, identical to the hierarchical memory problem of amortizing a fetch
of a data operand from the farthest level of memory by combining it with several
operands in the nearest. Therefore many of the discussions to follow concerning the
data-transfer-to-operations ratios that are motivated by shared hierarchical memory
considerations are often directly applicable to the distributed memory case, although,
as is shown below, there is often a tradeoff between data locality and the amount of
exploitable parallelism.

Of course, there is a spectrum of architectures and a particular machine tends to
have characteristics of both shared and distributed memory architectures. For these
hybrid architectures efficient algorithms often involve a combination of techniques used
to achieve high performance on the two extremes. An example of such an architecture
that is used in this paper to facilitate the discussion of these algorithms is the Cedar
system being built at the University of Illinois Center for Supercomputing Research
and Development (see Fig. 2). It consists of clusters of vector processors connected
to a large interleaved shared global memory — access to which can be accelerated
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by data prefetching hardware. At this level it looks much like a conventional shared
memory processor. However, each cluster is, in turn, a shared memory multivector
processor, a slightly modified Alliant FX/8, whose cluster memory is accessible only
by its CE’s. The size of the cluster memory is fairly large and therefore the aggregate
makes up a considerable distributed memory system. Consequently, the Cedar ma-
chine is characterized by its hierarchical organization in both memory and processing
capabilities. The memory hierarchy consists of: vector registers private to each vector
processor; cache and cluster memory shared by the processors within a cluster; and
global memory shared by all processors in the system. Three levels of parallelism are
also available: vectorization at the individual processor level, concurrency within each
cluster, and global concurrency across clusters. Control and synchronization mecha-
nisms between clusters are supported at two levels of granularity. The larger consists
of large-grain tasks and multitasking synchronization primitives such as event waiting
and posting similar to CRAY large-grain primitives. These primitives are relatively
high cost in that they affect the state of the task from the point of view of the op-
erating system, e.g., a task waiting for a task-level event is marked as blocked from
execution and removed from the pool of tasks considered by the operating system
when allocating computational resources. The second and lower-cost control mech-
anism is the SDOALL loop (for spread DOALL) which provides a self-scheduling loop
structure whose iterations are grabbed and executed at the cluster level by helper
tasks created at the initiation of the user’s main task. Each iteration can then use the
smaller grain parallelism and vectorization available within the cluster upon which it
is executing. The medium grain SDOALL loop is ideal for moderately tight intercluster
communication such as that required at the highest level of control in multicluster
primitives with BLLAS-like functionality that can be used in iterations such as the
hybrid factorization routir » presented in §4. Hardware support for synchronization
between clusters on a much tighter level than the task events is supplied by synchro-
nization processors, one per global memory module, which implements the Zhu-Yew
synchronization primitives [196].

3. Computational primitives.

3.1. Motivation. The development of high-performance codes for a range of
architectures is greatly simplified if the algorithms under consideration can be de-
composed into computational primitives of varying degrees of complexity. As new
architectures emerge, primitives with the appropriate functionality which exploit the
novel architectural features are chosen and used to develop new forms of the algo-
rithms. Over the years, such a strategy has been applied successfully to the develop-
ment of dense linear algebra codes. These algorithms can be expressed in terms of
computational primitives ranging from operations on matrix elements to those involv-
ing submatrices. As the pursuit of high performance has increased the complexity of
computer architectures, the need to exploit this richness of decomposition has been
reflected in the evolution of the Basic Linear Algebra Subroutines (BLAS).

The investigation of dense matrix algorithms in terms of decomposition into lower-
level primitives such as the three levels of the BLAS has several advantages. First,
for many presently available machines the computational granularity represented by
single instances of the BLAS primitives from one of the levels or multiple instances
executing simultaneously is sufficient for investigating the relative strengths and weak-
nesses of the architecture with respect to dense matrix computations. Consequently,
since the primitive’s computational complexity is manageable, it is possible to probe
at an architecture/software level which is free of spurious software considerations
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such as ways of tricking a restructuring compiler/code generator combination into
producing the code we want. Thus, allowing meaningful conclusions to be reached
about the most effective way to use a new machine.® Second, it aids in the identi-
fication of directions in language and restructuring technologies that would help in
the implementation of high-performance scientific computing software. For example,
matrix-manipulation constructs are already included in many proprietary extensions
to Fortran due to the need for higher-level constructs to achieve high performance on
some machines. Third, detailed knowledge of the efficient mapping of primitives to
different architectures provides a way of thinking about algorithm design that facili-
tates the rapid generation of new versions of an algorithm by the direct manipulation
of its algebraic formulation. (See the discussion of triangular system solvers below for
a simple example.) Fourth, exposing the weaknesses of an architecture for the execu-
tion of basic primitives provides direction for architectural development. Finally, it
simplifies the design of numerical software for nonexpert users. This typically occurs
through the use of total primitives, i.e., primitives which hide all of the architectural
details crucial to performance from the user. Code is designed in terms of a sequential
series of calls to primitives which use all of the resources of the machine in the best
way to achieve high performance. When such a strategy is possible a certain amount
of performance portability is achieved as well. Unfortunately, many important archi-
tectures do not lend themselves to total primitives. Even in this case, however, the
hiding of parts of the architecture via partial primitives is similarly beneficial. A user
need only deal with managing the interaction of the partial primitives which may or
may not execute simultaneously.

In this section, computational primitives from each level of the BLAS hierarchy are
discussed and analyses of their efficiency on the architectures of interest in this paper
are presented in various degrees of detail. Based on the discussion in §2 which indicates
that the investigation of data locality is of great importance for both shared and
distributed memory machines, special attention is given to identifying the strengths
and weaknesses of each primitive in this regard and its relationship to the amount of
exploitable parallelism.

3.2. Architecture/algorithm analysis methodology. The design of efficient
computational primitives and algorithms that exploit them requires an understanding
of the behavior of the algorithm/primitive performance as a function of certain system
parameters (cache size, number of processors, etc.). It is particularly crucial that
the analysis of this behavior identifies any contradictory trends that require tradeoff
consideration, and the limits of performance improvement possible via a particular
technique such as blocking. Additionally, preferences within a set of primitives can be
identified by such an analysis, e.g., on certain architectures a rank-1 BLAS2 primitive
does not perform as well as a matrix-vector multiplication. Ideally, the analysis should
also yield insight into techniques a compiler could use to automatically restructure
code to improve performance, e.g., on hierarchical memory systems [63], [75]. In this
paper we are mostly concerned with analyses that concern the effects of hierarchical
(registers, cache or local memory, global memory) or distributed memory systems.

As indicated earlier, the consideration of data locality and its relationship to
the exploitable parallelism in an algorithm is a key activity in developing high-
performance algorithms for both hierarchical shared memory and distributed memory

5 Very loosely speaking this is usually the assembler level, i.e., the level at which the user has
direct control over performance-critical algorithm/architecture tradeoffs.
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architectures. In this section, we point out some performance modeling efforts con-
cerning these tradeoffs that have appeared in the literature and present a summary
of the techniques used on hierarchical shared memory architectures to produce some
of the results discussed in later sections.

Several papers have appeared recently which discuss modeling the influence of a
hierarchical memory on numerical algorithms, e.g., [3], [76], [99], [101]. Earlier work
on virtual memory systems also discusses similar issues, e.g., the work of McKellar and
Coffman [131], and Trivedi [185], [186]. In fact, the work of Trivedi performs many
of the analyses for virtual memory systems that were later needed for both BLAS2
and BLAS3 such as the effect of blocking, loop orderings in the LU factorization, and
prefetching. The details and assumptions for the hierarchical memory case, however,
differ enough to require the further investigation that has taken place. Of particular
interest here are studies by the groups at the University of Illinois on shared memory
multivector processors (the Cedar Project) [9], [66], [67], [L05] and at the California
Institute of Technology on hypercubes (the Caltech Concurrent Computation Pro-
gram) [59]-(61]. In these studies performance analyses were developed to express the
influence of the blocksizes, used in both the matrix multiplication primitives and the
block algorithms built from them, on performance in terms of architectural parame-
ters.

Gallivan, Jalby, Meier, and Sameh [67], [105] proposed the use of a decoupling
methodology to analyze in terms of certain architectural parameters the trends in
the relationship between the performance and the blocksizes used when implementing
BLAS3 primitives and block algorithms on a shared memory multivector processor.
In particular, they considered an architecture comprising a moderate number (p) of
vector processors that share a small fast cache or local memory and a larger slower
global memory. (The analysis is easily altered for the private cache or local memory
case.) An example of such an architecture is the Alliant FX/8. In their methodology,
two time components, whose sum is the total time for the algorithm, are analyzed
separately. A region in the parameter space, i.e., the space of possible blocksize
choices, that provides near-optimal behavior is produced for each time component.
The intersection of these two regions yields a set of blocksizes that should give near-
optimal performance for the time function as a whole.

The first component considered is called the arithmetic time and is denoted Tj.
This time represents the raw computational speed of the algorithm and is derived
by ignoring the hierarchical nature of the memory system: it is the time required
by the algorithm given that the cache is infinitely large. The second component of
the time function considered is the degradation of the raw computational speed of
the algorithm due to the use of a cache of size C'S and a slower main memory. This
component is called the data loading overhead and is denoted A;. The components
T, and A, are respectively proportional to the number of arithmetic operations and
data transfers, from memory to cache, required by the algorithm; therefore, the total
time for the algorithm is

(]_) T = Ta + Al = NgTq + M7,

where n, and n; are the number of operations and data transfers, and 7, and 7
are the associated proportionality constants or the “average” times for an operation
and data load. Note that no assumptions have been made concerning the overlap (or
lack thereof) of computation and the loading of data in order to write T as a sum
of these two terms. The effect of such overlapping is seen through a reduction in
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7;. This overlap effect can cause 7; to vary from zero, for machines which have a
perfect prefetch capability from memory to cache, to ¢;, where ¢; is the amount of
time it takes to transfer a single data element, for machines which must fetch data on
demand sequentially from memory to cache.

The analysis of T, considers the performance of the algorithm with respect to
the architectural parameters of the multiple vector processors and the register-cache
hierarchy under the assumption of an infinite cache. For some machines, the register-
cache hierarchy is significant enough to require another application of the decoupling
methodology with the added constraint of the shape of the registers. Typically, how-
ever, the analysis involves questions similar to those discussed concerning the BLAS2
below.

Rather than considering A; directly, the second portion of the analysis attempts
a more modest goal. The data loading overhead can be analyzed so as to produce
a region in the parameter space where the relative cost of the data loading A; /Ty, is
small. This analysis is accomplished by expressing A;/T, in terms of two ratios: a
cache-miss ratio and a cost ratio. Specifically,

AY
(2) T, = Ap

where yu = ny/n, is the cache-miss ratio and A = 7;/7, is the cost ratio. For the
purposes of qualitative analysis, A can be bounded under various assumptions (average
case, worst case, etc.) and trends in the behavior of the primitive or algorithm derived
in terms of architectural parameters via the consideration of the behavior of the cache-
miss ratio p as a function of the algorithm’s blocksizes.

The utility of the results of the decoupling form of analysis depends upon the fact
that the intersection of the near-optimal regions for each term is not empty or at least
that the arithmetic time does not become unacceptably large when using parameter
values in the region where small relative costs for data loading are achieved. For
some algorithms this is not true; reducing the arithmetic time may directly conflict
with reducing the relative cost of data loading. In some cases, a technique known
as multilevel blocking can mitigate these conflicts [67]. In other cases, more machine-
specific tradeoff studies must be performed. These studies typically involve probing
the interaction of data motion to and from the various levels of memory and the
underlying hardware to identify effective tradeoffs [64], [65].

On distributed memory machines, analyses in the spirit of the decoupling method-
ology can be performed. Fox, Otto, and Hey [59], [61] analyzed the efficiency of the
broadcast-multiply-roll matrix multiplication algorithm and other numerical linear al-
gebra algorithms on hypercubes in terms of similar parameters. In particular, they
expressed efficiency in terms of the number of matrix elements per node (blocksize),
the number of processors and a cost ratio tcomm/tfi0p Which gives the relative cost of
communication to computation. Johnsson and Ho [110] presented a detailed analysis
of matrix multiplication on a.hypercube with special attention to the complexity of
the communication primitives required and the associated data partitioning.

3.3. First and second-level BLAS. The first level of the BLAS comprises
vector-vector operations such as dotproducts, a «— zTy, and vector triads (SAXPY),
y «— y + az [121]. This level was used to implement the numerical linear algebra
package LINPACK [38]. These primitives possess a simple one-dimensional parallelism
especially suitable for vector processors with sufficient memory bandwidth to tolerate
the high ratio of memory references to operations; u = % for the triad and ¢ = 1
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for the dotproduct. The superiority of the dotproduct is due to the fact that it is
a reduction operation that writes a scalar result after accumulating it in a register.
The triad, on the other hand, produces a vector result and must therefore write n
elements to memory in addition to reading the 2n elements of the operands. For vector
processors, performance tuning is limited to adjusting the vector length and stride of
access. On multivector processors, both primitives are easily decomposed into several
smaller versions of themselves for parallel execution. For the triad, u = % + £, note
that the fetch of o becomes more significant, and p ~ 1 +% for the dotproduct, where
p is the number of processors. As the number of processors increases to a maximum
of n, the preference for the dotproduct over the triad is reversed. For p = n the triad
requires O(1) time with p = 2 while the dotproduct requires O(logn) with u ~ 2. Such
a reversal often occurs when considering large numbers of processors relative to the
dimension of the primitive. The dependences graph of the reduction operation and its
properties that produced a small 4 for a limited number of processors scale very poorly
as p increases and translate directly into a relative increase in the amount of memory
traffic required on a shared memory architecture and interprocessor communication
on a distributed memory machine. (For a distributed memory machine, whether or
not the reversal of preference occurs can depend strongly on the initial partitioning
of the data.)

The advent of architectures with more than a few processors and high-performance
register-based vector processors with limited processor-memory bandwidth such as the
CRAY-1 exposed the limitations of the first level of the BLAS. New implementations
of dense numerical linear algebra algorithms were developed which paid particular
attention to vector register management and an emphasis on matrix-vector primitives
resulted [24], [56]. This problem was later analyzed in a more systematic way in [42]
and resulted in the definition of the extended BLAS or BLAS2 [40]. Architectures
with a more substantial number of processors were also more efficiently used since
matrix-vector operations consist essentially of multiple BLAS1 primitives that can
be executed in parallel — roughly speaking they possess two-dimensional parallelism.
The second level of the BLAS includes computations involving O(n?) operations such
as a matrix-vector multiplication, y « y + Az, and a rank-1 update, A — A + zy”.
Note that these primitives subsume the triad and dotproduct BLAS1 primitives and
become those primitives in the limit as one of the dimensions of A tends to 1. These
primitives improve data locality in the sense that the number of memory references
per operation can be reduced by accumulating the results of several vector operations
in a vector register before writing to memory as in matrix-vector multiplication or by
keeping in registers operands common to successive vector operations as in a rank-1
update. The two techniques, however, do not result in similar improvements in data
locality. In general, it is preferable to write algorithms for register-based multivector
processors in terms of matrix-vector multiplications rather than rank-1 updates.

To see this, consider first the efficiency of implementing the two BLAS2 primitives
as a set of BLAS1 primitives each of the order of the matrix. (For the rank-1 it is
only possible to use the triad; the matrix-vector multiplication allows a choice of
primitives.) If the matrix dimensions n; and n, are larger than the register size® of
any of the processors there is no possibility of efficient register reuse and the value
of p remains at the disappointing BLAS1 level. For problems where either n; or

6 The term register size does not necessarily mean the vector length of a single vector register.
It can also refer to the aggregate size of all of the vector registers used in a processor in a given
implementation of the primitive.
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ng is smaller than the register size, however, it is possible to reuse the registers
in such a way that both primitives achieve their theoretical minimum values of u;
p =14 1/2ny + 1/2n, for the rank-1 update and g = 1/2 + 1/2ny + 1/n2 for the
matrix-vector product. For the small rank-1, this local optimal is achieved by reading
the small vector into vector register once and reusing it to form a triad with each
row or column of the matrix in turn. As a result, each element of the matrix and the
two vectors are loaded into the processor exactly once and the elements of the matrix
are written exactly once — the optimal data transfer behavior for a rank-1 update.
For the matrix-vector product, the technique depends upon whether n; or ng is the
small dimension. If it is ny then a technique similar to the rank-1 update is used.
The vector z is loaded into a register once. Each row of A is read in turn and used
in an inner product calculation with z in the register, and the result is then added
to the appropriate element of y and written back to memory. Every data element is
read and written the minimum number of times. If the small dimension is n; then a
slightly different technique is used. The result of the operation, y, is accumulated in
a vector register, thereby suppressing the writes back to memory of partial sums.

As long as ny or ny do not get very small, which implies that the primitives are
degenerating into a first level primitive, the values are an improvement compared to
their limiting first level primitives. Of course, the rank-1 update still has a value
of y similar to the dotproduct BLASI primitive, but it has the advantage of more
exploitable parallelism. If these results could be maintained for arbitrary n; and
ng, the superiority of the BLAS2 on register-based multivector processors would be
established.

To show that this is indeed possible, we will exploit the richness of structure
present in linear algebra computations and partition the primitives into smaller ver-
sions of themselves. This is accomplished by partitioning A into k;k; submatrices
A;; € R™>™2 where it is assumed for simplicity that n; = k;m; with k; and m;
integers, and partitioning z and y conformally. The blocksizes which determine the
partitioning are chosen so that the smaller instances of the primitives are locally
optimal with respect to their values of pu.

The rank-1 update is thus reduced to k;k; independent small rank-1 updates.
The resulting global u value for the entire rank-1 update is p = 1+ 1/2m + 1/2ms;.
Now consider its behavior as p, the number of register-based vector processors used,
increases. For small and moderate p, one of the blocksizes, say m;, could be taken
equal to the corresponding dimension of the matrix, n; (the choice of m; or ms simply
depends upon the shape of the matrix and the exact number of processors). It follows
that 4 = 1+ 1/2r 4+ 1/2n, where r is the register length. As p increases further, a
true two-dimensional partitioning must be used. So we set p = k1k2 which balances
the computational load and the amount of data required by each processor. Since the
register size determines the largest vector object we can work with and extra transfers
to and from registers translate directly into additional time, we make m' +m; ' as
small as possible under the constraint that either m; < r or mg < r, depending on the
implementation chosen for the register-based smaller rank-1 update. Consequently,

p=1+

my+m

2n1n2( ! 2)
and the algorithm requires O(m;mg) time. At the limit of available parallelism,
p = ninz and the rank-1 update requires O(1) time with g = 2. This is the same as
the best BLAS1 primitive. This is not surprising since in the limit each processor is
doing essentially the same scalar computation as the BLAS] triad. The only difference



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 69

is that in the BLAS2 case there is much more exploitable parallelism. Note also that
at some point while increasing the number of processors the vector length used by
each processor will fall below the breakeven point for the use of the vector capability
of the processor, and the switch should be made to scalar mode.

A similar decomposition technique can be used for the matrix-vector product
primitive y «— y+ Az. The matrix is partitioned into submatrices 4;; € ™ *™2 and
partitioning x and y conformally. The resulting algorithm is

doi= 1,k1
Yi — Y+ Apzy + -+ A, Th,
end do

All of the basic computations z «— z + A;jz; can proceed in parallel with a fan-in
dependence graph required on the update of the y; if k5 > 1. As before, for a small to
moderate number of processors one of the m; can be set to the register length and the
other to the remaining dimension of A. If ¢ = 1 then no synchronization is required
since k2 = nz and the loop can execute in parallel. The resulting global x is

_1+ 1 + 1
=575 ny’
where r is the vector length. If i = 2
1 1 1
H=s+—+-.

2 277,1 r

In the latter case, k; is equal to 1 and synchronization is required. However, since
the number of processors is assumed small the partial sums from local matrix-vector
products can be accumulated in a vector of length n; private to each processor (not
necessarily a register). After all processors are finished accumulating their partial
sums, a simple fan-in of the results can be done. The time required is O(mimy).
Note that on a moderate number of processors the matrix-vector primitive is twice
as efficient as the rank-1 primitive of the same size. Consequently, when implement-
ing algorithms with BLAS2 primitives on a register-based multivector architecture
with a moderate number of processors, a matrix-vector product-based algorithm will
significantly outperform the same algorithm based on a rank-1 update.

As with the rank-1 update it is possible to derive an estimate of the time and the
value of p for the case where a two-dimensional partitioning is used with p = ki k.
In this case, not only must the transfers be computed for the small matrix-vector
products performed by each of the processors, but also the transfers associated with
the k; independent fan-in trees which sum together the partial sums into the final
values of y; for 1 < i < k;. The time required is O(mimsz) + O(m1 log, k2) with

1 P 1 1
p=-+ I+me | -+ — |-

2 ning 2 n2
As with all of the other primitives, when p is as large as possible, in this case p = nins,
the value of 41 increases to approximately 2. Due to the reduction nature of the matrix-

vector product, its time has a lower bound of O(logn;).
The results above demonstrate several important points about first- and second-
level BLAS primitives. The most important is that for register-based multivector
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processors with a moderate number of processors, there can be a significant difference
between the performance of a given algorithm when implemented in terms of the four
primitives discussed above. This performance order is given from worse to best in
terms of decreasing values of u. The triad with p =~ % does far too many spurious data
transfers to be of use on a processor with a single port to memory. The dotproduct
improves the ratio to x4 = 1 but not all processors have high-performance capabilities.
The BLAS2 rank-1 update primitive also has p =~ 1 but it does not depend upon
efficient reduction operations on vector registers being available on a processor and
its extra dimension of parallelism makes it more flexible than the previous primitives.
By far, however, the preferred primitive for such an architecture is the matrix-vector
product due to its superior register management.

The second observation from the results above is how the preferences can reverse
when the architecture used is radically altered. In this case we considered increasing
the number of register-based vector processors available to the maximum needed.
It was shown that in the limit all have similar register-memory transfer behavior
and the nonreduction operations have a distinct advantage if it is assumed that the
data and computations have been partitioned ideally. This last point is crucial. Our
discussions implicitly assumed a shared memory architecture when increasing the
number of processors. While the results do hold for certain distributed memory
architectures, they can be very sensitive to the assumptions concerning initial data
partioning. If for some reason the data had been partitioned in a different way the
trends need not be the same.

3.4. Third-level BLAS.

3.4.1. Motivation. The highest level of the BLAS is motivated by the use of
memory hierarchies. On such systems, only the lowest level of the hierarchy (or in
some cases the two lowest, e.g., registers and cache) are able to supply data at the
computational bandwidth of the processors. Hence, data locality must be exploited
to allow computations to involve mostly data located in the lowest levels. This allows
the cost of the data transfer between levels to be amortized over several operations
performed at the computational bandwidth of the processors. This problem of data
reuse in the design of algorithms has been studied since the beginning of scientific
computing. FEarly machines, which had small physical memories, required the use
of secondary storage such as tape or disk to hold all of the data for a problem.
Similar considerations were also needed on later machines with paged virtual memory
systems. The block algorithms developed for such architectures relied on transferring
large submatrices between different levels of storage, with prepaging in some cases,
and localizing operations to achieve acceptable performance.

Of course, the resulting matrix-matrix primitives could have been used in algo-
rithms for the machines which motivated the BLLAS2. Indeed, as Calahan points out
[23], the use of matrix-matrix modules was considered when developing algorithms for
the CRAY-1. The hierarchy, however, was not distinct enough to achieve a significant
advantage over BLAS2 primitives. The introduction of the CRAY X-MP and its ad-
ditional memory ports delayed even further the move to the next level of the BLAS.
It was finally caused by the availability of high-performance architectures which rely
on the use of a hierarchical memory system and with more profound performance
consequences when not used correctly. Agarwal and Gustavson designed matrix mul-
tiplication primitives and block algorithms for solving linear systems to exploit the
cache memory on the IBM 3090 in the latter part of 1984. These evolved into the
algorithms contained in ESSL, first released in the middle of 1985, for the IBM 3090
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with vector processing capabilities [1], [84], [130], and more recently for the multi-
processor version of the architecture [2]. A numerical linear algebra library based on
block methods was developed and its performance analyzed in terms of architectural
parameters in 1985 and early 1986 for a single cluster of the Cedar machine, the
multivector processor Alliant FX/8 [9], [105], [156]. At approximately the same time,
Calahan developed block LU factorization algorithms for one CPU of the CRAY-2
(23]. In 1985, Bischof and Van Loan developed the use of block Householder reflectors
in computing the QR factorization and presented results on an FPS-164/MAX [16].

The development of these routines and numerical linear algebra libraries clearly
demonstrated that a third level of primitives, or BLAS3, based on matrix-matrix com-
putations was required to achieve high performance on the emerging architectures.
Such primitives achieve a significant improvement in data locality, i.e., the data local-
ity is no longer effectively independent of problem size as it is for the first two levels of
the BLAS. Third-level primitives perform O(n®) operations on O(n?) data, and they
increase the parallelism available by yet another dimension by essentially consisting
of multiple independent BLAS2 primitives.

Since the reawakening of interest in block methods for linear algebra, many pa-
pers have appeared in the literature considering the topic on various machines, e.g.,
(5], [44], [149]. The techniques have become so accepted that some manufacturers now
provide high-performance libraries which contain block methods and matrix-matrix
primitives. Some, such as Alliant, provide matrix multiplication intrinsics i:. their
concurrent /vector processing extensions to Fortran. In 1987, an effort began to stan-
dardize for Fortran 77 the BLAS3 primitives and block methods for numerical linear
algebra [35], [37], [39].

3.4.2. Some algorithms. The most basic BLAS3 primitive is a simple matrix
operation of the form

(3) C « C + AB,

where C, A, and B are ny Xng, nj Xng, and ny Xng matrices, respectively. Clearly, this
primitive subsumes the rank-1 update, (ny = 1), and matrix-vector multiplication,
(ng = 1), BLAS2 primitives. In block algorithms, it is most often used as a rank-w
update (ny = w < ny,n3) or a matrix multiplied by several vectors (n3 = w < ny,ns).
The analysis of the parallel complexity of such a computation has been the subject
of much study. In this section we give a brief summary of some generic algorithms
and mention some implementations on various machines that have appeared recently
in the literature.
The basic scalar computation can be expressed as

dor=1,n3

do s = 1,7
dot= 1,19
Cs,r = Cspr T+ as,tbt,'r
end do
end do

end do

where ¢, ,, a5+, and b, , denote the elements of C, A respectively B.
There are three basic generic approaches to performing these computations which
correspond to different choices of orderings of the loops. They are called the inner,
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middle, and outer product methods due to the fundamental kernels used and corre-
spond to the following code segments:

inner_product:
dor=1,ng
dos=1,n;
Cs,r = Cs,r + inner_prod(as s, b« r)
end do
end do

middle_product:
dor = 1,n3
Cx,r = Cx,r + Ab*,r
end do

and

outer_product:
dot= 1, 1y
C=C+ (l*’tbg:*
end do.

Each has its advantages and disadvantages for various problem shapes and architec-
tures. All have immediate generalizations involving submatrices. These issues are
discussed in the literature, e.g., [100], [137], in several places and will not be repeated
here. We do note, however, that for register-based vector and multivector processors
with one port to memory, the middle product algorithm facilitates the efficient use of
the vector registers and data bandwidth to cache of each processor, and exploits the
chaining of the multiplier, adder, and data fetch available on many systems. This is
accomplished by performing, possibly in parallel, multiple matrix-vector products —
the preferred BLAS2 primitive for vector register management. When the vector pro-
cessors are such that register-register operations are significantly faster than chained
operations from local memory or cache, a more sophisticated two-level generalization
of the blocking strategy discussed below can be used to achieve high performance.

Madsen, Rodrigue, and Karush considered, for use on the CDC STAR-100 vector
processor, a slightly more exotic matrix multiplication based on storing and manip-
ulating the diagonals of matrices [127]. Their motivation was mitigating the perfor-
mance degradation of the algorithms above for banded matrices and the difficulties
in accessing the transpose of a matrix on some machines.

The BLAS3 primitive implemented for a single cluster of the Cedar machine [66],
[67], [105] and applicable to machines with a moderate number of reasonably coupled
multivector processors with a shared cache implements a block version of the basic
matrix multiplication loops. It proceeds by partitioning the matrices C, A, and B
into submatrices Cjj;, Ak, and By; whose dimensions are m; x mg3, m; X mg, and
ma X mg, respectively. The basic loop is of the form

do = 1, kl
do k =1,k
do i=1, k3
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Cij = Cij + Ay * By
end do
end do
end do
where n, = kymy, ng = kamge, and n3z = kamga, and k1, k2, and k3 are assumed to be
positive integers for simplicity.

The block operations Ci; = Cj;j + A * By; possess a large amount of concur-
rent and vectorizable computations, so the algorithm proceeds by dedicating the full
resources of the p vector processors to each of the block operations in turn. The
kernel block multiplication can be computed by any of the basic concurrent/vector
algorithms. As noted above the middle product algorithm which performs several
multiplications of A;; and columns of By; in parallel is well suited for register-based
architectures like the Alliant FX/8, hence it is assumed in the analysis below.

There are, of course, several possible orderings of the block loops and several other
kernels that can be used for the block operations.” If, for example, the processors
are not tightly coupled enough parallelism can moved to the block level. This can
also be useful in the case of private caches or local memories for each processor. As
is shown below this particular ordering (or one trivially related to it) is appropriate
for use in the block algorithms discussed in later sections. However, when developing
a robust BLAS3 library, kernels for the block operations which differ from those
discussed below and alternate orderings must be analyzed so that selection of the
appropriate form of the routine can be done at runtime based on the shape of the
problem. This is especially important for cases with extreme shapes, e.g., guaranteeing
smooth performance characteristics as the shapes become BLAS2-like.

Clearly, if the number of processors are increased to p = njnang the inner product
form of the algorithm can generate the result in O(log, ny) time. For a shared memory
machine, such an approach would place tremendous strain on a highly interleaved or
parallel memory systems. As mentioned earlier, one way that such strain is mitigated
is by assigning elements of structured variables to the memory banks in such a way
as to minimize the chance of conflicts when accessing certain subsections of the data.
For the inner product algorithm it is particularly important that the row and columns
of matrices be accessible in a conflict free manner. One of the easiest memory module
mapping strategies that achieves this goal dates back to the ILLIAC IV ([114], [115],
also see [116]). The technique is called the skewed storage scheme. In it the elements
of each row of a matrix are assigned in an interleaved fashion across the memory
modules. However, when assigning the first element of a row it is placed in the memory
module that is skewed by one from the module that contained the first element of
the previous row. Any row or column of a matrix can now be accessed in a conflict
free fashion. Matrix multiplication algorithms for the distributed memory ILLIAC
IV were developed based on this scheme which can be easily adapted to the shared
memory situation.

If we are willing to sacrifice some numerical stability, fast schemes which use less
than O(n®) operations can be used to multiply two matrices. In [95], Higham has
analyzed this loss of stability for Strassen’s method [175] and concluded that it does
not preclude the effective use of the method as a BLAS3 kernel. Recently, Bailey has

7 The i —j —k ordering of the block loops, for example, produces distinctly different blocksizes and
shapes [105]. Its use can be motivated by the desire to keep a block of C in cache while accumulating
its final value. This implies that a block of A must reside in the cache simultaneously thereby altering
the optimal shapes.
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considered the use of Strassen’s method to multiply matrices on the CRAY-2 [7]. The
increased performance compared to CRAY’s MXM library routine is achieved via the
reduced operation count implicit in the method and the careful use of local memory
via an algorithm due to Calahan. Speedups as high as 2.01 are reported compared
to CRAY’s library routine on a single CPU. Bailey also notes that the algorithm is
very amenable to use on multiple CPU’s of the CRAY-2 although no such results are
presented.

The broadcast-multiply-roll algorithm for matrix multiplication described and an-
alyzed by Fox et al. is representative of distributed memory algorithms [59]-[61].
(For other distributed memory algorithms see [78], [129], [135].) Consider the calcu-
lation of C — C + AB where A, B, C € ®*". Assume the processors are connected
as a two-dimensional wrap-around mesh and the square subblock with index (3, j) of
each matrix starts out in the memory of the processor correspondingly indexed. The
algorithm consists of /7 steps each of which consists of broadcast, multiply, and roll
phases. In particular, on step ¢ (i = 0,---,y/n — 1) the processor in each row owning
A; (j+iymod/m broadcasts it to the rest of the processors in the row which store itina
local work array T. Each processor then multiplies T' by the subblock of B presently
in its memory and adds it to the subblock of C' that it owns. The final phase of
each step consists of rolling the matrix B up one row in the mesh with appropriate
wrap-around at the ends of the mesh. In other words, each processor transmits the
subblock of B it has in its memory to the processor in the same column of the mesh
but one row up. The repetition of this three-phase step \/n times corresponds to the
number of steps required to let each subblock of B return to its original processor.

Finally, Johnsson and Ho have considered the implementation of matrix multi-
plication on a hypercube [110]. In this work they consider the implementation of the
computational primitive in terms of communication primitives some of which implic-
itly perform computations as the data move through the cube. As a result, users
can write their algorithms as a sequence of calls to these data motion primitives in a
fashion similar to the method advocated with respect to the computational primitives
discussed above.

3.4.3. Blocksize analysis. In this section we summarize the application of the
decoupling methodology to the matrix multiplication algorithm for the single cluster
of the Cedar machine described above. Recall that the block level loops were

doi= l,kl
do k =1,k
dOj = 1, k3
Cij = Cij + Aik * Bk
end do
end do
end do

where n; = kymi, ny = kamo, and n3 = kamg, and k1, ko, and k3 are assumed to be
positive integers. Each block operation C;; = Cj; + A * By; uses the resources of
the p vector processors by performing matrix-vector products in parallel.

Values of m;, mg, and m3 which yield near-optimal values of the arithmetic time
for the kernel can be determined by an analysis similar to those presented above for the
BLAS2. The essential tradeoffs require balancing the parallel and vector processing
capabilities and the bandwidth restrictions due to the single port to memory on each
processor. For the Alliant FX/8, the values of m;, mg, and ms chosen according to
the preceding reasoning are: m; = 32k or is large; ma > 16 to 32 depending on the
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overhead surrounding the accumulation; and mgs = 8k or is large.

The reduction of the data loading overhead reduces to a simple constrained min-
imization problem. Since the submatrices A;x are associated with the inner loop, it
is assumed that each A;; is loaded once and kept in cache for the duration of the
J loop. Similarly, it is assumed that each of the C;; and By; are loaded into cache
repeatedly. Note that the conservative approach is taken in that no distinction is
made between reads and writes in that A is set under the pessimistic assumption that
anything loaded has to be written back whether or not it was updated. Some cases
where this distinction becomes important are discussed below.

It is easily seen by considering the number of transfers required that the cache-
miss ratio, u, is given by

1 1 1
() =t

2n1 277,2 27’l3 ’

Constraints for the optimization of the terms involving m; and m. are generated
by determining what amount of data must fit into cache at any given time and requir-
ing that this quantity be bounded by the cache size C'S. The final set of constraints
come from the fact that the submatrices cannot be larger than the matrices being
multiplied. Therefore, the minimization of the number of loads performed by the
BLAS3 primitive is equivalent to the solution of the minimization problem

(5) min p(m1,mq) =myt +my!

subject to ma(m; + p) < CS
1<m; <m

1 < mg < ng,

where C'S is the cache size and p is the number of processors. The constraints trace
a rectangle and an hyperbola in the (m;, m2)-plane.

The solution to the minimization problem separates the (n;,n2) plane into four
distinct regions; two of which are of interest for the rank-w update and matrix-times-w-
vectors primitives, and general large dense matrix multiplication (see [67] for details).
These can be summarized as:

1. The value of mg is arbitrary and taken to be ng.
2. If nag(n1 +p) > CS and ny < CS(V/CS +p)!

cS
my=——p and mg = ng.
n2

3. If na(ny +p) >CS, ny >VCS, and ng > CcS(vCS +p)_1

cs

m; =V CS and mo = W.
p
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Note that since the near-optimal region for the arithmetic time component was
unbounded in the positive direction, there is a nontrivial intersection between it and
the near-optimal region for the data loading component. This implies that, except for
some boundary cases where n;, no, and/or ng become small, the decoupling method-
ology does yield a strategy which can be used to choose near-optimal blocksizes for
BLAS3 primitives. (The troublesome boundary cases can be handled by altering the
block-loop ordering or choosing a different form of the block multiplication kernel.)

For the rank-w primitive this results in a partitioning of the form

Cl Cl Al
(6) N T I T 2
Ck Ck Ag

where the blocksizes are given by the case above with no = w and small. Note that
the block loops simplify to

doi=1,k
C,=C;,+A;xB
end do

and parallelism at the block-loop level becomes trivially exploitable when necessary.
Also note that each block of the matrix C is read and written exactly once implying
that this blocking maintains the minimum number of writes back to main memory.

For large dense matrix multiplication and for the matrix-times-w-vectors primitive
the partitioning is

Ci C: Ay oo Aim B,
Ck Ck Akl ce Akm Bm

and the block loops reduce to

doi=1,k
doj=1m
CiZCi+Aij*Bj
end do
end do.

Once again block parallelism is obviously exploitable when needed. Note however that
the blocks of C are written to several times. In general, these writes are not signifi-
cant since the blocksizes have been chosen to reduce the significance of all transfers
(including these writes) to a negligible level. The i-j-k block loop ordering can be
used and analyzed in a similar fashion if it is desirable to accumulate a block of C' in
local memory. The blocksizes that result are, of course, different from the one shown
above (see [105]).

The key observation with respect to the behavior of u for BLAS3 primitives is
that it decreases hyperbolically as a function of m; and mg. (This assumes this
particular block loop ordering but similar statements can be made about the others.)
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It follows that the relative cost of transferring data decreases rapidly and reaches a
global minimum of the form

A DA A

(8) /\u_\/E§+ZCS+2n3'

Therefore, assuming that ng is much larger than v/C'S (large dense matrix multi-
plication), data loading overhead can be reduced to O(1/v/CS). This limit on the
cache-miss ratio reduction due to blocking is consistent with the bound derived in
Hong and Kung [101]. For BLAS3 primitives where one of the dimensions is smaller
than the others, with value denoted w, the data loading overhead is a satisfactory
O(1/w).

The hyperbolic nature of the data loading overhead implies that reasonable per-
formance can be achieved without increasing the blocksizes to the near-optimal values
given above. Of course, exactly how large m; and mge must be in order to reduce the
data loading overhead to an acceptable amount depends on the cost ratio A of the
machine under consideration. The existence of a lower bound on the cache-miss ratio
achievable by blocking does, however, have implications with respect to the blocksizes
used in block versions of linear algebra algorithms.

The expression for the data loading overhead based on (2) and (4) is also of the
correct form for matrix multiplication primitives blocked for register usage in that
hyperbolic behavior is also seen. The actual optimization process must be altered.
The use of registers imposes shape constraints on blocksize choices and it is often
more convenient not to decouple the two components of time. For the most part,
however, the conclusions stated here still hold.

For hypercubes, the analysis of Fox, Otto, and Hey [61] derives a result in the
same spirit as (8). They show that the efficiency (speedup divided by the number of
processors) of the broadcast-multiply-roll matrix multiplication algorithms is

1
1- (C/\/ﬁ)tcomm/tflop

where tcomm, tfiop, and n are the cost for communication of data, cost of a floating
point operation, and the number of matrix elements stored locally in each proces-
sor (hence bounded by the local memory size). The constant ¢ is 1 for the square
subblock decomposition but is /p/2 for the row decomposition, where p is the num-
ber of processors, indicating the superiority of square blocks for this type of matrix
multiplication algorithm.

€

3.4.4. Preferred BLAS3 primitives. The preceding analysis also allows the
issue of superiority of one BLAS3 primitive compared to the others to be addressed.
Consider the comparison of the rank-w primitive to the primitive which multiplies a
matrix by w vectors. If w = 1 this is the BLAS2 comparison discussed earlier and for
the shared memory multivector processor analyzed above the matrix-vector multipli-
cation primitive should be superior. On the other hand, if w = n, the two primitives
are identical and no preference should be predicted by the analysis. Hence, the anal-
ysis should result in a preference which is parameterized by w with end conditions
consistent with these two observations.

To make such a comparison we will restrict ourselves to the multivector shared
hierarchical memory case considered above and to four partitionings of the primitives
which exploit the knowledge that w is small compared to the other dimensions of the
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matrices involved (denoted h and ! below). Such a strategy was proposed in [105] and
has been demonstrated effective on the Alliant FX /8. We will also distinguish between
elements which are only read from memory into cache and those which require reading
and writing. This allows us to be more precise than the conservative bounding of the
cost of data transfer presented above. Also note that this affects the value of the cost
ratio A in that it need not be as large as required above.

The partitioning of the rank-w update used is of the form given above in (6)
but the values of the blocksizes are altered to reflect the more accurate analysis
obtained by differentiating between reads and writes. (The qualitative conclusions of
the previous analysis do not change.) Three different partitionings for the primitive
which multiplies a matrix by w vectors are analyzed. Each is appropriate under
various assumptions about the architecture and shape of the problem.

It is assumed that the primitives make use of code to perform the basic block
operations which has been optimized for register-cache transfer and is able to maintain
efficient use of the lowest levels of the hierarchy as the shape of the problem changes,
i.e., the arithmetic time T, has been parameterized according to w and the code
adjusted accordingly. In this case, the source of differences in the performance of
the two primitives is the amount of data transfer required between cache and main
memory which is given by the ratio u. Below we derive and compare the value of p
for each of the four implementations of the primitives.

The rank-w update computes C «— C + AB where C € R**!, A € RP*¥, and
B € R“*!, The partitioning used is shown in (6) where C; € R™*!, 4; € R™*v,
km = h, and m is the blocksize which must be determined. Note that we have used
the knowledge of the analysis above to fix two blocksizes at w and [. The computations
requires 2hlw operations and the block loops are of the form

doi=1,k
Ci=C;+A;xB
end do.

The primitive requires hl+hw+ klw loads from memory and hl writes back to memory.
This partitioning/primitive combination is denoted Form-1.

The second primitive also computes C — C + AB. In this case, however, C €
Rhxw A € RP*! and B € R**“. As noted above, three partitionings are considered.
The first two are of the form shown in (7). Both have the block loop form

doi=1,k
doj=1m
Ci=Ci+A§j*Bj
end do
end do.

They differ in the constraints placed on the blocksizes.

The first version, denoted Form-2, results from applying the analysis of the pre-
vious section to the i-k-j loop ordering of the original triply nested loop form of the
matrix multiplication primitive. One of the blocksizes is fixed at w. Specifically, the
partitioning is such that A; € R™>™2 kym; = h, kamy = [, and C; and B; are
dimensioned conformally. The blocksizes m; and my are determined under the sim-
plified constraint of mymg < CS. Form-2 requires hl + hlu.z(ml_1 +my 1) loads and
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kohw writes to memory.

The second version, denoted Form-3, results from analyzing the i-j-k loop ordering
of the original triply nested loop form of the matrix multiplication primitive as in
[105]. As before, one of the blocksizes is fixed at w. The partitioning is such that
A; € R™M>™2 kiymy = h, komy = I, and C; and B; are dimensioned conformally.
The blocksizes m; and m, are determined under the constraint of m;(m. +w) < CS.
This constraint is generated by requiring the accumulation in cache of a block C;
which implies that a C; and the A;; contributing to the product must fit in cache
simultaneously. In [105] it is shown that this partitioning sets ma to the value T
where 7 is determined via the analysis of register-cache transfer cost. This simplifies
the minimization problem and leaves only m; to be determined. Form-3 requires
hl + hw + hlwm] ! loads hw writes to memory. Additionally, it requires (k2 — 1)hw
writes to cache due to the local accumulation of C;.

TABLE 1
Comparison of the four forms of the BLAS3 primitives.

Form I Kopt popt(VCS) Blocksizes
1,1, 1 1 1 3 1 -
1 sm Tt ot ;+'2“u‘j—s+ﬁ 2\/ﬁ+2_l m=CS/w
1 1 1 1 2 2v/3+1 =
2 | wtom T 2t s 2/05 my = VCS5/2

mo = V2CS

1 1 1 1 w 1 T 1 1, T _ cCs
3 wtamtT |wtacstitws | Jostitacs | ™ =05
1 1 1 1 w 1 3 1 —
4 3 Y3t 3t ostag 2/——05+ﬁ m—CS/w

The third version, denoted Form-4, applies the i-k-j ordering to the transpose of
the matrix multiplication to determine blocksizes. This form is valuable for certain
architecture/shape combinations. The resulting partitioning is of the form

B,
By

where A; € Rh*™ B, € ®R™*“ and km = l. The constraint mw < CS is applied.
Form-4 requires hl + lw + 2khw loads and khw writes to memory. The block loops
simplify to

doi=1,k
C=C+Ai*Bi
end do.
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Note that if parallelism across the blocks is used this form requires synchronization
(which is typically done on a subblock level).
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FIG. 3. Performance of square matriz multiplication on an Alliant FX/8.

Table 1 lists the results of analyzing each of the four forms presented above.
The generic form of u is given in terms of the dimensions of the problem and the
blocksizes used as well as its optimal value. Since the results of the analysis of the
primitives given above and the analysis of the block methods which use them indicate
that w = v/CS represents a limit point on performance improvement the optimal u
evaluated there is also given. Finally, the value of the blocksizes which give the optimal
data loading cost are also listed. The values show clearly the well-known inferiority of
the rank-w by a factor of 2 when w is near 1, i.e., in the near-BLAS2 regime. However,
as w increases, the fact that one is up to a factor of two more than the other (though
this multiple rapidly reduces as well) quickly becomes irrelevant since the relative
cost of data transfer to computational work has become an insignificant performance
consideration. As a result, given these partitionings and an architecture satisfying the
assumptions of the analysis, we would not expect significant performance differences
between the two primitives when w and the size of the matrices are large enough.
Such observations have been verified on an Alliant FX/8. Consequently, one would
not expect the performance of the block algorithms that use the two BLAS3 primitives,
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e.g., a block LU algorithm, to be significantly different for sufficiently large problems 8,
It would also be expected that the trend in preference for non-reduction types of
computations as the number of processors or the cost of processor synchronization
increases seen with BLAS2 primitives carry over to the BLAS3.

3.4.5. Experimental results. The performance benefits of using BLAS3 primi-
tives and carefully selecting blocksizes in their implementation has been demonstrated
in the literature. In this section, we report briefly on experimental results on the Al-
liant FX/8. The experiments were performed executing the particular kernel many
times and averaging to arrive at an estimate of the time spent in a single instance of
the kernel. This technique was used to minimize the experimental error present on
the Alliant when measuring a piece of code of short duration. As a consequence of
this technique, the curves have two distinct parts. The first is characterized by a peak
of high performance. This is the region where the kernel operates on a problem which
fits in cache. The performance rate in this region gives some idea of the arithmetic
component of the time function. It is interesting to compare this peak to the rest
of the curve which corresponds to the kernel operating on a problem whose data is
initially in main memory. When the asymptotic performance in the second region is
close to the peak in cache the number of loads is being managed effectively.

Figure 3 illustrates the effect of blocksize on the performance of the BLAS3 prim-
itive C «— C — AB where all three matrices are square and of order n. The blocksizes
used for each curve are from low to high performance : m; = 32, my; = 32, and
mg = 32; m; = 64, my = 64, and m3z = 64; and m, = 128, my = 96, and mz = n. It
is clear from the asymptotic performance of the top curve that a significant portion
of peak performance can be achieved by choosing the correct blocksizes. In this case
an asymptotic rate of just below 52 Mflops is achieved on a machine with a peak rate,
including vector startup, of 68 Mflops.

Figures 4 and 5 show the performance of various rank-k updates. The parameters
my and mg3 are taken as k and n as recommended by the analysis of the BLAS3
primitive. The parameter m; is taken to be 96 and 128 in the two figures, respectively.
This parameter is kept constant for each figure to allow a fair comparison between
the performances of the various kernels. Further, the BLAS3 analysis recommends
my = (CS/k) — p. In fact, for the values of k considered here, if m; > 96 then the
term in the expression for the number of loads for the rank-k kernel which involves
m; is not significant compared to the term involving ms.

These curves clearly show that increasing k yields increased performance and a
significant portion of the effective peak computational rate is achievable. Also note
that as k increases the difference in performance of two successive rank-k kernels
diminishes. Indeed, the ¥ = 96 curve was not included in Fig. 4 since it delivers
performance virtually identical to the k = 64 kernel.

It is instructive to compare the performance of the rank-k kernel to typical BLAS
and BLAS2 kernels. The BLAS kernels a «— 7y and y « y + az achieve 11 Mflops
and 7 Mflops, respectively, with their arguments in main memory. The BLAS2 matrix-
vector product kernel achieves 18 to 20 Mflops.

3.5. Triangular system solvers. Solving triangular systems of linear equa-
tions, whether dense or sparse, is encountered in numerous applications. Even though
the solution process consumes substantially less time than the associated factoriza-

8 Asis discussed later, when the ratio of the blocksize to the problem, w/n, is small other tradeoffs
must be considered in the performance of block algorithms.
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FIG. 4. Performance of rank-k update with m; = 96 on an Alliant FX/8.

25

tion stage, we often wish to solve these triangular systems repeatedly with different
right-hand sides but with the same triangular matrix. Hence, it is vital to solve them
as efficiently as possible on the architecture at hand.

There are two classical sequential algorithms for solving a lower triangular system
Lz = f, where L = [\;j], f = [¢:s], z = [&] and 4,5 = 1,2,---,n. They differ in the
fact that one is oriented towards rows, and the other columns. These algorithms are:

Row_oriented :

&= ¢1/An
doi=2,n
doj=1,i—1
¢ = di — Xijé;
enddo
& = dif dii
enddo

and

Column_oriented :
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FI1G. 5. Performance of rank-k update with m1 = 128 on an Alliant FX/8.

doj=1,n-1
& =i/
doi=j5+1,n
¢i = ¢i — Xij&;
end do
end do

fn = ¢n/)‘nn

As is shown below, these two algorithms are the basis for many adaptations suitable
for various vector and parallel architectures.

3.5.1. Shared-memory triangular system solvers. The inner loops of the
row- and column-oriented versions vectorize trivially to yield algorithms based re-
spectively on the BLAS operations of SAXPY and DOTPRODUCT. We refer to these
algorithms as the row-sweep or forward-sweep, and the column-sweep [116].

Each step of the row-sweep algorithm requires less data motion than the corre-
sponding step in the column-sweep algorithm; the DOTPRODUCT primitive reads two
vectors and produces a scalar while the SAXPY reads two vectors and writes a third
back to memory. If the vector processor has adequate bandwidth then, theoretically
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at least, this should not be an important distinction. In practice, however, the reduced
data traffic of the DOTPRODUCT may be preferable. (This assumes, of course, that the
implementation of the DOTPRODUCT is not particularly expensive.®) The row-sweep
algorithm can suffer from the fact that it accesses rows of the matrix. This can be
remedied by storing the transpose of the lower triangular matrix, although in some
cases this may not be an option, e.g., when the data placement has been determined
by some other portion of the algorithm of which the triangular solve is a component.

For register-based vector processors with limited bandwidth to memory such as
the CRAY-1 or a single processor of the Alliant FX/8 each of which has a single port
to memory, the performance degradation due to excessive register transfers of the
vector algorithms described above can be severe. Block forms of the algorithms must
be considered. Let L(® = L, f(® = f. and let each of LU, () and f() be of order
(n—jv),j=0,---,2 —1 where

wa (B0 Yo (0 )= ( 1))
g ) 9

with Lﬁ), xgj), and fl(j ) being each of order v (we assume that v divides n). The
block column-sweep algorithm may then be described as:

B_Col_Sweep :
p=1%
doj=0,p—2
solve Lz = £ via Col_Sweep or Row_Sweep
1950 = £ — L
end do
solve L=V g(—1) = f(r—1) yja Col_Sweep or Row_Sweep.

Note that this blocking allows the registers to be used efficiently. The matrix-vector
product which updates the right-hand side vector is blocked in the fashion described
above to allow the accumulation in a vector register of the result of v vector operations
before writing the register to memory rather than the one write per two reads of the
triads in the nonblocked column-sweep. Similarly, the column-sweep algorithm can
accumulate the solution to the triangular system L(lji) x(IJ ) = fl(] ) in vector registers
resulting in a data flow between registers and memory identical to that of a v x v
block of the matrix-vector product with the exception that the vector length reduces
by one for each of the v operations.

A block row-sweep algorithm can also be derived which reduces the amount of
register-memory traffic even further. Using the notation above, partition L so that
each block row is of the form [C;, L;,0] where C; € RrxG-v and L; € R¥*Y. Let
z=(af, -, 2D)Tz0) = (2], ,27)T, and f = (f],---, f)7, where z;, f; € R".
The block algorithm is:

B_Row_Sweep :

9 On some machines this is not necessarily a good assumption. The Alliant FX/8 has a con-
siderable increase in the startup cost of the dotproduct compared to that of the triad instruction.
Similarly, CRAY machines implement the dotproduct in a two-stage process. The first accumulates
64 partial sums in a vector register and the second reduces these sums to a scalar. The first phase
has the memory reference pattern mentioned above but the second is memory intensive and its cost
can be significant for smaller vectors.
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Proc. 1 Proc. 2

solve L11z1 = f1 -
fa = fa — Ly -
f3 — f3 - L31£L‘1 solve Lzz.’l?z = f2
fa = fa— Lyz fa3 — f3— L3z

solve Laszs = f3 fa — fa— Lyozo

NN U7

fa = fa— Lazzs -
solve L44.Z'4 = f4 —

F1G. 6. Two processor DO-ACROSS synchronization pattern.

p=75
solve L1z, = b; via Col_Sweep or Row_Sweep
doj=2,p

fi = fi = Ciz(i-y)

solve L;z; = f; via Col_Sweep or Row_Sweep
end do.

This algorithm requires only one or two vector writes per block row computation
depending upon whether or not the result of the matrix-vector product is left in
registers for the triangular-solve primitive to use. This algorithm is characterized by
the use of short and wide matrix-vector operations rather than the tall and narrow
shapes of the block column-sweep. It is, of course, quite straightforward to combine
the two approaches to use a more consistent shape throughout the algorithm.

Another triangular solver, which is also suited for both shared and distributed
memory multiprocessors, is that based on the DO-ACROSS notion. For example, in
the above sequential form of the column-oriented algorithm, the main point of a DO-
ACROSS is that computing each &; need not wait for the completion of the whole
inner iteration ¢ = j + 1,---,n. In fact, one processor may compute &; soon after
another processor has computed ¢; := ¢; — A;j—1§j—1. To minimize the synchro-
nization overhead in a DO-ACROSS and efliciently use registers or local memory, the
computation is performed by blocks. For example, if L = [Lyg], z = {z,}, f = {fp},
and p,q = 1,---,4, where each block is of order n/4, then the DO-ACROSS on two
processors may be illustrated as shown in Fig. 6. Vectorization can be exploited in
each of the calculations shown if each processor has vector capabilities. The particular
parallel schedule used in the DO-ACROSS approach is, of course, highly dependent on
the efficiency of the synchronization mechanisms provided on the multiprocessor of
interest.

All of the methods presented thus far in this section can be viewed as reorgani-
zations of the task graph in Fig. 7. The row-oriented algorithm executes each row
in turn starting from the top and tasks within each row from left to right. The
column-oriented, on the other hand, executes each column in turn starting from the
left and tasks within a column from the top to bottom. The row and column sweeps
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on a vector machine merely vectorize the tasks within a row or column, respectively.
Block versions of the algorithm interpret each node as corresponding to computations
involving a submatrix rather than a single element. Careful consideration of the task
graph, however, reveals certain limitations of all methods based upon it. Suppose
that each node represents the operation on a submatrix of order m and n = km. The
dependence graph implies that the maximum number of processors that can ever be
active at the same time is ¥ — 1. Further, the dependence graph has a critical path
with O(k) length which establishes a fundamental limit to the speed at which these
algorithms can solve a triangular system. To go faster we need a new dependence
graph which relates the solution z to the data L and f.

The new dependence graph can be generated from recognizing the algebraic char-
acterization of the column- and row-sweep algorithms. The algorithms can be easily
described algebraically in terms of elementary unit lower triangular matrices. For
example, assuming without loss of generality that A; = 1, it follows that

n—1 n
L=]] N7 =]]M7,
i=1 j=2

where N; = I —l;e], M; = I — e;v], I; is the vector corresponding to column i in
L with the 1 on the diagonal removed and v; is similarly constructed from row j of
L. 1t is easy to see from the algebraic structure of V; and M; that multiplying them
by a vector corresponds to the computational primitives of a triad and dotproduct,
respectively. It follows immediately that the column-sweep and row-sweep algorithms
are specified algebraically by (here with n = 8):

(N7(Ne(Ns(Na(N3(N2(N1£)))))))
and

(Mg(M7(Me(Ms(Ms(M3(M2£)))))))-
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The grouping of computations makes clear the source of the O(n) critical path in
the dependence graph. Also a simple application of associativity can generate two
algorithms that have a much shorter critical path. Specifically, the column-sweep
expression can be transformed into

(((N7N6)(N5Ng))((N3N2)(N1f))).

Note the logarithmic nature of the critical path. The algorithm specified is called the
product form and is due to Sameh and Brent [159]. Instead of performing the product
(Np-1---NaN1)f in (n—1) stages, we may form it in O(log, n) stages. It can be shown
by careful consideration of the structure of the matrices at each stage that the critical
path has a length of k?/2 + 3k/2 floating point operations where k = log, n. Such
an improvement is not without cost, however. The algorithm requires approximately
n3/10 + O(n?) operations and n®/68 + O(n?) processors. It is therefore typically not
appropriate for an architecture with a limited number of processors such as those of
interest here. For a discussion of the numerical stability of this algorithm see [187].

Note that thus far we have assumed only one right-hand side vector. The BLAS3
primitive triangular solver assumes that multiple right-hand side vectors and solu-
tions are required. This, of course, provides the necessary data locality for high
performance on a hierarchical memory system. The generalization of the algorithms
above are straightforward and the blocksizes (the number and order of right-hand
sides solved in a stage of the algorithm) can be analyzed in a fashion similar to the
matrix multiplication primitives.

For banded lower triangular systems in which the bandwidth m (the number of
subdiagonals with nonzero entries) is small, column-sweep algorithms are ineffective
on vector or parallel computers. Consider such a system Lz = f, where L is par-
titioned as a block-bidiagonal matrix with diagonal submatrices L; and subdiagonal
submatrices R;_1, i =1,---,n/m, where L; and R;_; are lower and upper triangular,
respectively. Premultiplying both sides of Lz = f by D = diag(L; 1) we obtain the
system L(®z = £(© where L is block bidiagonal with identities of order m on the
diagonal and matrices G;p) = L]-—+11Rj on the subdiagonal, and f(°) = Df. Note that

we do not invert the L;’s, but obtain f(® and GEO) by solving triangular systems using
one of the above parallel algorithms. We repeat the process by multiplying both sides
of Lz = f0) by pO) = diag((LEo))_l) where

-1 _ ( Im 0 )
L; = .
= (L, 1,

Now L1 = DOLO and f1) = DO f0O) are obtained by simple multiplication.
Eventually, LUo6(»/m) = [ and f(loe(n/m)) — 2 The required number of arith-
metic operations is O(m?nlog(n/2m)) resulting in a redundancy of O(m log(n/2m)),
e.g., see [159]. Given m2n/2 + O(mn) processor, however, those operations can be
completed in O(log mlogn) time.

This algorithm offers opportunities for both vector and parallel computers. At
the first stage we have n/m triangular systems to solve, each of order m, for (m + 1)
right-hand sides except for the first system which has only one right-hand side. In the
subsequent stages we have several matrix-matrix and matrix-vector multiplications,
with the last stage consisting of only one matrix-vector multiplication, in which the
matrix is of order (n/2 x m).
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An alternative scheme, introduced by Chen, Kuck, and Sameh [27], may be de-
scribed as follows. Let the banded lower triangular matrix L be partitioned as

L,
Ry Lo
Rs Lg

Ry Ly

~ 0 R
Rf:(o 0]>

and each L; is of order (n/p) >> m and each R; is upper triangular of order m. If the
right-hand side f and the solution z are partitioned accordingly, then after solving
the triangular systems

where

Lizi1=fi

=] )

the original system is reduced to Lz = g in which L is of the form

and

Ip/p
U, Ig/p
Us In/p ,
Up Insp
where
Uj=(0 U;).
Let

_| Vi | v | P
Ui_|:Wi:|a zz_i:zi]7 gz_l:ri:|v

in which W; is a matrix of order m and r;, z; are vectors of m elements each. Thus,
solving the above system reduces to solving a smaller triangular system of order mp,

I, z1 T1
W, I, 22 T2
W, In 2p Tp

After solving this system by the previous parallel scheme, for example, we can retrieve
the rest of the elements of the solution vector x by obvious matrix-vector multiplica-
tions. The algorithm requires approximately 4m?n operations which, given p = mp
processors, can be completed in time 25~ 'm?n + 35~ mn + O(m?). See [189] for a
discussion of the performance of this algorithm applied to lower bidiagonal systems
and the attendant numerical stability properties.
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3.5.2. Distributed-memory triangular system solvers. A large number of
papers have appeared for handling triangular systems on distributed memory archi-
tectures (mainly rings and hypercubes), e.g., see Sameh [158], Romine and Ortega
[151], Heath and Romine [89], Li and Coleman [122] and Eisenstat et al. [53]. Most
are variations on the basic algorithms above adapted to exploit the distributed nature
of the architectures. For such architectures, it is necessary to distinguish whether a
given triangular matrix L is stored across the individual processor memories by rows
or by columns. For example, suppose that the matrix [L, f] is stored by rows, then
the above column-sweep algorithm becomes:

Row_Storage :
doj=1,n
if j is one of my row indices then
& = i/ Aij
communicate(broadcast, fan-out) &; to each processor
doi=j+1,n
if i is one of my row indices then
bi = di — & Nij
enddo
enddo.

Note first that the computations in the inner loop can be executed in parallel,
and that on a hypercube with p = 2¥ processors, the fan-out communication can be
accomplished in v stages. If the lower triangular matrix L is stored by columns then
the column-sweep algorithm will cause excessive interprocessor communication. A
less communication intensive column storage oriented algorithm has been suggested
in [150] and [151]. Such an algorithm is based upon the classical sequential Row_sweep
algorithm shown above.

In implementing the column storage algorithm on an Intel iPSC hypercube, for
example, information is gathered into one processor from all others via a fan-in op-
eration fan_in(7,i). Such an operation enables the processor whose memory contains
column ¢ to receive the sum of all the 7’s over all processors. The parallel column
storage algorithm can be described as follows:

Col_Storage :

doi=1,n
T=0
doj=1,i-1
if j is one of my column indices then
T=T+ §inj
enddo

n = fan_in(r,1)
if i is one of my column indices then
&= (i —n)/ i
enddo.

Here, during stage 4 of the algorithm, the pseudo-routine fan_in(7, ) collects and
sums the partial inner products 7 from each processor, leaving the result 7 in the
processor containing column ¢. Further modifications to the basic row- and column-
oriented triangular solvers on distributed memory systems have been studied in [122],
there a communication scheme which allows for ring embedding into a hypercube
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is emphasized. In addition, the study in [53] has improved upon the cyclic type
algorithms in [89].

4. LU factorization algorithms. The goal of the LU decomposition is to fac-
tor an n x n-matrix A into a lower triangular matrix L and an upper triangular matrix
U. This factorization is certainly one of the most used of all numerical linear com-
putations. The classical LU factorization [83] can be expressed in terms any of the
three levels of the BLAS, and techniques needed to achieve high performance for both
shared and distributed memory systems have been considered in great detail in the
literature. In this section we review some of these techniques for the LU and LU-like
factorizations for dense and block tridiagonal linear systems.

4.1. Shared-memory algorithms for dense systems. In this subsection we
consider some of the approaches used in the literature for implementing the LU fac-
torization of a matrix A € R™*" on shared-memory multivector processors such as the
CRAY-2, CRAY X-MP, and Alliant FX/8. To simplify the discussion of the effects
of hierarchical memory organization, we move directly to the block versions of the
algorithms. Throughout the discussion w denotes the blocksize used and the more fa-
miliar BLAS2-based versions of the algorithms can be derived by setting w = 1. Four
different organizations of the computation of the classical LU factorization without
pivoting are presented with emphasis on identifying the computational primitives
involved in each. The addition of partial pivoting is then considered and a block
generalization of the LU factorization (L and U being block triangular) is presented
for use with diagonally dominant matrices. Finally, the results of an analysis of the
architecture/algorithm mapping of this latter algorithm for a multivector processor
with a hierarchical memory are also examined along with performance results from
the literature.

4.1.1. The algorithms. The are several ways to organize the computations for
calculating the LU factorization of a matrix. These reorganizations are typically listed
in terms of the ordering of the nested loops that define the standard computation. The
essential differences between the various forms are: the set of computational primitives
required, the distribution of work among the primitives, and the size and shape of the
subproblems upon which the primitives operate. Since architectural characteristics
can favor one primitive over another, the choice of computational organization can
be crucial in achieving high performance. Of course, this choice in turn depends on a
careful analysis of the architecture/primitive mapping.

Systematic comparisons of the reorganizations have appeared in various contexts
in the literature. Trivedi considered them in the context of virtual memory systems in
combination with other performance enhancement techniques [185], [186]. Dongarra,
Gustavson, and Karp [42] and more recently Ortega [137] compare the orderings for
vector machines such as the CRAY-1 where the key problem is the efficient exploita-
tion of the register-based organization of the processor and the single port to memory.
Ortega has also considered the problem on highly parallel computers [137]. Papers
have also appeared that are concerned with comparing the reorderings given a par-
ticular machine/compiler/library combination, e.g., see [162]. In general, most of the
conclusions reached in these papers can be easily understood and parameterized by
analyses of the computational primitives and the algorithms in the spirit of those in
the previous section and below.

4.1.1.1. Version 1. Version 1 of the algorithm assumes that at step i the
LU factorization of the leading principal submatrix of dimension (i —1Nw, A;—1 =



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 91

L; 1U;_q, is available. The next w rows of L and w columns of U are computed
during step ¢ to produce the factorization of the leading principal submatrix of order
iw. Clearly, after k = n/w such steps the factorization LU = A results.

The basic step of the algorithm can be deduced by considering the following
partitioning of the factorization of the matrix A; € Riwxiw:

A = Ai-r C \_( Lix 0 Ui-1 G
¢ BT H MT L, 0 U, )’

where H is a square matrix of order w and the rest of the blocks are dimensioned
conformally. The basic step of the algorithm consists of four phases:

(i) Solve for G: C « L;_1G =C.
(ii) Solve for M: B «— U¥ M = B.
(iii) Update: H «— H — MTG.

(iv) Factor H «— LU, = H.

(The arrow is used to represent the portion of the array which is overwritten by the
new information obtained in each phase.) Clearly, repeating this step on successively
larger submatrices will produce the factorization of A € R™*™.

In each step, solving the triangular system requires 2wh? operations, the update
of H requires 2hw? and the factorization requires O(w?), where h = (i — 1)w. Early
stages of the algorithm are dominated by the factorization primitive. The later stages,
where most of the work is done, is dominated by solving triangular systems with w
right-hand side vectors. This dominance is particularly pronounced when the BLAS2
(w = 1) version of the algorithm is used. Note also that when w = 1 the use of the
triangular solver allows efficient use of the vector registers on vector processors like
the CRAY-1 or a single CE of the Alliant FX/8 which have single ports to memory.

4.1.1.2. Version 2. Version 2 of the algorithm assumes that the first £ =
(i — 1w columns of L and £ rows of U are known at the start of step ¢, and that
the transformations necessary to compute this information have been applied to the
submatrix A* € R*¢*"~¢ in the lower right-hand corner of A that has yet to be
reduced. The algorithm proceeds by producing the next w columns and rows of L and
U, respectively, and computing A**t!. This is a straightforward block generalization
of the standard rank-1-based Gaussian elimination algorithm.

Assume that the factorization of the matrix A* € R*~¢X"~¢ is partitioned as

follows:
At = Apn A \ _( Lu 0 U Ur
Ay Aa Ly I 0 AL )
where A, is square and of order w and the other submatrices are dimensioned confor-
mally. Ly,,L9; and Uj, are the desired w columns and rows of L and U and identity

defines A*+1,
The basic step of the algorithm consists of:

(i) Factor: Ay «— L11U11 = Aqs.

(ii) Solve for Loy: Agy «— UL LL, = AL
(lll) Solve for U12! A12 — L11U12 = A12.
(IV) Update: A22 — A22 — L21U12.

Clearly, the updated Asy is A**! and the algorithm proceeds by repeating the above
four phases.
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This version of the algorithm is dominated by the rank-w update of the submatrix
Ay, € R(n—iw)x(n—iw)  Note that the triangular systems that must be solved are of
order w with many right-hand sides as opposed to the large systems which are solved
in Version 1. As in Version 1 the factorization primitive operates on systems of order
w. As is well known and obvious from the analysis of the previous section, the BLAS2
version, based on the rank-1 update, is not the preferred form for register-based vector
or multivector processors with a single port to memory due to poor register usage.

4.1.1.3. Version 3. Version 3 of the algorithm can be viewed as a hybrid of the
first two versions. Like Version 2, it is assumed that the first (¢ — 1)w columns of L
and rows of U are known at the start of step 7. It also assumes, like Version 1, that
the transformations that produced these known columns and rows must be applied
elements of A which are to be transformed into the next w columns and rows of L
and U. As a result, Version 3 does not update the remainder of the matrix at every
step.

Consider the factorization:

A:<A11 A12>:(L11 0 )(Uu U12>

Axy Aa Ly Lo 0 Us2 )’

where A1 is a square matrix of order (i—1)w and the rest are partitioned conformally.
By our assumptions, Li1, La1, U11, and U;2 are known and the first w columns of Lo
and the first w rows of Uz, are to be computed. Since Version 3 assumes that none of
the update Ass «— Ags — L21U;2 has occurred in the first i — 1 steps of the algorithm,
the first part of step 7 is to perform the update to the portion upon which the desired
columns of Loy and rows of Usy depend. This is then followed by the calculation of
the columns and rows.

To derive the form of the computations, suppose the update of A2 and its sub-
sequent factorization are partitioned

H CT H CT
Azz*—<B /122)—(3 Azz)_Llem

and
(5 5 )-(o ) o)
B A Ly Ly 0 Uy )’
where H and H are square matrices of order w and the other submatrices are dimen-
sioned conformally. Step 7 then has two major phases: Calculate H, B, and C; and
calculate L1y, Loy, Uy, and Uj,. As a result, at the end of stage ¢, the first iw rows
and columns of the triangular factors of A are known.

Let Loy = [M{, MT|T and Uy, = [M3, My], where M; and M3 consist of the first
w rows and columns of the respective matrices. The first phase of step ¢ computes

(i) [HT,BT|T — [HT,BT|T = [HT, BT|T — Ly M3.
(i) C — CT = CT — My M.

In the second phase, the first w rows and columns of the factorization of the updated
Az are then given by:

(l) Factor: HJ— illﬁHN: {{
(ii) Solve for Loy: B «— UL LT, = BT.
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(lll) Solve for [712: C ~ EllUlg = CT.

The work in this version of the algorithm is split between a matrix multiplication
primitive, a triangular solver, and a factorization primitive; the latter two of which
are applied to systems of order w. Note, however, that the matrix multiplication
primitive is applied to a problem which has the shape of a large matrix applied to
w vectors (or the transpose of such a problem). Hence, for w = 1 this version of the
algorithm becomes a form which uses the preferred BLAS2 primitive — matrix-vector
multiplication. Although, as noted above, when w is nontrivial the preference for this
block form over Version 2 does not necessarily follow.

4.1.1.4. Version 4. Version 4 of the algorithm assumes that at the beginning
of step ¢ the first (¢ — 1)w columns of L and U are known. Step 7 computes the next
w columns of the two triangular factors. Consider the factorization

A= An A \ _( Lu 0 Unn Up
Ay A Lyy Lo 0 Us2 )’
where A1, is a square matrix of order (i —1)w and the rest are partitioned conformally.
By our assumptions, Ly, Loy, and Uy; are known.
Let L,, U,, and A, be the matrices of dimension n x w formed of the first

w columns of [0,LL,]T, [UL,ULIT, and [AT,, AL]T, respectively. (These are also
columns (¢ — 1)w + 1 through iw of L, U, and A.) Consider the partitioning

0 M /}1
Lw = f, s U, = [7 ’ Aw = A2 ’
G 0 As

where E, U , and fig are square matrices of order w with L and U lower and upper
triangular respectively.

Step ¢ calculates L, and U, by applying all of the transformations from steps 1
toi—1 to A, and then factoring a rectangular matrix. Specifically, step ¢ comprises
the computations:

(i) Solve for M: A, « L1 M = A;.
(ii) Update: [A], AT]T « [AT, AT]T — Loy M.
(iii) Factor: Az « LU = A,. 5

(iv) Solve for G: A3 — UTGT = AT.

This version of the algorithm requires the solution of a large triangular system
with w right-hand sides as well as a small triangular system of order w with many
right-hand sides. The factorization kernel operates on a system of order w. As with
Version 3 the matrix multiplication primitive operates on a problem with the shape
of a large matrix times w vectors and the factorization of a system of order w and the
same observations apply. This version also has the feature that it works exclusively
with columns of A which can be advantageous in some Fortran and virtual memory
environments.

4.1.1.5. Partial pivoting. Partial pivoting can be easily added to Versions 2, 3,
and 4 of the algorithm. Step ¢ of each of the versions requires the LU factorization of
a rectangular matrix M € R**“, where h = n— (i — 1)w. Specifically, step i computes

M, L\ 7
M= =( %1 ) oy,
( M, ) ( Ly ) !
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where Ly; and Uy, are, respectively, lower and upper triangular matrices of order
w. In the versions above without pivoting, this calculation could be split into two
pieces: the factorization of a system of order w, LU = Mi; and the solution of a
triangular system of order w with h — w right-hand sides. (These computations are:
(i) and (ii) in Version 2; (i) and (ii) of the second phase of Version 3; and (iii) and (iv)
of Version 4.) When partial pivoting is added to the versions of the algorithm these
computations at each step cannot be separated and are replaced by a single primitive
which produces the factorization of a rectangular matrix with permuted rows, i.e.,

M, L \p
pM_p( o ) - ( e )U

where P is a permutation matrix. This primitive is usually cast as a BLAS2 version
of one of the versions above. Note, however, a fundamental difference compared to
the nonpivoting versions. The ability to split the factorization of the tall matrix
into smaller BLAS3-based components in the latter case has benefits with respect to
hierarchical memory usage, since w is usually taken so that such systems fit in cache
or local memory, see [23], [67]. In the case of pivoting, these operations are performed
via BLAS2 primitives repeatedly updating a matrix which can not be kept locally.
As a result, the arithmetic component of time and the data transfer overhead both
increase. In fact, a conflict between their reductions occurs. This situation is similar
to that seen in the block version of Modified Gram Schmidt and Version 5 of the
factorization algorithm, both discussed below along with a solution. (Although in the
latter case, the source of difficulties is slightly different.)

The information contained in the permutations associated with each step, P;, can
be applied in various ways. For example, the permutation can be applied immediately
to the transformations of the previous steps, which are stored in the elements of the
array A to the left of the active area for step i, and to the elements of the array
A which have yet to reach their final form, which, of course, appear to the right of
the active area for step i. The application to either portion of the matrix may also
be delayed. The update of the elements of the array which have yet to reach their
final form could be delayed by maintaining a global permutation matrix which is then
applied to only the elements required for the next step. Similarly, the application to
the transformations from steps 1 through ¢ — 1 could be suppressed and the P; could
be kept separately and applied incrementally in a modified forward and backward
substitution routine.

4.1.1.6. Version 5. A block generalization. In some cases it is possible
to use a block generalization of the classical LU factorization in which L and U are
lower and upper block triangular matrices, respectively. The use of such a block
generalization is most appropriate when considering systems which do not require
pivoting for stability, e.g., diagonally dominant or symmetric positive definite. This
algorithm decomposes A into a lower block triangular matrix L, and an upper block
triangular matrix U, with blocks of the size w by w (it is assumed for simplicity
that n = kw, k¥ > 1). Assume that A is diagonally dominant and consider the

factorization:
A= A11 Alg _ I 0 Al 1 A12
T\ A Ag Ly, 1 0 B ’

where A;; is a square matrix of order w. The block LU algorithm is given by:
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i) An — A7

(ii) A21 < L2y = A214n1

(lll) A22 — B= A22 - L21A12

(iv) Proceed recursively on the matrix B.

Statements (i) and (ii) can be implemented in several ways. Since A is assumed to be
diagonally dominant, explicit inversion of the diagonal blocks can be done either via
the Gauss-Jordan algorithm [143] or an LU decomposition without pivoting. In the
latter case, the computations in step (i) above are replaced by solving two triangular
systems of order w with many right-hand sides. (Due to parallel processing, the Gauss-
Jordan scheme, historically frowned upon, has recently been the subject of renewed
interest. See [34] for a discussion of its application, with appropriate modifications,
to general nonsymmetric systems of equations.)

If the Gauss—Jordan kernel is used, as is assumed below, the block LU algorithm
is more expensive by a factor of approximately (1 + 2/k2) than the classical LU
factorization which requires about 2n3 /3 operations. In this form, the above block
algorithm uses three primitives: a Gauss-Jordan inversion (or LU decomposition),
A « AB, and a rank-w update.

Note that when w = 1 this form of the algorithm becomes the BLAS2 version
based on rank-1 updates. As with Versions 1-4, which produce the classical LU
factorization, the computations of Version 5 can be reorganized so that different com-
binations of BLAS3 primitives and different shapes of submatrices are used. For
example, the main BLAS3 primitive can be changed from a rank-w update into a
matrix multiplying w row or column vectors. As noted above, the importance of such
a reorganization depends highly on the architecture in question.

4.1.2. Performance analysis. Gallivan et al. have applied the decoupling meth-
odology to Version 5 [67]. Their results demonstrate many of the performance trends
observed in the literature for the various forms of block methods. A summary of the
important points follows.

There are two general aspects of the block LU decomposition through which the
blocksize w = n/k influences the arithmetic time: the number of redundant operations
(applicable when the Gauss—Jordan approach is used); and the relationship, as a
function of w, between the performance of each of the primitives and the distribution
of work among the primitives. The redundancy factor of (1 +2/k?) and the fact that
the number of operations performed in the Gauss-Jordan primitive is an increasing
function of w cause the arithmetic time component to prefer smaller blocksizes for
small and moderately sized systems. For those systems, increasing w and therefore
decreasing k clearly exacerbates the two problems noted above to such a degree that
the effect is dominant compared to the reduction in data transfer overhead gained by
increasing the blocksize. As the order of the system increases, however, these effects
become secondary to data transfer considerations.

The data transfer overhead of the algorithm is most conveniently analyzed by
writing the algorithm’s cache-miss ratio as the weighted average of the cache-miss
ratios of the various instances of each primitive. The weights are the ratio of the
number of operations in the particular instance of the primitive to the total number of
operations required. In practice, some of the local cache-miss ratios are zero due to the
interaction between the instances of the primitives; this occurs when the remaining
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part of the matrix to be decomposed approaches the size of the cache and later
instances of primitives find an increasing proportion of their data left in cache by
earlier instances. In [67] the results are derived using the conservative assumption
of no interaction between instances of primitives. Note that without a model of
the data transfer properties of the primitives such an analysis at the algorithmic
level is impossible. This does not imply that blocksizes cannot be set effectively
based on observed performance data of the primitives for various shapes and sizes of
problems. Such a black bozr tuning approach is quite useful in practice, but it does
not provide any ezplanation as to why the performance is as observed. This can only
be done by considering the architecture/algorithm mapping of the primitives and the
implications of combining them in the manner specified by the particular version of
the factorization algorithm used.

The behavior on the interval 1 < w < v/C'S, where C'S denotes cache size, roughly
separates into three regimes. For small values of w, i.e., w < 16, the cache-miss ratio
is of the form:

1
,Uz““’YR'FTh,
2w

where 7, is proportional to 1/n and «g is a function of w which is bounded by a small
constant. This result is expected since the computations are dominated by the rank-w
update which achieves a similar cache-miss ratio. In particular, it is clear that the
data locality of a BLAS2 version, w = 1, is very poor. In the middle of the interval
of interest the cache-miss ratio is of the form:

1
L= — YR+ N2,
w

where 7 is proportional to 1/n. Finally, when w = +/C'S, the cache-miss ratio is

1
~ R+77’
HEJog R T

where 73 is proportional to 1/n. The ratio u becomes a rapidly increasing function
once w exceeds VCS until it reaches, at the point w = n, the cache-miss ratio of
the algorithm of a BLAS2-based version of the Gauss—Jordan algorithm which has a
value of approximately %. The exact point where this transition to rapidly increasing
occurs is dependent on the implementation of the Gauss—-Jordan primitive, but, any
decrease in y between w = /CS and the transition point is typically insignificant.

4.1.3. Experimental results. The various versions of the algorithms have ap-
peared in different. contexts in the literature. Here we list some representative papers
and then consider in more detail the performance of Version 5 and its relationship to
the trends predicted via the blocksize analysis presented above.

The column-oriented BLAS2 form of Version 4 was used by Fong and Jordan on
the CRAY-1 [56]. The results of using a BLAS2 form of Version 3 on the CRAY-1 and
one CPU of a CRAY X-MP were given by Dongarra and Eisenstat in [41]. Dongarra
and Hewitt discuss the use of a rank-3-based approach on four CPU’s of a CRAY
X-MP [45]. Calahan demonstrated the power of the block form of Version 3 (with
and without pivoting) on the hierarchical memory system of one CPU of a CRAY-
2. Agarwal and Gustavson have extended their work which led to single CPU block
algorithms for the IBM 3090 by considering parallel forms of the BLAS3 primitives
and LU factorization on an IBM ES/3090 model 600S [2]. In particular, they discuss
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the use of parallel block methods in a multitasking environment where the user is not
necessarily guaranteed control of all (or any fixed subset) of the six processors in the
system. Radicati, Robert, and Sguazzero have presented the results of a rank-k-based
code on an IBM 3090 multivector processor for one to six processors [149]. The block
form of Version 4 was also considered in a virtual memory setting by Du Croz et al. in
[50] and used as a model of a block LU factorization in the BLAS3 standard proposal
by Dongarra et al. [39]. Finally, Dayde and Duff have compared the performance of
the different organizations of the block computations on a CRAY-2, ETA-10P, and
IBM 3090-200/VF.
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FI1G. 8. Performance of block LU on an Alliant FX/8.

The performance trends for Version 5 predicted via the decoupling analysis sum-
marized above have been verified in [67]. Figure 8 illustrates the performance of the
block LU algorithm for diagonally dominant matrices for various blocksizes on an Al-
liant FX/8 [67]. The performance was computed using the nonblock version operation
count. The actual rate is, therefore, higher for the block methods.

The curves in Fig. 8 clearly show the trends predicted by the analysis above. The
significant improvement over BLAS2-based routines by a small amount of blocking can
be seen in the performance of the w = 8 curve and comparing it to the 7 to 10 Mflops
possible via a BLAS2-based Version 2 code or the 15 to 17 Mflops of a BLAS2-based



98 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

Version 3 code. As expected, for any fixed order of the system, performance improves
as w is increased until an optimal is reached. For small systems, increasing beyond
this value causes performance degradation due to the conflict between reducing p and
efficiently distributing work among the primitives. For larger systems, the conflict
reduces and performance is maintained until w exceeds vCS.
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FI1G. 9. Performance of double-level block LU on an Alliant FX/8.

The conflict between arithmetic time and data loading overhead minimization
which produces the shifting of the preferred blocksize as a function of n can be mit-
igated somewhat by using a double-level blocking [67]. This conflict has been delib-
erately exacerbated in these experiments by using a Fortran implementation of the
Gauss—Jordan primitive and assembler coded BLAS3 routines.

There are two basic approaches to double-level blocking: inner-to-outer and outer-
to-inner. Both require a pair of blocksizes (8, w). The outer-to-inner approach replaces
the operation of the Gauss—Jordan primitive on a system of order w with a block LU
factorization using the inner blocksize . The inner-to-outer approach begins with a
block LU factorization with blocksize # which is determined largely by the arithmetic
time analysis and which is typically smaller than the single-level load analysis would
recommend. Several rank-6 updates are then grouped together into a rank-w in order
to improve the data loading overhead. The decoupling methodology can be used to
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show that these techniques do mitigate the conflict between reducing the arithmetic
time component and the data loading overhead (see [67] for details). Figure 9 demon-
strates that the use of inner-to-outer form of double-level blocking can indeed improve
performance. Note that that double-level version yields performance higher than all
of the single-level implementations of Fig. 8 over the entire interval.

4.2. Distributed-memory algorithms. Our objective here is to describe the
effects that the data-storage and pivoting schemes have on the efficiency of the LU
factorization of a dense matrix A = (a;;) on distributed memory systems. The related
parallel Cholesky schemes will not be discussed in this section; for an example, see
Heath [88]. We also describe some LU-like factorization schemes that are useful on
distributed memory and hybrid architectures.

4.2.1. LU factorization. A number of papers have appeared in recent years
describing various parallel LU factorization schemes on such architectures, e.g., see
Ipsen, Saad, and Schultz [104], Chu and George [28], Geist and Heath [77], [78], and
Geist and Romine [79]. We will concentrate here only on the work of Geist and
Romine.

Consider the two basic storage schemes: storage of A by rows and by columns.
The row storage case is considered first. Adopting the terminology of Geist and
Romine [79], we refer to the following scheme as RSRP, Row Storage with Row Piv-
oting.

RSRP:
each processor executes the following,
dok=0,n-1

determine row pivot

update permutation vector

if (I own pivot row)
fan-out(broadcast) pivot row

else
receive pivot row

for (all rows ¢ > k that I own)
ik = k[ Ogk
doj=k+1,n-1

Q35 = 5 — AigOugj
enddo
enddo.

In most of the early work, row storage for the coefficient matrix was chosen
principally because no efficient parallel algorithms were then known to exist for the
subsequent forward and backward sweeps if the coefficient matrix were to be stored by
columns. But, as discussed earlier, recent triangular solvers for distributed memory
multiprocessors have removed the main reason for preferring row storage. Next, the
Column Storage with Row Pivoting (CSRP) scheme is given by:

CSRP:
each processor executes the following
dok=0,n-1

if (I own column k)
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determine pivot row
interchange
doi=k+1,n-1
ik = Qik [k
broadcast the column just computed and pivot index

else

receive the column just computed and pivot index

interchange

for (all columns j > k that I own)
doi=k+1,n-1

Qij = Q5 — AikQkj
enddo
enddo.

A modification of RSRP, which we refer to as RSCP, Row Storage with Column
Pivoting, consists of searching the current pivot row for the element with maximum
modulus, and then exchanging columns to bring this element to the diagcnal. The
RSCP algorithm can be readily seen as nothing more than the dual of algorithm CSRP.
Geist and Heath [78] indicate that both RSCP and CSRP yield essentially identical
speedup on an Intel iPSC hypercube. In fact, Geist and Heath conclude that, in the
absence of such techniques as loop unrolling, LU factorization with partial pivoting is
most efficient when pipelining is used to mask the cost of pivoting. In particular, the
two schemes that can most easily be pipelined are: pivoting by interchanging rows
when the matrix is distributed across the processors by columns (algorithm CSRP),
and pivoting by interchanging columns when the matrix is distributed across the
processors by rows (algorithm RSCP).

4.2.2. Pairwise pivoting. Gaussian elimination with pairwise pivoting is an
alternative to LU factorization which is attractive on a variety of distributed memory
architectures including systolic arrays since it introduces parallelism into the pivoting
strategy.l® Such a pivoting strategy dates back to Wilkinson’s work on Gaussian
elimination using the ACE computer with its limited amount of memory [62]. The
main idea is rather simple. If uT = [u1,+-+,us] and vT = [v1,---,vy] are two row
vectors, then we can choose a stabilized elementary transformation

1 0
s=(3 0)r

so as to annihilate either p; or vy, whichever is smaller in magnitude. Here, P is
either the identity of order 2 or (eg,e;) so that

g u” _( m p2 o i
vT 0 Dy - Dy J°

One of the many possible annihilation schemes for reducing a nonsingular matrix A
of order n to upper triangular form is illustrated in Fig. 10 for n = 8. (The elements
marked with ¢ can all be eliminated simultaneously on step .)

Such a triangularization scheme requires 2n—3 stages in which each stage consists
of a maximum of |n/2] independent stabilized transformations. It is ideally suited

10 pajrwise pivoting can also be useful on shared memory machines to break the bottleneck caused
by partial pivoting discussed earlier.
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F1G. 10. Annihilation scheme for n = 8.

for a ring of processors [157] or other systolic arrays [80]. Note, however, that it does
not produce an LU factorization of the matrix. L is replaced by a product of matrices
in which each one can be readily inverted. One possible drawback of this pivoting
strategy is that the upper bound on the growth factor is the square of that of partial
pivoting [168], [169]. Our extensive numerical experiments indicate that, as is the case
with partial pivoting, such growth is rarely encountered in practice. In that sense, our
experience contradicts some conclusions of Trefethan and Schreiber [184] indicating
that some further work is required to reconcile this seeming inconsistency.

The above annihilation scheme was originally motivated by a parallel Givens
reduction introduced in [161] and now used extensively in applications such as signal
processing for recursive least squares computations. This parallel Givens reduction
was later generalized for a ring of processors [158].

4.2.3. A hybrid scheme. In order to design factorization schemes for multi-
cluster machines, such as Cedar, in which each cluster is a parallel computer with
tightly coupled processors, we must combine the strategies outlined above for both
shared and distributed memory models. Breaking the problem among the clusters
so as to minimize intercluster communication while maintaining load balancing is an
issue faced by users of distributed memory architectures. Cedar’s advantage is the
existence of a shared global memory.

The shared memory block LU algorithm and the BLAS3 primitives, discussed
above, are concerned with achieving high performance on an architecture like a single
Cedar cluster. While these algorithms and kernels form an invaluable building block
for algorithms on the Cedar system and the conclusions of the analysis are applicable
over a fairly wide range of multivector architectures, care must be taken not to gen-
eralize these conclusions too far. For example, on a single Cedar cluster (and similar
architectures) routines for many of the basic linear algebra tasks encountered in prac-
tice can be designed as a series of calls to BLAS3 kernels and BLAS2-implemented
algorithms thereby masking all of the architectural considerations of parallelism, vec-
torization, and communication. This method of algorithm design, however, cannot
be generalized to all hierarchical shared memory machines. One of the main reasons
for this is the fact that an algorithm designed via this method may have problems
with an inappropriate choice of task granularity and the resulting excessive com-
munication requirements. The need to introduce double-level blocking forms of the
algorithm indicated the onset of such a problem on a Cedar cluster: the attempt to
spread the BLAS2-implemented kernel across the processors in a cluster introduced
serious limitations on the performance of the block algorithm. When this problem
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becomes extreme, other forms of the algorithm must be used which typically involve
reorganizing the block computations to more efficiently map the algorithm to the
architecture via tasks of coarser granularity with more attention focused on minimiz-
ing the required communication. Typically this involves some notion of pipelining
(possibly multidimensional) at the block level, e.g., see [14], [157].

An example of such a situation is the solution of a dense linear system using more
than one cluster of Cedar (possibly a subset of the total number available). In this
case the algorithm design must take into account that intercluster communication is
rather costly. There are several possible designs for such an algorithm. One of the
most straightforward is based on the outer-to-inner double-level block form presented
above. The block computations can be pipelined across clusters using the necessary
Cedar synchronization primitives. A second possibility uses the control structure of
the pipelined Givens factorization on a ring of processors described in [158]. A block
of rows rather than a single row is communicated between processors and the row
rotation is replaced with a block Gaussian elimination procedure. The remainder of
this section discusses another algorithm, due to Sameh [157], for solving dense linear
systems on a multiple cluster architecture which requires a relatively small amount of
intercluster communication. For simplicity a four-cluster Cedar is assumed.

Let A, a nonsingular matrix of order n, be partitioned as

AT = (Afv Agv Ag’ A’z];)

where A; resides in the ith cluster memory. The algorithm consists of two major
stages. In the first stage, using a block-LU scheme with partial pivoting, each A; is
factored into the form

PA; = LiU;

for i = 1,2, 3,4 where P; is a permutation, L; is unit lower triangular, and U; is upper
trapezoidal.

Assuming, without loss of generality, that each U; has a nonsingular upper trian-
gular part, the factorization of A may be completed in the second stage which consists
of 3n/4 computational waves pipelined across the four clusters. These computational
waves comprise three groups of n/4 waves. During the kth group the latest values for
the rows of Uy are used by clusters k + 1 to 4 in a pipelined fashion to further reduce
their segments of the decomposition. It should be noted that cluster k is idle during
the kth group of waves and the remainder of the algorithm since the other clusters
will update the rows of Uy that it has produced and placed in global memory. (For
example, cluster 1 only performs the initial reduction of A; and is then released for
other tasks within the application code of which solving the system is a part or the
tasks of other users since Cedar is a multiuser system.) The first group of n/4 com-
putational waves which use the rows of U; produced by cluster 1 is described below.
The pattern of the remaining two groups follows trivially.

Wave 1. Let Uy = [,uic ;]- The first row of U; is transmitted via the global
memory to cluster 2 where it is used, with pairwise pivoting, to annihilate the first
element of the (possibly new due to pairwise pivoting) first row of Us, uf’l. The
updated first row of U; is then transmitted to cluster 3 so as to annihilate uil and
then to cluster 4 where ,u‘il is eliminated with the final version of the first row of U;
residing in global memory.



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 103

As soon as #’f,1 is annihilated in cluster k, kK = 2, 3,4, the nonzero portion of U
is a n/4 x (n — 1) upper Hessenberg matrix, e.g., for n = 24 it is of the form

z
x

8 8 8
8 8 8 8
8 8 8 8 8
8 8 8 8 88
8 88 888
888 888

The cluster then proceeds to reduce Uy to upper trapezoidal form through a pipelined
Gaussian elimination process using pairwise pivoting.

Waves 2 < j < n/4. Similar to the first wave, the jth row of U; is transmitted
to clusters 2, 3, and 4 to annihilate “ij’ p3;, and pf ;, respectively. After these
annihilations occur, each cluster reduces Ui, which at this point is upper Hessenberg,
to upper trapezoidal form.

Note that after this first group of computational waves U; is in its final form in
global memory. The matrix U, is in its penultimate form since it will only change due
to the pairwise pivoting done by clusters 3 and 4 in the second group of computational
waves. This implies that cluster 2 is now available for other work. The second and
third computational groups proceed in the same way as the first did with each cluster
fetching the appropriate row from the source matrix, U, followed by Us, transforming
Uy to upper Hessenberg form and then reducing it back to an upper trapezoidal
matrix. This basic form of the algorithm possesses many levels of communication and
computation granularity and can be modified to improve utilization of a multicluster
architecture. For example, .f the whole Cedar machine were devoted to such a dense
solver, simple interleaving of block rows of A would enhance load balancing among
the clusters.

4.3. Block tridiagonal linear systems. Block tridiagonal systems arise in nu-
merous applications — one example being the numerical handling of elliptic partial
differential equations via finite element discretization. Often, solving such linear sys-
tems constitutes the major computational task. Hence, efficient algorithms for solving
these systems on vector and parallel computers are of importance. Using block ver-
sions of Gaussian elimination for block tridiagonal systems seems a natural extension
of the efficient dense solvers discussed above. Some of the early work may be found in
[191] and the survey by Heller [90]. A more recent study of block Gaussian elimination
on the Alliant FX/8 for solving such systems [11] indicates the importance of efficient
dense solvers and the underlying BLAS3 as components for block tridiagonal solvers.

If the size of the blocks is small, i.e., a narrow-banded system, such forms of
Gaussian elimination offer little potential vectorization and parallelization. Similar to
the above discussions for banded triangular systems, a partitioning scheme, referred
to as the spike algorithm below, for handling tridiagonal systems on vector or parallel
computers was introduced in [161], where Givens reductions were used to handle
the diagonal blocks. Later, Wang [192] considered the simpler problem of diagonally
dominant systems and gave essentially the same form of the algorithm modified to use
Gaussian elimination (made possible by the assumption of diagonal dominance) and
a different method for the elimination of the spikes. Several studies have generalized
this partitioning scheme to narrow-banded systems, e.g., see [46], [47], [120], [132] and
the recent book by Ortega [137].
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The main idea of this partitioning scheme may be outlined as follows. Let the
linear system under consideration be denoted by Az = f, where A is a banded diag-
onally dominant matrix of order n. It is assumed that the number of superdiagonals
m & n is equal to the number of subdiagonals and that, for simplicity of presenta-
tion, n = pq. On a sequential machine such a system would be solved via Gaussian
elimination, see [38] for example. The algorithm described below assumes p CPU’s of
a CRAY X-MP or CRAY-2, or a Cedar system with p clusters. Here, for the sake of
illustration, p is taken to be 4.

Let the matrix A be partitioned into the block-tridiagonal form with block row
[C;, A;, B;] and conformally z and f, e.g.,

A1 B1 0 0 T f1
Co A2 By 0 z2 | _ | f2
0 C3 As; B z3 || fs |’
0 0 C4 A4 T4 f4

where each 4;,1 < i < p, is a banded matrix of order ¢ = n/p and bandwidth 2m + 1

(same as A),
0 0
b = ( B; 0 )

{0 Cina
Cir1 = (0 0 )

1 < i < p-1, in which B; and C’i+1 are lower and upper triangular matrices,
respectively, each of order m.
The algorithm consists of three stages.

and

Stage 1. If both sides of Az = f were premultiplied by diag(47", A%, -+, A1)
we obtain a system of the form

Iq E1 0 0 T g1
F2 Iq Eg 0 T2 _ g2
0 Fs I, E;s z3 | | 93 |’
0 0 F4 Iq Ty g4

where
E;, = ( E;0), F; = (0,F),

in which E; and F; are matrices of m columns given by

s _1 0
b= ()

and

and will, in general, be full.
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In stage 1, E;, F;, and g; are obtained by solving the associated linear systems.
In each cluster 2 < k < 4 we solve 2m + 1 linear systems of the form Axv = 7,
while clusters 1 and 4 each solves m + 1 linear systems of the same form. Note that
no intercluster communication is needed.

The method of solution used on each cluster (Alliant FX/8) for these 4 systems
with multiple right-hand sides, varies with m. For m < 8 a variant of the spike
algorithm is used. For 8 < m < 16 (approximately), block cyclic reduction is the
most effective and for larger m a block Gaussian elimination is recommended [11].

Stage 2. Let E; and F; be partitioned, in turn, as follows

X P R Si
Fp=1| M |, E=/|[N|],
Qi T;

where P;, Q;, S;, and T; € R™>™. Also, let g; and z; be conformally partitioned:

hai—2 Y2i—2
g9; = w; y Ty = 24
hai—1 Y2i—1

The structure of the resulting partitioned system is such that the unknown vectors
yj, 1 < j <6 (each of order m) are disjoint from the rest of the unknowns. In other
words, the m equations above and the m equations below each of the 3 partitioning
lines form an independent system of order 6m, which is referred to as the reduced
system Ky = h, \

Im Tl a1 hl
P, I, Sa Y2 ha
Q2 I, T y3 | _ | hs
Py Iy S3 ys || ha

Qs I, T3 Ys hs

Py I Ye he

Since A is diagonally dominant, it can be shown that the reduced system is also
diagonally dominant and hence there are a number of options available for solving it.
Typically, it is small enough to be sent to a single Cedar cluster and solved with an
appropriate algorithm.

When it is large enough to warrant a multicluster approach the reduced-system
approach could be applied again. Note, however, that the bandwidth of the system
has doubled compared to the original system. Block-column permutations can reduce
the bandwidth back to its original value but this destroys diagonal dominance and
pivoting will usually be required to solve the permuted reduced system. It is also
possible to use all of the clusters to solve the reduced system via an iterative technique
such as Orthomin(k) [47].

Finally, if the original linear system is sufficiently diagonally dominant, we can
ignore the matrices @; and S; as ||S;|loo and ||Q;|loo are much smaller than ||T;|| and
|| P;|loo, Tespectively. This results in a block-diagonal reduced system in which each

block is of the form
I, Ty )
Pk+1 I,
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for1 <k<3.

Stage 3. Once the y;’s are obtained, the rest of the components of the solution
vector of the original system may be retrieved as follows:

2k = wk — Mk y2k—-3 — Nk Y2k,
for 1 <k <4,
Yo = ho — S1y2,
and

yr = hr — Q4 ys.

Provided that the y;’s are stored in the global memory, this stage requires no inter-
cluster communication.

In addition to reporting on the performance results for this algorithm on the Al-
liant FX/8, [11] also reports on the performance achieved on four CPU’s of a CRAY
X-MP/416. Using four partitions on a system of order 16384 with blocksize 32, a
speedup relative to itself of 3.8 was achieved indicating an efficient use of the micro-
tasking capabilities and memory system of the machine. The speedup compared to a
block LU algorithm on one CPU was approximately 2.

There are several modifications and reorganizations possible of the spike algorithm
for solving banded systems discussed above. These can be used to alter the form of
the algorithm to more efficiently map to a variety of shared memory architectures.
For one such alternative see [155]. Also, if the system is symmetric positive definite,
Dongarra and Johnsson [46] have discussed how the algorithm can be modified to
obtain a reduced system that is symmetric positive definite as well.

An analysis of the parallel and numerical aspects of a two-sided Gaussian elimi-
nation for solving tridiagonal systems has been given recently by van der Vorst [188].

The work by Johnsson [108], [109] is representative of organization of concurrent
algorithms for solving tridiagonal and narrow banded systems on distributed memory
machines with various connection topologies, e.g., two-dimensional arrays, shuffle-
exchange networks and boolean cubes. Fox et al. have also considered the problem of
banded systems on hypercubes. In [60], they provide a detailed performance analysis
of the problem.

5. Least squares. In solving the linear least squares problem:
(10) min || f — Az,

where A is an m x n matrix of rank n, (m > n), it is often necessary to obtain the
factorization,

(1) QA=(’§>,

in which @ is an orthogonal matrix and R is a nonsingular upper triangular ma-
trix of order n. Such a factorization may be realized on multiprocessors via plane
rotations, see [48], [158], and [161], elementary reflectors, see [16] and [158], or the
Modified Gram—-Schmidt algorithm, see [9]. (Although the latter algorithm is more
commonly associated with the calculation of an orthogonal basis of the range of A.)
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In the section concerning shared memory multiprocessors, block versions of House-
holder reduction and the modified Gram-Schmidt algorithm are presented, as well
as a pipelined Givens reduction for updating matrix factorization. For distributed
memory multiprocessors, organization of Givens and Householder reductions on a
ring of processors convey the main ideas needed for implementation on hypercubes
and locally connected distributed memory architectures.

5.1. Shared-memory algorithms.

5.1.1. A block Householder reduction. If A = A; = [a?),agl),---,ag)],
then it is possible to generate elementary reflectors P, = I — akukuf, k=1,---,n,
such that forming Py Ay produces the kth row of R and the (m — k) x (n — k) matrix
Agt1 = [a,(c’fll) ,--+,a¥*™] by annihilating all but the first element in a,(ck) . The
two basic tasks in such a procedure are [170]: (i) generation of the reflector Py such
that Pka,(ck) = (pkk,0,--,0)T, k = 1,2,---,n; and (ii) updating the remaining (n —
k) columns, Pkagk) = (pkj,ag-kH)T)T, j =k+1,---,n. On a parallel computer,
reflector Py4; may be generated even before task (ii) for stage k is finished. While
an organization that allows such an overlap is well suited for some shared memory
machines and for a distributed memory multiprocessor such as a ring of processors,
e.g., see [158], it does not offer the data locality needed in a hierarchical shared
memory system such as that of an Alliant FX/8.

A block scheme proposed by Bischof and Van Loan [16], see also the related
papers [15], [19], [36], [146], [163], offers such data locality. This scheme depends
on the fact that the product of k elementary reflectors Qx = (Pg, - - -, P2, P1), where
P; = I, — w;w}, can be expressed as a rank-k update of the identity of order m, i.e.,

Qx = I, — ViUE,

where V) = Uy = w1, V; = (P;Vj-1,w;) and U; = (Uj_1,u; ), for j =2,--- k.
The block algorithm may be described as follows. Let the m x n matrix (m > n)
whose orthogonal factorization is desired be given by

A = [Al, B],

where A is of rank n, and A; consists of the first £ columns of A. Next, proceed with
the usual Householder reduction scheme by generating the k elementary reflectors Py
through Py such that

R
(pk...pzpl)Alz( 01 >,

where R; is upper triangular of order k without modifying the matrix B. If we accu-
mulate the product Qy = Px--- Py =1 — VkUE as each P; is generated, the matrix B
is updated via

B — (I -V UF)B

which relies on the high efficiency of one of the most important kernels in BLAS3,
that of a rank-k update. The process is then repeated on the modified B with another
well-chosen block size, and so on until the factorization is completed. It may also be
desirable to accumulate the various Q%’s, one per block, to obtain the orthogonal
matrix, @), that triangularizes A.
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FI1G. 11. Performance of block Householder algorithm on an Alliant FX/8.

It was shown in [16] that this block algorithm is as numerically stable as the
classical Householder scheme. The block scheme, however, requires roughly (1 +
2/p) times the arithmetic operations needed by the classical sequential scheme, where
p = n/k is the number of blocks (assuming a uniform block size throughout the
factorization). Bischof and Van Loan report the performance of the block algorithm
at 18 Mflops for large square matrices (n = 1000) on an FPS-164/MAX with a
single MAX board and note that an optimized LINPACK QR running on an FPS-
164 without MAX boards would achieve approximately 6 Mflops. An example, of the
performance achieved by a BLAS3 implementation of the block Householder algorithm
(PQRDC) compared to a BLAS2 version (DQRDC) on an Alliant FX/8, [85], is
shown in Fig. 11. The performance shown is computed using the nonblock algorithm
operation count.

Most recently, Schreiber and Van Loan have considered a more efficient storage
scheme for the product of Householder matrices [164]. They describe the compact
WY representation of the orthogonal matrix ¢ which is of the form

Q=I+YTYT,

where Y € ®™*" is a lower trapezoidal matrix and T' € R™*™ is a upper triangular
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matrix. The representation requires only mn storage locations and can be computed
in a stable fashion.

5.1.2. A block-modified Gram—Schmidt algorithm. The goal of this algo-
rithm is to factor an m x n matrix A of maximal rank into an orthonormal m x n
matrix  and an upper triangular R of order n where m > n and A is of maximal
rank. Let A be partitioned into two blocks A; and B where A; consists of w columns
of order m, with ) and R partitioned accordingly:

(,5) = @ur) (Fir Fe ).

The algorithm is given by:

i) A1 = Q:1Ru,
(i) Ri2 = QTB,
(111) B1 = B - Q1R12-
(iv) Apply the algorithm recursively to produce B; = PRys.

If n = kw, step (i) is performed k times and steps (ii) and (iii) are each performed
k — 1 times.

Three primitives are needed for the jth step of the algorithm: a QR decompo-
sition (assumed here to be a modified Gram—Schmidt routine — MGS); a matrix
multiplication AB; and a rank-w update of the form C « C — AB. The primitives
allow for ideal decomposition for execution on a limited processor shared memory ar-
chitecture. The BLAS2 version of the modified Gram-Schmidt algorithm is obtained
when w = 1 or w = n, and a double-level blocking version of the algorithm is derived
in a straightforward manner by recursively calling the single-level block algorithm to
perform the QR factorization of the m X w matrix A;.

Jalby and Philippe have considered the stability of this block algorithm [106] and
Gallivan et al. have analyzed the performance as a function of blocksize [67]. Below,
a summary of this blocksize analysis is presented along with experimental results on
an Alliant FX/8 of single and double-level versions of the algorithm.

The analysis is more complex than that of the block LU algorithm for diagonally
dominant matrices discussed above, but the conclusions are similar. This increase in
complexity is due to the need to apply a BLAS2-based MGS primitive to an m x w
matrix at every step of the algorithm. As with the block version of the LU factoriza-
tion with partial pivoting, this portion of each step makes poor use of the cache and
increases the amount of work done in less efficient BLAS2 primitives. The analysis of
the arithmetic time component clearly shows that the potential need for double-level
blocking is more acute for this algorithm than for the diagonally dominant block LU
factorization on problems of corresponding size.

The behavior of the algorithm with respect to the number of data loads can be
discussed most effectively by considering approximations of the cache-miss ratios. For
the interval 1 < w <1~ CS/m the cache-miss ratio is

1
~ — + 1,
K % M

where 7, is proportional to 1/n, which achieves its minimum value m/(2CS) at w = [.
Under certain conditions the cache-miss ratio continues to decrease on the interval
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| < w < n where it has the form

1 N w1l 1
”N%(l_ﬁ)+§(ﬁ+ﬁ§>+’”’

where 7, is proportional to 1/n, which reaches its minimum at a point less than VCS
and increases thereafter, as expected. (See [67] for details.) When w = n the cache-
miss ratio for the second interval is 1/2 corresponding to the degeneration from a
BLAS3 method to a BLAS2 method. The composite cache-miss ratio function over
both intervals behaves like a hyperbola before reaching its minimum; therefore the
cache-miss ratio does not decline as rapidly in latter parts of the interval as it does
near the beginning.
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FIG. 12. Performance of one-level block MGS on an Alliant FX/8.

A load analysis of the double-level algorithm shows that double-level blocking
either reduces or preserves the cache-miss ratio of the single-level version while im-
proving the performance with respect to the arithmetic component of time.

Figures 12 and 13 illustrate, respectively, the results of experiments run on an
Alliant FX/8, using single-level and double-level versions of the algorithm applied to
square matrices. The cache size on this particular machine is 16 K double precision
words.
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For the range of n, the order of the matrix, shown in Fig. 12, the single-level
optimal blocksize due to the data loading analysis starts at w = 64, decreases to w = 21
for n = 768, and then increases to w = 28 at n = 1024. Analysis of the arithmetic time
component recommends the use of a blocksize between w = 16 and w = 32. Therefore,
due to the hyperbolic nature of y and the arithmetic time component analysis it is
expected that the performance of the algorithm should increase until w ~ 32. The
degradation in performance as w increases beyond this point to, say w = 64 or 96,
should be fairly significant for small and moderately sized systems due to the rather
large portion of the operations performed by the BLAS2 MGS primitive.
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FIG. 13. Performance of two-level block MGS on an Alliant FX/8.

The results of the experiments confirm the trends predicted by the theory. The
version using w = 32 is clearly superior. The performance for w = 8 is uniformly
dismal across the entire interval since the blocksize is too small for both data loading
overhead and arithmetic time considerations. Note that as n increases the gap in
performance between the w = 32 version and the larger blocksize versions narrows.
This is due to both arithmetic time considerations as well as data loading. As noted
above, for small systems, the distribution of operations reduces the performance of
the larger blocksize version; but, as n increases, this effect decreases in importance.
(Note that this narrowing trend is much slower than that observed for the block LU
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algorithm. This is due to the fact that the fraction of the total operations performed
in the slow primitive is w/n for the block Gram-Schmidt algorithm and only w?/n?
for the block LU.) Further, for larger systems, the optimal blocksize for data loading
is an increasing function of n; therefore, the difference in performance between the
three larger blocksizes must decrease.

Figure 13 shows the increase in performance which results from double-level block-
ing. Since the blocksize indicated by arithmetic time component considerations is
between 16 and 32 these two values were used as the inner blocksize . For § = 16
the predicted outer blocksize ranges from w = 64 up to w = 128; for § = 32 the
range is w = 90 to w = 181. (Recall that the double-level outer blocksize is influ-
enced by the cache size only by virtue of the fact that v/C'S is used as a maximum
cutoff point.) For these experiments the outer blocksize of w = 96 was used for two
reasons. First, it is a reasonable compromise for the preferred outer blocksize given
the two values of 6. Second, the corresponding single-level version of the algorithm,
ie., (0,w) = (96,96), did not yield high-performance and a large improvement due
to altering 6 would illustrate the power of double-level blocking. (To emphasize this
point the curve with (6,w) = (96,96) is included.) The curves clearly demonstrate
that double-level blocking can improve the performance of the algorithm significantly.
(See [67] for details.)

5.1.3. Pipelined Givens rotations. While the pipelined implementation of
Givens rotations is traditionally restricted to distributed memory and systolic type
architectures, e.g., [80], it has been successful on shared memory machines in some
settings. In [48] a version of the algorithm was implemented on the HEP and com-
pared to parallel methods based on Householder transformations. Rather than using
the standard row-oriented synchronization pattern, the triangular matrix R was parti-
tioned into a number of segments which could span row boundaries. Synchronization
of the update of the various segments was enforced via the HEP’s full-empty mech-
anism. The resulting pipelined Givens algorithm was shown to be superior to the
Householder based approaches.

Gallivan and Jalby have implemented a version of the traditional systolic algo-
rithm (see [80]) adapted to efficiently exploit the vector registers and cache of the
Alliant FX/8. The significant improvement in performance of a structural mechanics
code due to Berry and Plemmons, which uses weighted least squares methods to solve
stiffness equations, is detailed in [10] (see also [144], [145]).

The hybrid scheme for LU factorization discussed earlier for cluster-based shared
memory architectures converts easily to a rotation-based orthogonal factorization, see
[157]. Chu and George have considered a variation of this scheme for shared memory
architectures [31]. The difference is due to the fact that Sameh exploited the hybrid
nature of the clustered memory and kept most of the matrix stored in a distributed
fashion while pipelining between clusters the rows used to eliminate elements of the
matrix. Chu and George’s version keep these rows local to the processors and move
the rows with elements to be eliminated between processors.

5.2. Distributed memory multiprocessors.

5.2.1. Orthogonal factorization. Our purpose in this section is to survey par-
allel algorithms for solving (10) on distributed memory systems. In particular, we
discuss some algorithms for the orthogonal factorization of A. Several schemes have
been proposed in the past for the orthogonal factorization of matrices on distributed
memory systems. Many of them deal with systolic arrays and require the use of O(n?)
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FIG. 14. Givens reduction on a three processor ring.

processors, where n is the number of columns of the matrix. For instance, Ahmed,
Delosme, and Morph [4], Bojanczyk, Brent, and Kung [17], and Gentleman and Kung
[80] all consider Givens reduction and require a triangular array of O(n?) processors,
while Luk [125] uses a mesh connected array of O(n?) processors. Sameh [158], on
the other hand, considers both Givens and Householder reduction on a ring of pro-
cessors in which the number of processors is independent of the problem size. Each
processor possesses a local memory with one processor only handling the input and
output. Figure 14 shows the organization of Givens reduction on three processors for
a rectangular matrix of seven rows and five columns on such a ring. Each column
depicts the operations taking place in each processor. An entry ij, j < %, indicates
the rotation of rows ¢ and j so as to annihilate the ith element of row j.

Recall that the classical Householder reduction may be described as follows. Let
agk) denote the jth column of Ay, where Ayi; = QxAx in which Q = diag(Iy, Py).
Here, Ay is upper triangular in its first (k — 1) rows and columns with Py being the
elementary reflector of order (m — k + 1) that annihilates all the elements below the
diagonal of the kth column of Ax. Then Householder reduction on the same matrix
and ring architecture as above may be organized as shown in Fig. 15. Here, a P
alone indicates generation of the kth elementary reflector.

Modi and Clarke [134] have suggested a greedy algorithm for Givens reduction
and the equivalent ordering of the rotations, but do not consider a specific architecture
or communication pattern. Cosnard, Muller, and Robert [32] have shown that the
greedy algorithm is optimal in the number of timesteps required. Theoretical studies
and comparisons of such algorithms for Givens reduction have been given by Pothen,
Somesh, and Vemulapati [148] and by Elden [54]. We now briefly survey some of these
algorithms that have been implemented on current commercially available distributed
memory multiprocessors.

In chronological order, we begin with the work of Chamberlain and Powell [25].
In this study the coefficient matrix A is stored by rows across the processors in the
usual wrap fashion and most of the rotations involve rows within one processor in a
type of divide-and-conquer scheme. However, it is necessary to carry out rotations
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FIG. 15. Householder reflectors on a three processor ring.

involving rows in different processors, which they call merges. They describe two
ways of implementing the merges and compare them in terms of load balance and
communication overhead. Numerical tests were made on an Intel iPSC hypercube with
32 processors based on 80287 floating point coprocessors to illustrate the practicality of
their algorithms. The schemes used here are very similar the basic approach suggested
originally by Golub, Plemmons, and Sameh [81] and developed further in [145]. We
note that Katholi and Suter [112] have also adopted this approach in developing an
orthogonal factorization algorithm for shared memory systems, and have performed
tests on a 30 processor Sequent Balance computer.

Chu and George [30] have also suggested and implemented algorithms for perform-
ing the orthogonal factorization of a dense rectangular matrix on a hypercube multi-
processor. Their recommended scheme involves the embedding of a two-dimensional
grid in the hypercube network, and their analysis of the algorithm determines how the
aspect ratio of the embedded processor grid should be chosen in order to minimize the
execution time or storage usage. Another feature of the algorithm is that redundant
computations are incorporated into a communication scheme which takes full advan-
tage of the hypercube connection topology; the data is always exchanged between
neighboring processors. Extensive computational experiments which are reported by
the authors on a 64-processor Intel hypercube support their theoretical performance
analysis results.

Finally in this section we mention two studies which directly compare the results
of implementations of Givens rotations with Householder transformations on local
memory systems. Pothen and Raghavan [147] have compared the earlier work of
Pothen, Somesh, and Vemulapati [148] on a modified version of a greedy Givens
scheme with a standard row-oriented version of Householder transformations. Their
tests seem to indicate that Givens reduction is superior on such an architecture. Kim,
Agrawal, and Plemmons [113], however, have developed and tested a row-block version
of the Householder transformation scheme which is based upon the divide-and-conquer
approach suggested by Golub, Plemmons, and Sameh [81] (see also [29]). The tests
by Kim, Agrawal, and Plemmons on a 64-processor Intel hypercube clearly favor their
modified Householder transformation scheme.

5.2.2. Recursive least squares. In recursive least squares (RLS) it is required
to recalculate the least squares solution vector z when observations (i.e., equations)
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are successively added to or deleted from (10) without resorting to complete refactor-
ization of the matrix A. For example, in many applications information continues to
arrive and must be incorporated into the solution z. This is called updating. Alter-
natively, it is sometimes important to delete old observations and have their effects
excised from z. This is called downdating. Applications of RLS updating and down-
dating include robust regression in statistics, modification of the Hessian matrix in
certain optimization schemes, and in estimation methods in adaptive signal processing
and control.

There are two main approaches to solving RLS problems; the information matriz
method based on modifying the triangular matrix R in (11), and the covariance matriz
method based instead on modifying the inverse R~!. In theory, the information matrix
method is based on modifying the normal equations matrix A7 A, while the covariance
matrix method is based on modifying the covariance matriz

P=(ATA)".

The covariance matrix P measures the expected errors in the least squares solution
z to (10). The Cholesky factor R=! for P is readily available in control and signal
processing applications.

Various algorithms for modifying R in the information matrix approach due to
updating or downdating have been implemented on a 64-node Intel hypercube by
Henkel, Heath, and Plemmons [92]. They make use of either plane rotations or hy-
perbolic type rotations.

The process of modifying least squares computations by updating the covariance
matrix P has been used in control and signal processing for some time in the context
of linear sequential filtering. We begin with estimates for P = R7!R~7T and =,
and update R~! to R~! and z to Z at each recursive timestep. Recently Pan and
Plemmons [140] have described the following parallel scheme.

Algorithm (Covariance Updating). Given the current least squares estimate
vector z, the current factor L = R™T of P = (AT A)~! and the observation y'z = ¢
being added, the algorithm computes the updated factor L = R™! of P and the

updated least squares estimate vector Z as follows:
1. Form the matrix vector product

(12) a = Ly.

2. Choose plane rotations @;, to form

(13) N sl B I R RV

and update L

(14) Qm--~Q1[0LT]=[ ET}-
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As the recursive least squares computation proceeds, L replaces L, & replaces ,
a new equation is added, and the process returns to step 1. An efficient parallel im-
plementation of this algorithm on the hypercube distributed-memory system making
use of bidirectional data exchanges and some redundant computation is given in [93].
Steps 1 and 3 are highly parallelizable and effective implementation details of step 2
on a hypercube are given in [93].

Table 2 shows the speedup and efficiency on an iPSC/2 hypercube (4 MB of
memory for each processor) for a single phase of the algorithm on a test problem of
size n = 1024. One complete recursive update is performed. Here, the speedup is
given by,

time on 1 processor
time on p processors’

speedup =

with the corresponding efficiency,

speedup
PR

efficiency =
An alternative hypercube implementation of the RLS scheme of Pan and Plem-
mons [140] has been given by Chu and George [31].

TABLE 2
Speedup and efficiency on the iPSC/2 for a problem of size n = 1024.

Number of Processors Speedup Efficiency

p

1 1 1

4 3.90 0.98
16 15.06 0.94
64 48.60 0.76

6. Eigenvalue and singular value problems.

6.1. Eigenvalue problems. Solving the algebraic eigenvalue problem, either
standard Az = Az, or generalized Az = ABz, is an important and potentially time-
consuming task in numerous applications. In this brief review, only the dense case is
considered for both the symmetric and nonsymmetric problems. Most of the parallel
algorithms developed for the dense eigenvalue problem have been aimed at the stan-
dard problem. Algorithms for handling the generalized eigenvalue problem on shared
or distributed memory multiprocessors are very similar to those used on sequential
machines. Reduction of the symmetric generalized eigenvalue problem to the stan-
dard form is achieved by a Cholesky factorization of the symmetric positive definite
matrix B which is well-conditioned in most applications. This reduction process can
be made efficient on shared memory multiprocessors, for example, by adopting a block
Cholesky scheme similar to the block LU decomposition discussed earlier to obtain
the Cholesky factor L of B and to explicitly form the matrix L YAL™T using the
appropriate BLAS3. For the nonsymmetric generalized eigenvalue problems where
the matrix B is known to be often extremely ill-conditioned in many applications,
there is no adequate substitute to Moler and Stewart’s Q Z-scheme [136]. On a shared
memory multiprocessor, the most efficient stage is the initial one of reducing B to the
upper triangular form. Dispensing thus with the generalized eigenvalue problems, the
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remainder of the section will be divided between procedures that depend on reduction
to a condensed form, and Jacobi or Jacobi-like schemes for both the symmetric and
nonsymmetric standard eigenvalue problems.

6.1.1. Reduction to a condensed form. We start with the nonsymmetric
case. For the standard problem the first step, after balancing, is the reduction to upper
Hessenberg form via orthogonal similarity transformations. These usually consist of
elementary reflectors which could yield high computational rates on vector machines
provided appropriate BLAS2 kernels are used. On parallel computers with hierarchical
memories, block versions of the classical scheme, e.g., see [16], [44], [86], yield higher
performance than BLAS2-based versions. Such block schemes are similar to those
discussed above for orthogonal factorization, and their use does not sacrifice numerical
stability. Block sizes can be as small as 2 for certain architectures. For the sake
of illustration we present a simplified scheme for this block reduction to the upper
Hessenberg form, where we assume that the matrix A is of order n where n = kv + 2.

doj=1,k
doi=(-lwv+1,jv
Obtain an elementary reflector P; = I — w;w}
such that P; annihilates the last n —i — 1
elements of the ith column of A
Construct:
Ui = (Ui—1, w;)
Vi = (PVio1, w;)
Yi = (Yio1, Awy)
2 = V;Tei+1
if ¢ = jv go to 10
ai+1 = (I = ViUF)(ai41 — Yizi)
enddo
10 AGjv+1:n) =T = V3, UL)AGY +1:n) = Y, Z5)
enddo.

Here, Z,, consists of the last (n — m) rows of V,,,. This block scheme requires more
arithmetic operations than the classical algorithm using elementary reflectors by a
factor of roughly 1+ 1/k. Performance of the block scheme on the Alliant FX/8 is
shown in Fig. 16 [86]. The performance shown is based on the operation count of the
nonblock algorithm.

The next stage is that of obtaining the eigenvalues of the resulting upper Hessen-
berg matrix via the @ R-algorithm with an implicit shifting strategy. This algorithm
consists mainly of chasing a bulge represented by a square matrix of order 3 whose
diagonal lies along the subdiagonal of the upper Hessenberg matrix. This in turn
affects only 3 rows and columns of the Hessenberg matrix, leaving little that can be
gained from vectorization, and to a lesser extent, parallelization. Stewart has consid-
ered the implementation of this basic iteration on a linear array of processors [172].
More recently, a block implementation with multiple QR shifts was proposed by Bai
and Demmel [6] which yields some advantage for vector machines such as the Convex
C-1 and Cyber 205.

If we are seeking all of the eigenvectors as well, the performance of the algorithm
is enhanced since the additional work required consists of computations that are



118 K. A. GALLIVAN, R. J. PLEMMONS, AND A. H. SAMEH

amenable to vector and/or parallel processing; that of updating the orthogonal matrix
used to reduce the original matrix to Hessenberg form.

Similarly, the most common method for handling the standard dense symmetric
eigenvalue problem consists of first reducing the symmetric matrix to the tridiagonal
form via elementary reflectors followed by handling the tridiagonal eigenvalue prob-
lem. Such reduction can be achieved by a minor modification of the above block
reduction to the Hessenberg form. On 1 CPU of a CRAY X-MP, with an 8.5 ns clock,
a BLAS?2 implementation of Householder tridiagonalization using rank-2 updates (see
[43]) yields a computational rate of roughly 200 Mflops for matrices of order 1000 (see
Fig. 17 [87]. The performance of Eispack’s TRED2 is also presented in the figure for
comparison. Figure 18 shows a comparison of the performance of this BLAS3-based
block reduction with a BLAS2-based reduction on the Alliant FX/8 [86]. As before,
the performance is computed based on the nonblock version operation count.
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FIG. 16. Reduction to Hessenberg form on Alliant FX/8.

Once the tridiagonal matrix is obtained two approaches have been used, on se-
quential machines, for obtaining its eigenvalues and eigenvectors. If all the eigenvalues
are required a QR-based method is used. The classical procedure is inherently sequen-
tial, offering nothing in the form of vectorization or parallelism. Recently, Dongarra
and Sorensen [49], adapted an alternative due to Cuppen [33] for the use on multipro-
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cessors. This algorithm obtains all the eigenvalues and eigenvectors of the symmetric
tridiagonal matrix.
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FIG. 17. Reduction to tridiagonal form on CRAY X-MP (1 CPU).

In its simplest form, the main idea of the algorithm may be outlined as follows.
Let T = (B;, @i, Bi+1) be the symmetric tridiagonal matrix under consideration, where
we assume that none of its off-diagonal elements §; vanishes. Assuming that it is of
order 2m, it can be written as,

T= T + Temeﬁ ﬁemef
ﬂele% T + Tele{ ’

where each T; is tridiagonal of order m, 7 is a “carefully” chosen scalar, and e; is the
ith column of the identity of order m. This in turn can be written as,

T = diag(Ty, T3) + yvvT

in which the scalar v and the column vector v can be readily derived. Now, we have two
tasks: namely obtaining the spectral decomposition of T} and Ty, i.e., T; = Q:D;QT,
i = 1,2, where Q; is an orthogonal matrix of order m and D; is diagonal. Thus, if
Q = diag(Q1,Q2) and D = diag(D;, D), then T is orthogonally similar to a rank-1
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perturbation of a diagonal matrix, i.e.,
QTQT = D + pz2T,

where p and z are trivially obtained from v and z. The eigenvalues of T are thus the
roots of

d(N) =14 p2T (D - M)z
and its eigenvectors are given by,
U; = T(D — /\iI)_lz,

where 7 = ||D — M|z

This module may be used recursively to produce a parallel counterpart to Cup-
pen’s algorithm [33] as demonstrated in [49]. For example, if the tridiagonal matrix
T is of order 2¢m, then the algorithm will consist of obtaining the spectral decompo-
sition of 2* tridiagonal matrices each of order m, followed by k stages in which stage
j consists of applying the above module simultaneously to 2¥~7 pairs of tridiagonal
matrices in which each is of order 2/~1m.

If eigenvalues only (or all those lying in a given interval) or selected eigenpairs
are desired, then a bisection-inverse iteration combination is used, e.g., see Wilkinson
and Reinsch [195] or Parlett [141]. Such a combination has been adapted for the Illiac
IV parallel computer, e.g., see [118] and [102], and later for the Alliant FX/8, see
[123]. This modification depends on a multisectioning strategy in which the interval
containing the desired eigenvalues is divided into (p — 1) subintervals where p is the
number of processors. Using the Sturm sequence property we can simultaneously de-
termine the number of eigenvalues contained in each of the (p — 1) subintervals. This
is accomplished by having each processor evaluate the well-known linear recurrence
leading to the determinant of the tridiagonal matrix T — plI or the corresponding
nonlinear recurrence so as to avoid over- or underflow, e.g., see [141]. This process is
repeated until all the eigenvalues, or clusters of computationally coincident eigenval-
ues, are separated. This “isolation” stage is followed by the “extraction” stage where
the separated eigenvalues are evaluated using a root finder which is a hybrid of pure
bisection and the combination of bisection and the secant methods, namely the ZE-
ROIN procedure due to Brent and Dekker, see [58]. If eigenvectors are desired, then
the final stage consists of a combination of inverse iteration and orthogonalization for
those vectors corresponding to poorly separated eigenvalues.

This scheme proved to be the most effective on the Alliant FX/8 for obtaining all
or few of the eigenvalues only. Compared to its execution time on one CE, it achieves
a speedup of 7.9 on eight CE’s, and is more than four times faster than Eispack’s
TQLI, e.g., see [167] or [195], for the tridiagonal matrix [-1,2,-1] of order 500 with
the same achievable accuracy for the eigenvalues. Even if all the eigenpairs of the
above tridiagonal matrix are required, this multisectioning scheme is more than 13
times faster than the best BLAS2-based version of Eispack’s TQL2, 27 times faster
than Eispack’s pair Bisect and Tinvit, and five times faster than its nearest com-
petitor, parallel Cuppen’s procedure [49], with the same accuracy in the computed
eigenpairs. For matrices with clusters of poorly separated eigenvalues, however, the
multisectioning algorithm may not be competitive if all the eigenpairs are required
with high accuracy. For example, for the well-known Wilkinson matrices W5, e.g.,
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FIG. 18. Reduction to tridiagonal form on Alliant FX/8.

see [194], which have pairs of very close eigenvalues, the multisectioning method re-
quires roughly twice the time required by the parallel Cuppen’s procedure in order to
achieve the same accuracy for all the eigenpairs.

Further studies by Simon [166] demonstrate the robustness of the above multisec-
tioning strategy compared to other bisection-inverse iteration combinations proposed
in [8]. Also, comparisons between the above multisectioning scheme and parallel Cup-
pen’s algorithm have been given by Ipsen and Jessup on hypercubes [103] indicating
the effectiveness of multisectioning on distributed memory multiprocessors for cases
in which the eigenvalues are not pathologically clustered.

6.1.2. Jacobi and Jacobi-like schemes. An alternative to reduction to a con-
densed form is that of using one of the Jacobi schemes for obtaining all the eigenvalues
or all the eigenvalues and eigenvectors. Work on such parallel procedures dates back to
the Illiac IV distributed memory parallel computer, e.g., see [152]. Algorithms for han-
dling the two-sided Jacobi scheme for the symmetric problem, which are presented in
that work, exploit the fact that independent rotations can be applied simultaneously.
Furthermore, several ordering schemes of these independent rotations are presented
that minimize the number of orthogonal transformations (i.e., direct sum of rotations)
within each sweep. Much more work has been done since on this parallel two-sided
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Jacobi scheme for the symmetric eigenvalue problem. These have been motivated
primarily by the emergence of systolic arrays, e.g., see Brent and Luk [18]. A most
important byproduct of such investigation of parallel Jacobi schemes is a result due
to Luk and Park [126], where they show the equivalence of various parallel Jacobi
orderings to the classical sequential cyclic by row ordering for which Forsythe and
Henrici [57] proved convergence of the method.

Also, in [152] a Jacobi-like algorithm for solving the nonsymmetric eigenvalue
problem due to Eberlein [51], has been modified for parallel computations, primarily
for the Illiac IV. More recent related parallel schemes, aimed at distributed memory
multiprocessors as well, have been developed by Stewart [171] and Eberlein [52] for
the Schur decomposition of nonsymmetric matrices.

Unlike the two-sided Jacobi scheme, for the symmetric eigenvalue problem, the
one-sided Jacobi scheme due to Hestenes [94] requires only accessing of the columns
of the matrix under consideration. This feature makes it more suitable for shared
memory multiprocessors with hierarchical organization such as the Alliant FX/8. This
procedure may be described as follows. Given a symmetric nonsingular matrix A of
order n and columns a;, 1 < ¢ < n, obtain through an iterative process an orthogonal
matrix V such that

AV ="5

where S has orthogonal columns within a given tolerance. The orthogonal matrix V is
constructed as the product of plane rotations in which each is chosen to orthogonalize
a pair of columns,

c -s ~
(a,-,aj) ( s c ) = (a,',aj)
where i < j, so that d;Td; = 0 and ||d;||2 > ||dj]|2- This is accomplished as follows, if

B8>0
c=+(B+7)/2y
s = af(2vye)

otherwise,

s=v(y=8)/2v

c=af(2ys)
Here, @ = 2ala;, B = ||ai||3 - ||a;]13, and v = \/a2 + 2. Several schemes can be used
to select the order of the plane rotations. Shown below is the pattern for one sweep

for a matrix of order n» = 8 an annihilation scheme related to those recommended in
[152),

* OO

* W W Ot

¥ =N W

¥ ~J 00 — b W

¥ OOy N 0O~ N
* W OO 00 =
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where each sweep consists of n orthogonal transformations each being the direct sum
of no more than |n/2| independent plane rotations. An integer k = 8, for example,
denotes that the column pairs (2,8), (3,7), (4,6) can be orthogonalized simultaneously
by 3 independent rotations. After convergence of this iterative process, usually in a
few sweeps, the matrix V yields a set of approximate eigenvectors from which the
eigenvalues may be obtained via Rayleigh quotients. If the matrix A is positive-
definite, however, then its eigenvalues are taken as the 2-norms of the columns of
S. Note that if A is not known to be nonsingular, we treat the eigenvalue problem
Az = (A a)z , where A = A+al, with being the smallest number chosen such that
A is positive definite. On an Alliant FX /8, this Jacobi scheme is faster than algorithms
that depend on tridiagonalization, with the same size residuals, for matrices of size
less than 150 or for matrices that have few clusters of almost coincident eigenvalues.

Finally, a block generalization of the two-sided Jacobi scheme has been considered
by Van Loan [190] and Bischof [13] for distributed memory multiprocessors. The
convergence of cyclic block Jacobi methods has been discussed by Shroff and Schreiber
[165].

6.2. Singular-value problems. Several algorithms have been developed for ob-
taining the singular-value decomposition on vector and parallel computers. The most
robust of these schemes are those that rely first on reducing the matrix to the bidiag-
onal form, i.e., by using the sequential algorithm due to Golub and Reinsch [82]. The
most obvious implementation of the reduction to the bidiagonal form on a parallel
or vector computer follows the strategy suggested by Chan [26]. The matrix is first
reduced to the upper triangular form via the block Householder reduction, suggested
in the previous section, leading to the achievement of high performance. This is then
followed by the chasing of zeros via rotation of rows and columns to yield a bidiagonal
matrix. The application of the subsequent plane rotations has to proceed sequentially
but some benefit due to vectorization can still be realized.

Once the bidiagonal matrix is obtained a generalization of Cuppen’s algorithm
(e.g., see [107]) may be used to obtain all the singular values and vectors. Similarly, a
generalization of the multisectioning algorithm may be used to obtain selected singular
values and vectors.

Luk has used the one-sided Jacobi scheme to obtain the singular-value decom-
position on the Illiac IV [124] and block variations of Jacobi’s method have been
attempted by Bischof on IBM’s LCAP system [13].

For tall and narrow matrices with certain distributions of clusters of singular
values and/or extreme rank deficiencies, Jacobi schemes may also be used to efficiently
obtain the singular-value decomposition of the upper triangular matrix resulting from
the orthogonal factorization via block Householder transformations. The same one-
sided Jacobi scheme discussed above has proved to be most effective on the hierarchical
memory system of the Alliant FX/8. Such a procedure results in a performance that
is superior to the best vectorized version of Eispack’s or LINPACK routines which
are based on the algorithm in [82]. Experiments showed that the block-Householder
reduction and the one-sided Jacobi scheme combination is up to five times faster, on
the Alliant FX/8, than the best BLAS2-version of LINPACK’s routine for matrices
of order 16000 x 128 [12].

7. Rapid elliptic solvers. In this section, we review parallel schemes for rapid
elliptic solvers. We start with the classical Matrix Decomposition (MD), and Block-
Cyclic Reduction (BCR) schemes for separable elliptic P.D.E.’s on regular domains.
This is followed by a Boundary Integral-based Domain Decomposition method for
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handling the Laplace equation on irregular domains that consist of regular domains;
examples of such domains are the right-angle or T-shapes.

Efficient direct methods for solving the finite-difference approximation of the Pois-
son equation on the unit square have been developed by Buneman [20], Hockney [96],
[97], and Buzbee, Golub, and Nielson [22]. The most effective sequential algorithm
combines the block cyclic reduction and Fourier analysis schemes. This is Hockney’s
FACR(l) algorithm [97]. Excellent reviews of these methods on sequential machines
have been given by Swarztrauber [177] and Temperton [182], [183]. In [177] it is shown
that the asymptotic operation count for FACR(]) on an n x n grid is O(n?log,log,n),
and is achieved when the number [ of the block cyclic reduction steps preceding Fourier
analysis is taken approximately as (log,log,n). Using only cyclic reduction, or Fourier
analysis, to solve the problem on a sequential machine would require O(n?log,n) arith-
metic operations.

Buzbee [21] observed that Fourier analysis, or the matrix decomposition Pois-
son solver (MD-Poisson solver), is ideally suited for parallel computation. It consists
of performing a set of independent sine transforms, and solving a set of indepen-
dent tridiagonal systems. On a parallel computer consisting of n? processors, with
an arbitrarily powerful interconnection network, the MD-Poisson solver for the two-
dimensional case requires O(log,n) parallel arithmetic steps [160]. It can be shown,
(142] and [173], that a perfect shuffle interconnection network is sufficient to keep the
communication cost to a minimum. Ericksen [55] considered the implementation of
FACR(l), [97], and CORF, [22], on the ILLIAC IV; and Hockney [98] compared the
performance of FACR(l) on the CRAY-1, Cyber-205, and the ICL-DAP.

7.1. A domain decomposition MD-scheme. We consider first the MD-algor-
ithm for solving the 5-point finite difference approximation of the Poisson equation
on the unit square with a uniform n x n grid, where for the sake of illustration we
consider only Dirichlet boundary conditions. The multiprocessor version algorithm
presented below can be readily modified to accommodate Neumann and periodic
boundary conditions.

Using natural ordering of the grid points, we obtain the well-known linear system
of order n?:

T -I uy fi
-1 T -I up f2
-1 T -I Up—1 Up—1
-1 T Up, Un
where T' = [—1,4, —1] is a tridiagonal matrix of order n.

This parallel MD-scheme consists of 3 stages [154]:

Stage 1. Each cluster j, 1 < j < 4 (a four cluster Cedar is assumed), forms
the subvectors f(;i_1)q+1, f(j—1)g+2:" ", fjq Of the right-hand side, where ¢ = n/4.
Next each cluster j obtains g; = (g(j_l)q+1,~--,g;‘»';), where gr = Qfk, in which
Q = [(2/[n+1])}?sin(lmn/[n+1])], I, m = 1,2,- -, n, is the eigenvector matrix of T.
This amounts to performing in each cluster ¢ sine transforms each of length n. Now



PARALLEL DENSE LINEAR ALGEBRA ALGORITHMS 125

we have the system

M E 01 g1
ET M E @2 _ Qz
ET M E o3 | | a3 |’
ET M o Ga
where each cluster memory contains one block row. Here, f)f = (vg";_l)qﬂ, e ,v};)

with vy = Qug, M = [-I,, A, —1I,] is a block tridiagonal matrix of order gn, and

This system, in turn, may be reduced to,

Ijn F o hy

G I, F o2 | | he
G I, F b3 | T | ks |’

G I b4 ha

where h] = (T} .1, hT,), F and G are given by: Mh; = g;, 1 <j <4, MF =
E, and MG = ET. Observing that M consists of n independent tridiagonal matrices
Ty = [-1, Ak, —1] each of order ¢, where Ay = 4 — 2cos(kn/[n + 1)), k = 1,2,---,n,
the right-hand side of the above system is obtained by solving in each cluster j the n
independent systems

Tyry = s,

for k = 1,2,---,n, where éTs; = efg(j_l)qﬂ, and éTry, = e{h(‘j_l)q_i..i, for i =
1,2,---,q,and 1 < j < 4. Here, é; and e; are the ith columns of I, and I, respectively.

The matrices F' and G can be similarly obtained by solving, in each cluster j,
the independent systems Ticp = é;, and Tydy = ég, for k = 1,2,---,n. Since T} is
a Toeplitz matrix, however, we have cx = Jdi, where J = [ég,---,é1], see [111] for
example. As a result, in order to obtain F' and G we need only solve in each cluster
the n systems Tydy = é4, k =1,2,---,n. Hence, F and G are of the form,

ry 0
F=|: 1],
ry o
and
0 Iy
G= : ,
0 Iy
where I'; = —diag('yi(l),u-,'yi(")), in which %'(k) = éFcy, for i = 1,2,---,q, and
k=1,2,---,n.

Stage 2. From the structure of (7.1) it is seen that the three pairs of n equations
above and below each partition are completely decoupled from the rest of the n?
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equations [161]. This reduced system, of order 6n, consists of interlocking blocks of
the form:

This system, in turn, comprises n independent pentadiagonal systems each of order
6, which can be solved in a very short time.

Stage 3. Now, that the subvectors wvgq, vgq+1, k¥ = 1,2,3, are available, each
cluster j obtains

V(i-1)g+i = h(j—1)g+i — (Div(j—1)q + Dg—i+1jq+1)

for i = 2,3,---,q — 1, where vg = vggy1 = 0. Finally, each cluster j retrieves the
q subvectors u;_1yq+;i = QU(j_1)q+i, for i = 1,2,---,q, of the solution via g sine
transforms, each of length n.

Note that one of the key computational kernels in this algorithm is the calculation
of multiple sine transformations. In order to design an efficient version of this kernel
it is necessary to perform an analysis of the influence of the memory hierarchy similar
to that presented above for the block LU algorithm. Such an analysis is contained in
[74].

7.2. A modified block cyclic reduction. The discretization of the separable

elliptic equation
2 2

(16) a(x)% + b(x)gg + c(z)u + g—yg = f(z,y)
with Dirichlet boundary conditions and a five-point stencil on a naturally ordered
nxm grid defined on a rectangular region leads to a system of the form Au = f. In this
case A is the n block tridiagonal matrix diag[—1I, A, —I], where A, I are respectively
tridiagonal and identity matrices of order m. Block cyclic reduction (BCR) dates
back to the work of Hockney and was presented in [22] in its stabilized form due to
Buneman. The work in [176], [178], [180] resulted in the development of FISHPAK,
a package based on BCR for the solution of (16) and extensions thereof. BCR is a
rapid elliptic solver (RES) having sequential computational complexity O(nm logn).
Assuming that n = 2% — 1, the idea of the method for reduction steps r = 1,---,k—1
is to combine the current 25="*1 — 1 vectors into 25" — 1 ones, and then solve a
system of the form

Por—1 (A)X =Y

T

where Y € Rmx(2"

A. Since its roots /\Y_l) are known, it can be written in product form, where each
factor is tridiagonal. Hence the system to be solved becomes

~1 and pyr-1(A) is a Chebyshev polynomial of degree 2"~1 in

2r—1
(17) [T A= A"DDle] - Jzgrry] = [g1] -~ Jyar—r 1],

=1
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Clearly as r increases, the effectiveness of a parallel or vector machine to handle (17)
decreases rapidly.

A parallel version of BCR was recently discovered [70], [181]. In summary, the
method is based in expressing the matrix rational function [pyr-1(A)]~! as a partial

fraction, i.e., as a linear combination of the 2"~ components (4 — A"~ 1)~1

21‘-—1
(18)  [za]-oaera] = D @l TA=ATTID T ] fyper ).
=1

Coefficients o" ™" are equal to 1/ (p;,_l(,\,("”)) and can be derived analytically.
Figure 19 shows the performance of the parallel and standard BCR. on the Alliant
FX/8.

For a discussion of parallel BCR on distributed memory machines see [73], [179].
Partial fraction decomposition can also be applied to the parallel solution of parabolic

equations. See [71], [72] for details.

7.3. Boundary integral domain decomposition. A new method (BIDD)
was recently proposed for the solution of Laplace’s equation [68], [69]. The method is
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characterized by the decoupling of the problem into independent subproblems on sub-
domains. An approximation @ to the solution u is sought as a finite linear combination
of N fundamental solutions [128] ¢;(z) = — 5= log |z — w;| of VZu = 0:

N
(19) i(z) =) o;¢i(2)

Jj=1

For a given set of N points w; lying outside the domain, 0 € RV is computed to

minimize ||g — Go||, for some norm p. G € R**V is the influence matrix consisting

of fundamental solutions based at w; for each boundary point. g € R” consists of
boundary values for u. Once o has been computed, the solution at any p points
on the domain is 4 = Ho, with H € R**N being the influence matrix for the p
points. Choosing these p points to be subdomain boundary points, we can compute
the solution by applying the elliptic solvers most suitable for each subdomain.
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