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CIMGS: AN INCOMPLETE ORTHOGONAL FACTORIZATION
PRECONDITIONER*

XIAOGE WANGT, KYLE A. GALLIVANT, AND RANDALL BRAMLEY'

Abstract. A new preconditioner for symmetric positive definite systems is proposed, analyzed,
and tested. The preconditioner, compressed incomplete modified Gram—Schmidt (CIMGS), is based
on an incomplete orthogonal factorization. CIMGS is robust both theoretically and empirically,
existing (in exact arithmetic) for any full rank matrix. Numerically it is more robust than an
incomplete Cholesky factorization preconditioner (IC) and a complete Cholesky factorization of the
normal equations. Theoretical results show that the CIMGS factorization has better backward error
properties than complete Cholesky factorization. For symmetric positive definite M-matrices, CIMGS
induces a regular splitting and better estimates the complete Cholesky factor as the set of dropped
positions gets smaller. CIMGS lies between complete Cholesky factorization and incomplete Cholesky
factorization in its approximation properties. These theoretical properties usually hold numerically,
even when the matrix is not an M-matrix. When the drop set satisfies a mild and easily verified (or
enforced) property, the upper triangular factor CIMGS generates is the same as that generated by
incomplete Cholesky factorization. This allows the existence of the IC factorization to be guaranteed,
based solely on the target sparsity pattern.
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1. Introduction. This work is motivated by the linear least squares problem of
finding x € R™ which minimizes the value of

(1) 10— Az |2,

where A € R™*™, m > n, is a large sparse matrix of full rank and b € R™ is an arbi-
trary vector. Such problems occur frequently in scientific and engineering applications
such as linear programming [5], augmented Lagrangian methods for computational
fluid dynamics (CFD) [12], and the natural factor method in structural engineering
[9, 3.

Minimizing (1) by solving the normal equations AT Ax = ATb is a common and
often efficient approach because AT A is symmetric and positive definite. There are
many well-developed and reliable methods, both direct and iterative, for solving such
systems. In this paper, we present a new preconditioning method for solving the
normal equations using the conjugate gradient (CG) iterative method, one which is
applicable to more general symmetric positive definite systems. This approach allows
the solution of extremely large least squares problems without explicitly forming the
normal equations, which requires a potentially large number of floating point opera-
tions, and can introduce a loss of information from the original matrix A.

A well-known drawback of this approach is that the condition number of the
normal equations is the square of the condition number of A. Orthogonal factorization
methods [8] avoid this problem, but they require more floating point operations and
if @ is required, as occurs for systems with sequential multiple right-hand sides, they
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potentially can require O(mn) storage, which is unacceptable for systems with large
m. Because the rate of convergence of the CG algorithm is related to the condition
number of the matrix to which it is applied, finding an effective preconditioner is
crucial. Preconditioning methods that have been proposed and analyzed for the CG
algorithm include column scaling, SSOR [4], incomplete Cholesky factorization [11],
polynomial preconditioning [1, 2], and incomplete orthogonal factorization [14, 10,
18, 16].

When preconditioning a symmetric positive definite system Bz = f, the usual
goal is to increase the clustering of the eigenvalues around the value of one. When
B = AT A and the preconditioner is applied to A, a natural target is to make the pre-
conditioned matrix A closer to orthogonal because then AT A ~ I. This suggests using
an incomplete orthogonal factorization. Existing incomplete orthogonal factorization
preconditioners can be divided into two classes: incomplete Gram—Schmidt methods
[14, 10, 16] which give a factorization A = QR with @ not necessarily orthogonal,
and incomplete Givens [18], which produce A ~ QR with @ orthogonal. Incomplete
Gram—Schmidt-type methods are, in general, robust because they can avoid numeri-
cal breakdown when A is full rank. Furthermore, they are effective in accelerating the
convergence of CG. The notable drawback is that they are expensive in both floating
point operations and storage because like full Gram—Schmidt factorization, they do
not take full advantage of sparsity. One way of reducing computations is to use a
numerical dropping technique to keep both the Q and R factors sparse, as is done in
incomplete LQ (ILQ) [14] and the incomplete Givens method of [18]. The price these
methods pay for efficiency is robustness because dropping small entries can lead to zero
elements on the diagonal of R. Restart techniques have to be used for these methods
to assure robustness. This paper introduces a new preconditioner called compressed
incomplete modified Gram—Schmidt (CIMGS); as the name implies, CIMGS is based
on an incomplete modified Gram—Schmidt (IMGS) factorization. CIMGS reduces the
cost of computing an incomplete orthogonal preconditioner by “compressing” the in-
formation carried in A’s column vectors into dot products of those vectors, which can
be used to compute the same factor as the column vectors. In this way, the number of
operations is reduced while the preconditioner’s robustness and effectiveness for the
CG algorithm is preserved. Furthermore, unlike incomplete Cholesky (IC) factoriza-
tion, in exact arithmetic the CIMGS factorization completes without breakdown for
any full rank matrix A.

The next section describes the new algorithm and analyzes its properties. We
show that CIMGS produces the same preconditioner (in exact arithmetic) as IMGS
but requires far fewer computations than IMGS does. We also prove that when A7 A
is an M-matrix, CIMGS induces a regular splitting. The relationship between CIMGS
and incomplete Cholesky factorization is discussed in detail in section 3. Numerical
test results showing the effectiveness of compression are presented, along with com-
parisons among CIMGS, IC preconditioned CG, and direct methods. Conclusions and
remarks are based on those results.

2. The CIMGS algorithm and its properties. To motivate the CIMGS
algorithm, we first describe incomplete modified Gram—Schmidt (IMGS) factorization.
Let P, = {(4,7)] 1 <i < j < n} be the set of all index pairs for the strictly upper
triangular part of an n x n matrix, let P C P, be a set of index pairs, and assume that
the matrix A € R™*" has full column rank. The set P determines which elements of
the target incomplete factor R will not be retained in the approximate factorization;
that is, P is the set of drop positions. The IMGS factorization algorithm can be
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derived easily from the modified Gram—Schmidt factorization of A by setting to zero
during the factorization entries of R indexed by P.
Algorithm [ Q, R ] = IMGS [A, P]

begin
for £k = 1,2, ..., n,
(1) e = || ar |2
(2) @ = a/Trr
for j = k+1,k+2, ..., n
_ 0 (k,j) € P
®) = { ala; (kj) & P
(4) aj = aj — QkTkj
endfor
endfor
end
Note that if P = P,, then IMGS produces the diagonal matrix R =
diag(||laill2, - - -, [|an]l2). At the other extreme, P = () gives a complete modified Gram—

Schmidt factorization. In general, although the matrix @ need not be orthogonal, this
factorization will always succeed in producing a nonsingular upper triangular factor
R when A has full rank.

THEOREM 1. If A € R™*™, m > n, has full rank, then IMGS applied with a drop
set P C P, completes and produces a factorization A = QR, where R is an upper
triangular matriz with positive diagonal elements and Q) is a full rank matriz.

Proof. Let agj ) denote the ith column of A after j steps of IMGS. From the al-
gorithm we can see that ¢; = (a; — 171, — - - — ¢i—17i—1,:)/Tis, for i =1,2,...,n. The
algorithm cannot complete if at some step k, rigx = || a,(ck_l) |l = 0. This means that

(k—1) L .

=ar—q1"k— " —Qqrx—1Tk—1 % = 0, and so ag, is a linear combination of
41, G2, -, Qs—1. Therefore, the set of vectors {q1,¢2,qs3,...,qk—1,ax} is linearly depen-
dent. However, the vectors q1, g2, ¢3, - - - ,qx—1 form a basis of span {a1, as, as, . .. ,ag_1},
and the set of vectors {ai,as,as,...,ax} is linearly independent because A has full
rank. Therefore, {¢1,42,9s,-..,qx—1,ax} is independent, a contradiction. So if A has
full rank, rgg # 0 for £k =1,2,...,n and the factorization must exist. 0

More detailed studies of IMGS can be found in [16]. In general, IMGS is robust
and effective at reducing the number of CG iterations. Its main weakness is the much
higher cost of computing the preconditioner compared with other preconditioning
methods.

The new algorithm CIMGS now described will produce in exact arithmetic the
same preconditioner, while greatly reducing the computation cost. The basic idea is to
compress the information in the column vectors of A into a dot product form without
losing the information needed for the computation of the factor R. To understand the
meaning of this compression, consider the relation between modified Gram—Schmidt
factorization of A and complete Cholesky factorization of AT A. In exact arithmetic,
they both produce the same factor R. Modified Gram—Schmidt factorization works
on A and sees only the column vectors. Cholesky factorization works on AT A, the
elements of which are dot products of the corresponding column vectors. After each
step of each of the factorization methods, the relationship is maintained between
the reduced matrices. Moreover, in the sparse case Cholesky factorization can be
much more efficient than the modified Gram—Schmidt algorithm. The new algorithm
CIMGS is designed to have the efficiency of Cholesky factorization, while producing
the same triangular factor as IMGS.

we have a
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Algorithmically, let B = AT A. When A is a real matrix with full rank, B is
symmetric positive definite. Given a drop set P C P,, CIMGS generates the upper
triangular matrix R € R™*" as follows.

Algorithm [R]=CIMGS|B,P]

begin
for £k = 1,2, ..., n,
if bkk 7£ 0 then
(1) bk = Vbik

(2) Tk = brk
for 7 = k+1, k+2, ....n
(3) brj = s/ Vi
_ 0 (k,j) e P
® MO by (k) ¢ P
endfor
for 7 = k+1, k+2, ....n
for i = k+1, k+2, ..., n
(5) bij = bij — bribi; (k,j) & Por (ki) ¢ P
endfor
endfor
else
(6) quit (incomplete factorization cannot complete)
endif
endfor
end

In practice we take advantage of the symmetry of B by working only on the
upper triangular part of B in step 5. Note that the structure of CIMGS is similar
to the rank-1 update form of Cholesky factorization, with incompleteness introduced
at steps 4 and 5. Just as with Cholesky factorization the CIMGS factorization can
be implemented in other ways by deferring the rank-1 updates until they are needed.
Note that B is overwritten by intermediate computations, which generate the factor
R. The algorithm shows the target factor R being extracted from B at steps 2 and
4, but in practice R need not be stored separately.

First we show that in exact arithmetic CIMGS applied to AT A produces the same
triangular factor as IMGS applied to A.

THEOREM 2. Let A € R™ "™, m > n, rank(A) = n, and let B = ATA. Let
Rives be the triangular factor produced by IMGS applied to A with a given drop set
P, and let Rcivas be the triangular factor produced by CIMGS applied to B with the
same P. Then Rmvas = Romas-

Proof. We use induction on n. The n = 1 case is trivial. Supposing that the
theorem is true for k = n — 1, we now prove it for k = n. Let Rimgs = R = [ri;] and
Rcivgs = S = [si5]. After one step of IMGS,

0, (1,7) € P,
rin =l a1 [2=/afar, ry;=1 .7, _ 2<j<n
=L (L) ¢gPr

and columns 2 to n of A are updated by
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After one step of CIMGS the first row of S is given by

0) (17J)GP)
311:\/3)11:\/@?&1, Slj:{ blj 2<j<n

b jg¢pr 775
and B is updated by b)) = b;; — bi;by; if (1,5) & P or (L,i) ¢ P, for 2 < i,j < n.
Clearly r1; = s1; for all 1 < j < n. The computation of the rest of R consists of
applying IMGS to the matrix A = {agl), a:(gl), . ,asll)}. The computation of the
rest of S consists of applying CIMGS to the matrix B(1) = (bgjl-)), 2 <i,j <n. Since

(1)T 1) aZTaj, (177,) € P and (1,]) S P,
a’’ ay’ =
Y alaj —ruriy, (L,i) ¢ Por(1,5) ¢ P

and

b(l) _ b”, (l,l) S P and (1,]) S P,
9 bij — b1ibi;, (1,4) ¢ Por (1,5) € P,

it can easily be seen that AOT A0 — gy, Using the induction hypothesis, the rest
of R computed by IMGS is equal to the rest of S computed by CIMGS. By induction,
the theorem is true for any n. 0

Since CIMGS is equivalent to IMGS, Theorem 1 also implies that CIMGS exists
when AT A is positive definite. Since these results assume exact arithmetic, the natural
next question to ask is how CIMGS is affected by rounding errors; that is, how
does the “compression” technique affect the stability of CIMGS? Earlier analysis has
shown that IMGS is less likely than modified Gram—Schmidt to break down due to
possible numerical rank deficiency of A [16]. The next theorem bounds the rounding
error incurred by CIMGS and shows that CIMGS is less likely to suffer numerical
breakdown than complete Cholesky factorization is. The quantity Amin(G) denotes
the eigenvalue of minimal modulus for the matrix G.

THEOREM 3. Let B € R™*" be a symmetric positive definite matriz and p be the
machine precision. Let P C P, be a given drop set for the CIMGS algorithm. Let R
be the triangular factor produced by CIMGS using the set P, and let U be the matriz
of dropped elements, defined as w;i, = bji, (4,k) € P, and u;, = 0,(j,k) & P, at step
4 of the CIMGS algorithm. If

(2) Ci(n)us(B) <1,

where k(B) is the condition number of B, then the CIMGS factorization completes
and there is an error matrix E such that

(R+ ) (R+U)=B+UTU+FE
and
[ El2< Co(n)p || B2,

where C1(n) and Ca(n) are constants that depend only on n.
Proof. Our proof of the theorem is again by induction on n. Let

B— b11 B?2 ’R: T11 R{Q 7U: 0 Ulg
B12 B22 0 R22 0 U22
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be partitioned so that Bss, Ros, and Usy are of order n — 1. Denote
S—R4+U- ( 511 Sy ) _ < ri1 RI, + UL )
0 Sao 0 Roo+Usx
Let B(CII)MGS and Bgl){OL be the trailing n — 1 by n — 1 principal submatrix of B

after one step of CIMGS and Cholesky factorization, respectively. After one step of
CIMGS we have

s11 O 10 S11 S,1T2 0 0 (1)
=B+ +E ,
( Sia T ) ( 0 BN yas > ( 0 I 0 ULUL CIMGS

where Eg 1) mcas denotes the error caused by finite precision computations during the

first step. Similarly, define Eél I){O 5, as the error matrix from one step of full Cholesky
factorization. Note that in positions (¢, 7) with (1,7) & P or (1,5) ¢ P, the updating is
exactly the same as that in one step of Cholesky factorization, while at other positions
no updating occurs. Therefore, E(cl } Mmas and Eél 1)10 ; are equal in those positions for

which updating is performed. For the other positions, the elements of Eg 1) Mas are
equal to zero. Using Wilkinson’s estimates [17], we get

1 1
I ES vas ll2 < 1 EShor ll2 < e || B2 -

Bg 1) mas €quals the reduced matrix after applying one step of Cholesky factorization
to B + UyoU], without rounding error on the positions (4, 5) such that (1,i) € P and

(1,7) € P. Let G denote the trailing principal submatrix of order n — 1 of E(C}I)MGS'

Again using Wilkinson’s result gives

[ B(CII)MGS llo < || Bag + UiaUfy + G |2
< || Baz [|l2 4 || Ur2UL; |2 +eape || B |2
< || Bz [|l2 + || 5125 ll2 +c1pe [| Bll2 < ca || B |2,

where ¢4 is a constant depending on n.

From the computation of one step of CIMGS we can see that BgI)MGS is also
positive definite when condition (2) holds. Using the induction hypothesis,

B aas = 539 — Un"Uss — ES) 6
and
| BGines ll2 < Coln =1 || BGaras ll2 < ol B 2,
where c5 is a constant depending on n. So we get
sTs —UTU — E, — E, = B,

where Fy = E(C1 1) mas, and Eo is Eg } mas augmented by a first row and column of
zeros. It follows that

[Ele=[E1+E|2<||Eil2+ || E2ll2< cipl Bll2 +esp |l B2 -

Letting Cy(n) = ¢1 + ¢5 establishes the error bounds.
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Because Amin(B) < Amin(B + UTU), condition (2) implies

1
B+ UT0) 1, > Ci(n)p || B |2,
and so the factorization process will not break down. The proof is complete. 0

From the proof, the rounding errors in CIMGS have the same bound as those
in complete Cholesky factorization. Since Awin(B + UTU) is typically larger than
Amin (B), numerical breakdown is less likely to happen in CIMGS factorization than
it is in Cholesky factorization.

Since the goal of incomplete orthogonalization preconditioning is to approximate
an orthogonal factorization, it is important to estimate the closeness of the IMGS
factor to the factor obtained using complete Gram—Schmidt factorization. When
AT A is an M-matrix, we have the following result, the proof of which can be found
in [16].

THEOREM 4. Let A € R™*™ have full rank. If AT A is an M-matriz and Q €
R™*™ R € R™"™ are the matrices that are produced by applying IMGS with a given
P C P,, then

QTQ =R TATAR'=I-E

is a regular splitting with E > 0, all of the diagonal elements of E equal to zero, and
p(E) < 1, where p(E) is the spectral radius of E.

If AT A is an M-matrix, Theorem 4 bounds the distance between @ and an orthog-
onal matrix since it implies that p(QTQ) < 2. Unfortunately, it does not guarantee
an improvement in the condition number of QT'@Q compared to AT A in general, since
Amin(AT A) is not necessarily a lower bound on Amin(QTQ). In practice, however,
we have found that one step of IMGS tends to behave like one step of MGS in that
one of the eigenvalues is brought closer to one and the remaining ones tend to stay
in an interval whose lower and upper bounds do not significantly worsen. For MGS
one of the eigenvalues is made exactly one, and the remaining ones are in an interval
bounded by the minimum and maximum eigenvalues of the normal equations of the
original matrix.

A similar result in [11] shows that ATA = LLT — E is a regular splitting,
where L is the lower triangular IC factor of ATA, E > 0, and p(E) < 1. Tt is
straightforward to transform this result into one similar to Theorem 4. Specifically,
if I is used to precondition the least squares problem, then it can be shown that
QTQ = L YATAL™T = I — F is a regular splitting, satisfying conditions on F
identical to those on E of Theorem 4. However, as is shown in the next section,
CIMGS and IC do not, in general, produce the same triangular factor for a given drop
set P.

Certainly the choice of P will affect the quality of the preconditioner. Intuitively,
the more elements retained in the factor, the better CIMGS should approximate com-
plete Gram—Schmidt. For general matrices A, we have not been able to rigorously
establish this heuristic, but when AT A is an M-matrix, CIMGS has the following
monotonicity property, where the notation < is used to indicate componentwise in-
equality.

THEOREM 5. Let B € R™™" be a symmetric positive definite M-matriz, and let
Pr C Pg C P, be drop sets. If R and S are the CIMGS factors produced by using Pr
and Pg, respectively, then R < S.

The next Lemma is needed for the proof of this Theorem.
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LEMMA 2.1. Let A € R™" and B € R™" be symmetric positive definite M-
matrices where A < B. If R and T are the upper triangular matrices from the
CIMGS factorization of A and B, respectively, with the same nonzero position set
P, then R<T.

Proof. We prove the proposition by induction on n. Clearly the result holds for
n = 1; assume that it holds for matrices of order n — 1. Let

r R t TE a AT,
R _ 11 12 , T— 11 12 ’ A _ 11 12 7 and
0 R22 0 T22 A12 A22
B b1 Bl
Bia  Bao
be the corresponding partitioned matrices for a matrix of order n, so that Rgs, Toa,
Ass, and Bss are of order n — 1. After one step of CIMGS on A and B, we have 0 <
r11 = y/a11 < Vb1 = t11 and, since A1 < Byy < 0 by hypothesis, Ri2 < Tip < 0. Let
f=(fa, f3,. fn)T and g = (g2, 93, ---, gn)T be the vectors of elements dropped by the
first step of CIMGS applied to A and B, respectively. Then f < g < 0 and the reduced

matrices Ros and Tho are the CIMGS factors of A= Aoy — RiafT — leTQ — R12R1T2
and B = Boy — T1297 — 9T} — Ti2T1, and, therefore,

A=A — RiofT — fRT, — Ri2RY,
< Byy — Riof" — fRIy — Ri2Ri,
< Boy — Tiof7 — [Ty — T1oTH
< By — Thag" — T, — T1oT1y
< B.
By the induction hypothesis Rys < T5o, and so R < T and the lemma is true for
matrices of any order n > 1. O

Proof of Theorem 5. We use induction on n. For n = 1 the result holds trivially.
Assume that it is true for matrices of order n — 1. Let

B = b BS , R= " RE , and S = = SlT2
Bias By Ry Sao

be partitioned so that Bss, Ros, and Sso are of order n — 1. After one step of CIMGS
with Pr and Pg, respectively, r11 = v/b11 = s11 and since B <0,
Qzﬁzslia (1ai)€PRand(17i)¢P57

T11 S11

(3) ri=4{ Y <0=sy, (1,i)¢ Prand(1,i)€ Ps, i=2,...,n,

T11
0 = 513, (1,4) € Pg and (1,i) € Ps.
This implies R1s < Sia.
Let f and g be the vectors of elements dropped by the first step of CIMGS with
Pr and Pg, respectively. Then Ris + f = S12 + g < 0, and since R12 < S12, we have
0=f=g
Now let Br and Bg be the reduced matrices of order n — 1 produced by one step
of CIMGS with Pr and Pgs, respectively. It follows that

Br = By — (Riz + f)(Riz + /)" + ff7
< Bos — (Ria + f)(Ri2 + f)T + 99"
= Bas — (S12 + 9)(S12 + 9)* + 99" = Bs.
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Let T be the CIMGS factor for Bg using Pg, and note that Rss is the CIMGS factor of
Bpg using Pr and S5, is the CIMGS factor of Bg using Ps. By Lemma 2.1, Ry < T
By the induction hypothesis T < Ssg, so Ros < So. Therefore, R < S and the
theorem is true for matrices of order n. 0

Let Ropgor be the complete Cholesky factor of B. Ropor is equal to the CIMGS
factor produced by using the pattern Py = (). Since Py C Pr C Pg, by Theorem 5
Repgor < RS S. If ER = R—Rcpgor and Es =S — Rogor, then Egr < Eg. In this
sense we can say that R better approximates Ropgor. Informally, if fewer elements
are dropped, i.e., if a smaller drop set P is used, the resulting CIMGS factor better
approximates the complete Cholesky factor componentwise.

3. Relations between CIMGS and IC. It needs to be emphasized that
CIMGS is not equivalent to IC although the structures of both are similar to Cholesky
factorization. This can be seen from the following: first, CIMGS guarantees the ex-
istence when the matrix B = AT A is positive definite while IC does not have this

property. Second, from the description of CIMGS in section 2 it can also be seen that
CIMGS is not equal to IC. If step 5 in the CIMGS algorithm is replaced by

bij = bij — bribr; (k,j) ¢ P and (k,i) ¢ P,

then we get the IC algorithm. Note the change from or to and in the statement. This
is the source of the extra operations and intermediate storage that CIMGS needs
compared with IC. CIMGS performs computations on some of those positions (4, 5)
where one and only one of (k,j) and (k,%) is not in P for any k, while IC does not.

On the other hand, when certain conditions are imposed on the sparsity pattern
of the target factor, the next theorem shows that CIMGS generates the same upper
triangular factor as IC does, and both implicitly pass through the same intermediate
factors to achieve this. Theorem 1 shows that IMGS will not fail for a full rank matrix,
and Theorem 2 shows that CIMGS is equivalent to IMGS. Putting these statements
together provides a way to guarantee existence of the IC factorization, based solely
on the target sparsity pattern.

THEOREM 6. Suppose B € R™" is symmetric and positive definite, and the set
P C P, has the property that for any 1 < i < j < k < n, the condition that one and
only one of (i,7) and (i, k) is in P implies that (j,k) € P. If R and U are the upper
triangular matrices that arise from the CIMGS and IC on B using the drop set P,
respectively, then R =U.

Two observations will make the following proof easier to understand.

Observation 1: Suppose A € R™*™ and B € R™*" are symmetric positive definite
matrices for which IC completes using a drop set P C P,. Let the matrices U
and T be the upper triangular factors that IC gives for A and B, respectively. If
ai; = by for all (Z,j) ¢ P, then T =U.

Observation 2: After one step of CIMGS and IC applied to a symmetric positive
definite matrix A using the same drop set P, the resulting first rows of the triangular
factors are the same. In addition, the reduced matrices from which the rest of the
factors are computed are also identical except for positions (4, j) where one and only
one of (1,7) and (1,75) are in P. CIMGS updates the values of the elements at those
positions, while IC does not change their values.

With these observations we prove Theorem 6.

Proof of Theorem 6. We use induction on n. When n = 2, it is trivial to show
that the assertion is true. Assume that for k& < n the assertion is true. As indicated
in Observation 2, the first steps of CIMGS and IC on B generate the same first row
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of their respective triangular factors. The remaining steps of the algorithms consists
of applying them to the updated trailing principal submatrices of order n — 1. Let
B(C1 I) Mmas and B}g be those trailing submatrices, for CIMGS and IC, respectively. As
indicated in Observation 2, B(Cl; mas and Bf,l(; are equal except for positions (i, )
where exactly one of (1,7) and (1,4) is in P. The property of P in the hypotheses
implies that all such positions (¢, j) are in P. Let T be the triangular factor obtained

from applying IC to B(Cll)MGS" By Observation 1 T is equal to the factor obtained by
applying IC to B;g By the induction hypothesis, the IC factorization of Bg I) MGS
is the same as the CIMGS factorization of Bg } mas- Therefore, CIMGS applied to

B(C1 I) Mmas gives the same factor as IC applied to B}g Together with the equality of
the first rows of the two factors, this gives R = U, and so by induction the theorem
holds for all n. 0

Theorem 6 establishes a connection between IC and CIMGS. From this connec-
tion we can derive the following result regarding IC applied to an arbitrary symmetric
positive definite matrix. This result is important because it allows us to guarantee
the existence of the IC factor based only on the target nonzero pattern. Other mod-
ifications of IC have been proposed that allow the factorization to avoid breakdown,
but they generally consist of ad hoc modifications of the elements as the factorization
proceeds. This result allows, for example, a priori assurance that IC can be applied
to matrices from a finite element mesh, based solely on the geometry of the mesh.

THEOREM 7. Let B € R™*"™ be a symmetric positive definite matriz. If P C P,
has the property that for any 1 < i < j < k < n, the condition that one and only
one of (i,7) and (i,k) is in P implies (j, k) € P, then the IC factorization algorithm
completes successfully.

Proof. There exists a full rank matrix A € R"*", such that B = AT A. According
to Theorems 1 and 2, CIMGS applied to B completes successfully. By Theorem 6,
the conditions on the set P assure that IC applied to B generates the same upper
triangular matrix as CIMGS. So IC completes successfully and generates the same
upper triangular matrix as CIMGS. 0

This result allows us, under certain restrictions, to view IC as a member of the
class of incomplete Gram—Schmidt factorizations. On the other hand, the property
of the set P described in the above theorem can be viewed as a condition that can
guarantee the existence of IC when the matrix is symmetric positive definite. Further-
more, it is easy to modify the target sparsity pattern in order to satisfy the hypothesis
of Theorem 7; see [16] for more details.

In general, CIMGS gives a different factor R from the one given by IC. If both
methods generate the factor successfully, which is better in accelerating CG con-
vergence? Again, the assumption that AT A is an M-matrix allows us to prove the
relationship: the complete Cholesky factor is closer to the CIMGS factor than it is to
the IC factor. To establish this result, two lemmas are stated here. Their proofs can
be found in [16].

LEMMA 3.1. Let A, B € R™*"™ be symmetric positive definite M-matrices with A >
B. Then R > T, where R and T are the Cholesky factors of A and B, respectively.

LEMMA 3.2. Let A,B € R™" be symmetric positive definite M-matrices, with
A>B. Let P C P,. Then R > T, where R and T are the respective incomplete
Cholesky factors of A and B using the same P.

THEOREM 8. Let B € R"™™"™ be a symmetric positive definite M-matriz. Let
Reopor, Ric, and Rorpas be the upper triangular matrices from complete Cholesky,
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incomplete Cholesky, and CIMGS factorization of B, respectively, where the same
drop set P is used for IC and CIMGS. The following relation is satisfied:

Reror < Rermas < Ric.

Furthermore, E1 < Es, where

Ey = Rcivas — Renor,
Ey = Ric — Reror.-

Proof. The proof is carried out in two parts.
(1) We prove Repor < Rerues by induction on the size of the problem. The

inequality is trivial for n = 1. Assume that it holds for n — 1. Partition B =
T T T

(2;1112 5;2)7 Romgor = ("™ ﬁ;g), and Rerpyes =T = (tn %2) such that By,

Ros, and 155 are of order n — 1. Let Ucrpmas = (O g;;) be the matrix of dropped

entries from CIMGS, as defined in Theorem 3. Then TLU;s = 0. Applying one step
of Cholesky factorization and CIMGS factorization to B, we get

T —1pT
ri1 = Vb, Riy=r By

and
t11 = /b1, ng + Uljé = r;llBﬂ'

Because B is an M-matrix, Rio < T12 < 0.

Ry5 is the Cholesky factor of B(C}I)LIOL = Byy — R1oRY,, and Ty, is the CIMGS
factor of BS)ysag = Baa—TioTh —Uso T —TiUL. Again both BS )0, and BS), 6s
are M-matrices. Furthermore,

B(Cll)LIOL = By — R12R1T2
= Boy — T1oT}y — TioUly — Uia Ty — UrUfy

1
= Bé‘I)MGS - U12U17;

and UyaUf, > 0 imply that BgI){OL < B(C}I)MGS. Let S be the Cholesky factor of

ng)MGS. By Lemma 3.1 Ros < S, and by the induction hypothesis S < T55. So
Rys < Ths, which together with the inequality Rio < Ty implies Regor < Reormas-
By induction, this is true for any n.

(2) Next we prove Rormas < Ryc using a similar induction proof. It holds
trivially for n = 1. Assume that it is true for n — 1. Then for matrices of order n, let
Ric = C = (%' gzz) be the incomplete Cholesky factor of B. Applying one step

of incomplete Cholesky factorization to B, we have ¢;1 = /b1, and Ci5 = T12 by

Observation 2. Now Cy is the incomplete Cholesky factor of ng = Byy — ClgCng,

and B}g is also an M-matrix. Then Bg I) mas < B}lc) because
B(CII)MGS = By — TioTh — TioUly — Ui T
= By — C120], — T12U{y — UraT
= Bic — T1aUiy — U1},
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and T12U{, > 0. Let G be the incomplete Cholesky factor of BgI)MGS' By the
induction hypothesis, Too < G. From Lemma 3.2, G < Cag, so Tos < Cys. Together,
these imply T" < C. By induction, the inequality holds for matrices of any order
n>1. 0

Now we know that when B is a symmetric positive definite M-matrix, CIMGS
will be a better elementwise approximation of the full Cholesky factorization than IC
with the same sparsity pattern. Experiments on general matrices also show that for
the same sparsity pattern, CG preconditioned by CIMGS takes fewer iterations than
that preconditioned by IC, when both successfully produce a preconditioner. These
results will be shown in section 4.

4. Numerical testing. Testing has been performed to assess the importance
of the family of methods obtained by different implementations of CIMGS. We first
compare CIMGS with IMGS to demonstrate that the compression strategy helps in
reducing the computational cost of IMGS, and to assess how it affects the quality
of the preconditioner. Next, we compare CIMGS with IC to evaluate the robustness
and efficiency of this new family of methods. Results from the direct methods of QR
factorization and Cholesky factorization of the normal equations are also presented to
give the overall picture of where preconditioned iterative methods fit among methods
of solving linear least squares problems.

4.1. Test environment. The test problems include systems from applications
problems and from the RUA and RRA sets of the Harwell-Boeing collection. Charac-
teristics of the matrices, including the number of rows (m), the number of columns
(n), the number of nonzeros (nnz(A)), the number of the nonzeros in the normal
equations (nnz(AT A)), the density of the matrix, and the density of the normal equa-
tions, are given in Table 1. The density of a matrix B € R™*", denoted dense(B),
is the percentage ratio of actual nonzero elements to the maximum possible, i.e.,
100(nnz(B)/mn).

The collection includes 30 matrices, of which 10 are square. The sizes of the
matrices vary considerably both in terms of dimensions—115 < m < 16640 and
82 < n < 3564—and number of nonzero elements—421 < nnz(A) < 78298. The den-
sity of the matrices ranges from less than 1% to slightly more than 7%. As expected,
the density increases significantly for the normal equations associated with the test
matrices, reaching the neighborhood of 40% for some matrices. Most are reasonably
conditioned, but a few, such as CONEVS, are ill conditioned. The matrices are grouped
according to the application source. The first set, AMOCO1 to WELL1033, is from the
RRA portion of the Harwell-Boeing collection. AMOCO1 is a seismic tomography prob-
lem, while BELLADIT and BELMEDT are based on information retrieval problems. The
group from CONEVS to STRATS8 is from CFD problems where for some algorithms they
are used to compute orthogonal projections. The final group of rectangular matrices,
BNL1 to WOODW, is from a collection of linear programming problems available on
NETLIB. We have also included a group of square matrices from the RUA set of the
Harwell-Boeing collection, FS_760_1 to STEAM2.

For each matrix we generate a right-hand side vector consistent with a solution
vector whose components are all equal to one. This allows checking the accuracy of
the methods using both the residual vector norm || Az — b ||z and the error vector
norm ||  — z* ||2. More comprehensive testing which included inconsistent problems
[16] has lead to the same conclusions as in this paper.

The CIMGS and incomplete Cholesky factorizations used for comparison in the
experiments were implemented in standard Fortran. The packages SPARSPAK-A [6]
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TABLE 1
Characteristics of test matrices.

name m n | nnz(A) | nnz(ATA) | dense(A) | dense(AT A)
amocol 1436 330 35210 27686 7.43 25.42
belladit 374 82 1343 2395 4.38 35.60
bellmedt 5831 | 1033 52012 372255 0.86 34.89
illc1850 1850 713 10608 5633 0.80 1.11
well1850 1850 713 10608 5633 0.80 1.11
well1033 1033 321 5765 2469 1.74 2.40
conevs8 3362 484 15852 5135 0.97 2.19
dunes8 5414 771 25430 6998 0.61 1.18
strat8 16640 | 2205 78298 21757 0.21 0.45
bnll 1576 632 9152 28005 0.92 7.01
fHFf800 854 525 6235 10625 1.39 3.85
gen 1500 780 3276 5816 0.28 0.96
nzfri 3521 624 15903 8406 0.72 2.16
pilot4 1000 411 5145 6899 1.25 4.08
scsd6 1350 148 5666 2248 2.84 10.26
seba 1028 516 4874 52432 0.92 19.69
shell 1775 537 4900 2748 0.51 0.95
ship12s 2869 | 1042 8284 6388 0.28 0.59
standata 1075 360 3038 1833 0.79 1.41
woodw 8405 | 1099 37478 21525 0.41 1.78
fs_760_-1 760 760 5976 13957 1.03 2.42
fs_760_3 760 760 5976 13957 1.03 2.42
gre_115 115 115 421 692 3.18 5.22
hwatt_2 1856 | 1856 11550 27445 0.34 0.80
mc._fe 765 765 24382 73254 4.17 12.52
orsreg_1 2205 | 2205 14133 24203 0.29 0.50
pde_ 9511 961 961 4681 6420 0.51 0.70
pores_2 1224 | 1224 9613 12723 0.64 0.85
saylrd 3564 | 3564 22316 38793 0.18 0.31
steam2 600 600 13760 20237 3.82 5.62

used for Cholesky factorization and SPARSPAK-B [7] used for QR factorization are
also in Fortran but benefit from the more careful consideration typical of a numerical
software package. Floating point operation counts (obtained by instrumenting the
Fortran code) are used to compare the efficiency of the various approaches. Although
this does not measure potentially important performance features such as pipelining
and data locality, it does provide a machine-independent measure.

Conjugate gradients on the normal equations (CGLS) [13] is used in the experi-
ments as the basic iterative method to solve the least squares problems and, for square
matrices, the nonsymmetric linear systems. Although CGLS does not form the normal
equations explicitly, its convergence depends on their spectrum. We would, therefore,
expect CGLS to have difficulty converging for problems that are not well conditioned.
Applying CGLS to the test suite confirms this expectation. Since the test problems
are consistent we can use | z—z* ||a / || ¥ |[2< 1076 as the condition that determines
acceptable accuracy. Unfortunately, this proved to be a very difficult condition for
CGLS to fulfill. Only six of the 30 test problems produced the desired accuracy within
n iterations. After 2n iterations, a total of nine matrices satisfy the requirement. Fi-
nally, after 2m only two more are added for a total of 11 out of 30 matrices. If the
stopping condition is altered to use the residual norm by requiring || b — Az [|2< 1076
or || b—Az ||2 /|| b ||2< 1075, the situation improves somewhat. After n iterations, 10
matrices have satisfied the requirement. An additional five matrices have acceptable
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errors after 2n steps and after 2m iterations a total of 16 matrices out of 30 are solved
satisfactorily. Therefore, some form of preconditioning is required for CGLS to be a
viable solution technique for these test problems.

4.2. Implementation of CIMGS and its performance. As with Cholesky
factorization, reorganizing the computations gives different versions of CIMGS. The
version given earlier can be viewed as a rank-1 update approach, while our experiments
use a delayed update version. On the ith step, we form the ith row of AT A, store
it in B, then perform all the CIMGS modifications for that row before going on
to the next row. Locations of fill-in elements are computed using a simple pattern
union computation for each sparse row triad performed. This factorization may store
elements in a row that are in the drop set but are needed for the modifications required
for later rows. This in turn means that CIMGS may require more intermediate storage
than IC with the same pattern, although the final factors used in the iterations will
require the same amount of storage. In the worst case, the intermediate storage needed
by CIMGS is bounded by the space needed by the complete Cholesky factorization
with the same matrix ordering.

The implemented version of CIMGS is as follows.

Algorithm [R]=CIMGS|[B,P]

begin
for i = 1,2, ..., n,
fork = 1,2, ..., i—1,
for j = 4, i+1, , M,
(1) b — { bij — bribr; (ki) & P
t b” — bki’rkj (k’,l) e P
endfor
endfor

if b;; > 0 then
(2) bii = Vb

for 7 =14 i+1, ..., n
(3) bij = bij/bii
[0 jer
@ T by (k) € P
endfor
else
(5) quit (incomplete factorization cannot complete)
endif
endfor

end

The drop set P can be determined dynamically or statically. By dynamic we mean
that P is selected as the factorization proceeds. For example, using a drop tolerance
to select retained elements is a dynamic method. Suppose that A is normalized so
that the diagonal elements of AT A are equal to one and all the off diagonal elements
have magnitudes no greater than one. Note that the CIMGS computations will not
make the magnitudes greater than one. So we can safely choose a tolerance € between
0 and 1. When the magnitude of a computed element is smaller than e, this element
is dropped, or we say this position is selected into P. By static we mean that P is
determined before the numerical computation starts.

Note that in the implementation of IC, only computations that involve elements
in positions that are retained in the incomplete factor are performed. This is because
positions that are in P will not affect the values of the final factor R. The situation



530 X. WANG, K. A. GALLIVAN, AND R. BRAMLEY

TABLE 2
Comparison of CIMGS and IMGS.

Static Pattern Dynamic Pattern
Iterations Operations Iterations Operations

CIMGS | IMGS | CIMGS IMGS || CIMGS | IMGS | CIMGS IMGS
amocol 141 140 8.77 145.55 174 173 6.78 194.41
belladit 14 14 0.17 2.24 8 8 0.17 2.66
bellmedt 16 16 324.30 | 5475.47 18 18 84.01 4251.12
illc1850 296 305 0.47 4.71 87 87 0.86 120.38
well1850 180 180 0.47 4.71 37 37 1.14 149.75
well1033 88 87 0.12 1.77 38 38 0.24 16.87
conev8 1 1 0.38 30.61 1 1 0.27 264.47
dunes8 20 20 1.89 45.66 13 13 1.38 682.05
strat8 89 89 1.61 317.46 99 99 0.74 | 23565.04
bnll 162 162 9.54 86.22 103 103 5.66 129.18
fHF800 NC Fail 13.83 NC Fail 102.40
gen 41 41 0.23 4.38 32 32 0.07 6.61
nzfri 57 57 7.52 98.27 46 610 10.03 1294.32
pilot4 61 61 0.97 10.59 22 22 0.53 31.42
scsd6 21 21 0.08 6.23 11 11 0.06 14.18
seba 70 70 24.92 142.32 73 73 8.94 148.50
shell 23 23 0.87 4.65 16 16 1.37 177.87
ship12s 35 35 0.08 1.96 26 26 0.07 11.19
standata 151 NC 0.29 3.55 76 75 0.65 66.33
woodw 34 34 6.61 207.19 27 27 2.27 972.28
fs_760_-1 4 4 8.40 21.28 7 7 0.06 5.54
fs_760_-3 NC NC 8.40 21.28 NC NC 4.51 174.80
gre_115 34 34 0.07 0.10 13 13 0.13 0.92
hwatt_2 1 1 5.86 70.89 1 1 4.50 2060.69
mc_fe 235 234 12.60 118.32 709 717 3.14 148.59
orserg_1 312 312 30.94 68.50 507 507 0.35 84.12
pde_9511 26 26 0.69 9.58 17 17 1.06 295.14
pores_2 NC NC 5.46 28.69 NC NC 0.64 71.35
saylr4 NC NC 27.26 182.24 2277 2279 1.92 2976.69
steam?2 7 7 7.02 24.64 28 28 0.10 4.80

is more complicated for CIMGS, where some of the elements in P carry intermediate
information that will eventually affect the value of R. On the other hand, not all
of the elements in P will affect the final value of R and computing them involves a
compute-then-drop operation, which wastes time and space. A detailed discussion of
an algorithm that identifies these unnecessary computations by symbolic analysis can
be found in [16]. The data shown here include such unnecessary computations, but it
should be kept in mind that performance may be improved further given an efficient
symbolic analysis algorithm that identifies and eliminates unnecessary computations.

Table 2 shows two sets of comparisons. One set uses a drop set P so that the target
factor will have the same sparsity pattern as the normal equations, as is usually done
with incomplete Cholesky factorization. The other set of examples uses a dynamic
drop set P with e = 0.02, so that elements with magnitude less than 2% of the maximal
magnitude are dropped. For each set of examples, we list the number of iterations
taken in the iterative phase of solutions using both CIMGS and IMGS preconditioners.
This quantity can be used to compare the quality of the preconditioners because both
use the same drop set P, and so the costs per iteration of applying them are the same.
We also list the number of operations in millions used to compute the preconditioners,
showing how much compression reduces the cost. Failure of the factorization to exist
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is indicated by the word Fail, and failure of the iterative method to converge within
the maximum allowed number of iterations is indicated by NC. From the table we
observe the following facts:

e In no case did IMGS take fewer operations than CIMGS. The ratio of oper-
ation counts of IMGS over CIMGS varies from 1.4 to 197 for static patterns
and from 7 to 31845 for dynamic patterns.

e Compression can increase the chance of numerical breakdown due to finite
precision computations, in the same way that Cholesky factorization on the
normal equations is more likely to fail than QR factorization on the original
matrix. For problem FFFFF800 CIMGS factorization using both static and
dynamic patterns fails, while IMGS with the same pattern succeeds. However,
for this problem IMGS fails in the iterative phase.

e Compression does not degrade the quality of preconditioners. With a few
exceptions, the number of iterations does not change. For those problems
where CIMGS takes more iterations, usually only one additional iteration is
needed. For problems where IMGS takes more iterations large differences
can occur, such as the problem STANDATA with a static pattern and NZFRI
with a dynamic pattern. Although this testing is too limited to claim that
IMGS is likely to require more iterations than CIMGS, it does show that
the compression technique does not significantly degrade the quality of the
preconditioner.

e The reduction in cost in using CIMGS is more significant when using a dy-
namic pattern. Using a dynamic pattern involves compute-then-drop because
it is not determined if an element is in drop set until after it is computed.
This computation in CIMGS involves only a multiplication and subtraction,
while in IMGS it is a dot product of two vectors of length n.

These experiments show that the compression technique used in CIMGS is ef-
fective in preserving the robustness and improving the efficiency of IMGS. Other
experiments not shown here using a wider variety of pattern selection methods indi-
cate that with the same pattern, CIMGS always uses fewer operations than IMGS
does in computing the preconditioners. Furthermore, as in the experiments above the
number of iterations remains unchanged with a only a few exceptions.

4.3. Comparison of static CIMGS with other methods. Table 3 shows the
number of floating point operations in millions required by various methods. Failure
of the factorization to exist is indicated by the word Fail, and failure of the iterative
method to converge within the maximum allowed number of iterations is indicated
by NC. The method QR is QR factorization on the original matrix, method NE
is full Cholesky factorization of the normal equations, IC is incomplete Cholesky
factorization combined with CGLS, and static and dynamic CIMGS are the versions
given earlier. For the direct methods a minimum degree reordering was used; this
reordering gave the best performance for the test set.

In comparing static CIMGS with IC, the same drop set and iterative method was
used for both. From the table we note the following facts:

e IC factorization fails to produce the preconditioner in 18 problems without
reordering and 16 problems with minimum degree ordering out of a total of 30
problems. The failure rate is so high that without modification IC is not useful
in practice. By contrast, CIMGS factorization fails on one problem without
reordering and three problems with minimum degree ordering. Since CIMGS
factorization must complete in exact arithmetic, these failures must be caused
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TABLE 3
Total operations of methods.

SPARSPAK 1C CIMGS CIMGS CIMGS

QR NE Static Hybrid Dyn.

name md md no md no md no md no
amocol 70.96 3.37 Fail Fail 46.27 21.29 46.35 22.65 47.01
belladit 2.76 0.16 0.34 0.31 0.42 0.35 0.34 0.31 0.31
bellmedt > 10% | 345.76 || 174.25 | 174.25 || 354.51 | 335.63 || 174.25 | 174.25 94.87
illc1850 4.96 0.15 Fail 16.59 20.63 15.89 20.67 16.59 7.20
well1850 4.98 0.15 Fail 13.14 12.76 11.07 12.79 13.14 3.93
well1033 0.88 0.04 Fail 2.04 3.17 1.98 3.18 2.04 1.66
conev8 25.24 Fail 0.26 0.26 0.59 0.44 0.26 0.26 0.47
dunes8 27.34 0.75 3.47 3.31 5.14 3.35 3.47 3.31 3.57
strat8 180.83 4.87 43.98 | 152.40 44.45 | 133.77 43.98 | 152.40 44.15
bnll 187.98 11.46 Fail Fail 35.47 37.27 36.44 37.76 17.06
fHFf800 6.68 Fail Fail Fail Fail Fail Fail Fail Fail
gen 2.11 0.28 Fail Fail 2.12 1.72 2.18 1.78 1.29
nzfri 41.93 0.92 6.65 Fail 14.12 5.64 6.65 5.69 16.25
pilot4 13.35 1.01 Fail Fail 4.34 2.36 4.35 2.37 1.50
scsd6 2.70 0.07 0.85 0.85 0.90 0.87 0.85 0.85 0.52
seba 41.78 Fail Fail Fail 42.13 Fail 42.38 Fail 15.35
shell 5.42 Fail 0.79 0.90 1.68 0.88 0.79 0.90 2.03
ship12s 2.54 0.13 Fail Fail 2.73 2.73 2.78 2.78 1.78
standata 2.96 Fail Fail Fail 4.11 Fail 4.12 Fail 3.00
woodw 356.44 3.47 10.18 11.28 16.23 12.73 10.18 11.28 8.71
fs_760_1 6.41 2.26 0.66 0.66 8.84 1.45 0.66 0.66 0.36
fs_760_3 69.54 Fail Fail Fail NC NC NC NC NC
gre_115 0.15 0.05 0.19 0.18 0.26 0.18 0.19 0.18 0.24
hwatt_2 123.57 37.29 Fail Fail 6.19 5.22 6.90 5.24 4.79
mc_fe 28.23 10.59 Fail Fail || 106.97 18.40 || 107.06 18.85 110.48
orserg_1 219.83 63.95 Fail Fail 84.44 | 719.97 84.60 | 719.99 49.56
pde 9511 5.34 1.65 Fail Fail 2.08 4.91 2.10 4.92 2.22
pores_2 12.02 3.72 Fail Fail NC NC NC NC NC
saylrd 360.51 | 108.13 Fail Fail NC NC NC NC 381.41
steam2 22.11 7.40 1.89 1.89 8.38 4.29 1.89 1.89 2.25

by finite precision arithmetic. Notice that complete Cholesky factorization
(NE) also fails on these problems.

CIMGS failed to allow convergence on three problems. However, IC failed in
the factorization phase on those three problems. In no case has IC succeeded
while CIMGS failed, showing that CIMGS is more robust than IC.

When both CIMGS and IC succeed, IC is generally more efficient. For the 12
out of 30 problems without reordering where both succeeded, IC takes fewer
operations than CIMGS. With minimum degree reordering, the difference be-
tween CIMGS and IC is less significant. Minimum degree reordering reduces
the fill-in of Cholesky factorization as well as the intermediate storage and
computations of CIMGS. Furthermore, minimum degree reordering does not
change the number of operations needed in IC factorization, but the quality
of the preconditioner is lessened, increasing the number of iterations needed.
For the 14 minimum degree reordered problems where both IC and CIMGS
succeed, IC takes fewer operations eight times. These results suggest that
finding a proper reordering for CIMGS is important for efficiency.

In terms of numbers of iterations, CIMGS performance is similar to that of IC. As
shown by Theorem 8, when AT A is an M-matrix, CIMGS produces a better approx-
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imation to the complete Cholesky factor than IC does. For the test problems where
both preconditioners exist (and for which AT A need not be an M-matrix), IC gener-
ally requires one or two more iterations than CIMGS does. Only for SHELL without
reordering did CIMGS require more iterations than IC (22 iterations versus 21). With
minimum degree reordering, there were 14 problems where both CIMGS and IC suc-
ceeded. On 13 of those, CIMGS required fewer iterations. On the minimum degree
reordered problem wOoODW, CIMGS required one more iteration than IC did.

The primary reason CIMGS efficiency improves so dramatically with minimum
degree reordering is that the amount of intermediate storage (and operations on those
intermediate quantities) is reduced greatly. The ratio of storage required by CIMGS
to that required by IC ranges from 1.42 to 34.8 for problems without reordering.
That range becomes 1.17 to 3.6 for minimum degree reordered matrices. This indi-
cates that finding a good ordering is important for CIMGS. Note that in any case,
the intermediate space CIMGS needs cannot be greater than that of full Cholesky
factorization.

The comparison of CIMGS and IC suggests using a hybrid method: perform 1C
factorization and if it fails, switch to CIMGS. Such an approach will allow retaining
the efficiency of IC when it exists and having the additional robustness of CIMGS
otherwise. The operation counts for this hybrid method are also shown in Table 3.
Note that since minimum degree reordering lessens the difference in operation counts
between IC and CIMGS, the hybrid method with minimum ordering does not show
significant advantage over CIMGS.

The results show that CIMGS is more robust than IC, at the cost of more opera-
tions and intermediate storage. The natural question to ask is if the price is too high
to make the method practically useful. Examining direct methods on these problems
can help answer that. From Table 3 QR is the most robust method, able to solve
all the problems. For problem MC_FE and STEAM2, || Az — b ||2< 107% could not
be reached because || b |2 is too large, 3.955 x 103 for MC_FE and 5.266 x 1019 for
STEAM2. The relative residuals for the solution of these two problems are small. NE
has six failures. Compared to one and three failures of CIMGS in the factorization
phase with and without ordering, respectively, CIMGS seems more robust. This is
consistent with the result of Theorem 3, which suggested that static CIMGS would be
more robust than full Cholesky factorization. In terms of efficiency, QR needs more
floating point operations than the iterative methods on most of the test problems and
NE needs fewer operations than iterative methods on the problems where it succeeds.
In term of storage, the storage needed by CIMGS is bounded by the storage needed
by normal equations method and depends also on the drop set P.

Table 3 also shows the result of CIMGS using dynamic pattern with e = 0.02 as a
fixed drop tolerance. When compared to static CIMGS without reordering, only one
additional success occurs: SAYLR4. However, the efficiency is improved for 22 of the
test problems, sometimes by more than a factor of 24. Note that the test problems
come from different sources and a single drop tolerance as was used here may not be
suitable for all problems. Determining the drop tolerance is still a matter of experi-
mentation. CIMGS shares this potential difficulty with other drop tolerance methods
such as ILUT preconditioning [15]. In general, the more ill conditioned problems are,
the smaller € may need to be to get a preconditioner of adequate quality. Our tests
show that CIMGS has a great flexibility in pattern selection without losing robustness.
This flexibility of pattern selection may allow us to find a better preconditioner after
a more careful selection process, possibly based on application-dependent features.
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4.4. Summary of testing results. The tests show that CIMGS greatly reduces
the number of operations needed when compared with IMGS. In terms of robustness of
the factorization phase, it failed half as often as complete Cholesky factorization of the
normal equations reordered using a minimum degree algorithm. When considering
both natural and minimum degree reordered matrices static CIMGS factorization
failed only four times, compared to 34 factorization failures by IC. If total robustness
is considered (iteration plus factorization phases), static CIMGS failed less than a
third as often as IC did.

In terms of the number of total (iterative and factorization) operations required,
for the problems where the IC factorization existed, it was usually more efficient than
CIMGS, especially when there is no reordering to reduce the intermediate operations
for CIMGS. Using a hybrid approach of first trying IC and, if the factorization fails,
using CIMGS allows combining the efficiency of IC with the robustness of CIMGS.
However, even a simple minimum degree reordering makes the costs of CIMGS com-
parable with those of IC, without sacrificing robustness. In addition, using a dynamic
pattern selection further reduces both the numbers of operations and the amount of
intermediate storage that CIMGS requires, again without sacrificing robustness.

5. Conclusion. This paper introduces a new preconditioning algorithm, CIMGS.
A detailed study of the theoretical and numerical properties of CIMGS shows that
it is robust both theoretically and empirically, existing (in exact arithmetic) for any
full rank matrix. Numerically it is more robust than an incomplete Cholesky fac-
torization, and CGLS preconditioned with dynamic CIMGS compares favorably with
using Cholesky factorization on the normal equations. This finding suggests that with
CIMGS preconditioning, CGLS can be a viable method for practical use.

Additional theory shows that CIMGS is equivalent to IMGS, the factorization
has better backward error properties than complete Cholesky factorization, and for
systems whose normal equations are M-matrices, CIMGS induces a regular splitting,
better estimates the complete Cholesky factor R¢ as the drop set P gets smaller, and
lies between complete Cholesky factorization and incomplete Cholesky factorization
in its approximation properties. Typically, those properties seem to hold numerically,
even when A7 A is not an M-matrix. When the drop set satisfies a mild and easily ver-
ified (or enforced) property, the upper triangular factor CIMGS generates is the same
as the one generated by incomplete Cholesky factorization. This allows the existence
of an IC factorization to be guaranteed, based solely on the target sparsity pattern.

There are several issues left for further research. First, we need to have a more
efficient algorithm to identify unnecessary computations used in the current imple-
mentation for static sparsity patterns which should bring down the computation cost
further. Second, new reordering algorithms need to be found to reduce the intermedi-
ate data storage and computations. Existing reorderings generally target minimizing
fill-in during complete factorization, or minimizing bandwidth of the matrix. Possi-
bly by adapting them we can develop a new heuristic more suitable for improving the
performance of CIMGS, by minimizing the intermediate computations.

Selecting an optimal target sparsity pattern, that is, the drop set P, could be
crucial to the success of CIMGS. We need to have a fast way of selecting the pattern,
but even if this is not practical, for problems where the same pattern can be used
over and over, it may still be worthwhile to search for a near optimal pattern.

Parallel processing is an important issue, which has not been discussed here.
Although CIMGS has a structure similar to Cholesky factorization, which is not as



AN INCOMPLETE ORTHOGONALIZATION PRECONDITIONER 535

rich in parallelism as Gram—Schmidt-type factorization, we can still exploit parallelism
in the algorithm by utilizing a block bordered diagonal matrix structure. Because of
the great flexibility of sparsity pattern selection allowed in CIMGS, it is feasible to
combine sparsity pattern selection strategies with matrix ordering techniques to get
better performance using parallel processing.

The preconditioning method proposed here is applied to CG-type iterative meth-
ods. How will they perform when combined with other types of iterative methods, for
example, row projection methods, GMRES, or Lanczos-based methods? Of particu-
lar interest is adapting the preconditioner to the particular iterative method. We are
presently investigating the relationship of near-orthogonality of the coefficient matrix
of a system of linear equations to the convergence behavior of a collection of iterative
methods and the implications of the use of CIMGS as a preconditioner.

Another potential research area is to extend the relationship between CIMGS
and incomplete Cholesky to unsymmetric matrices. Currently we are developing a
CIMGS-like algorithm for ILU factorization which can be more robust and efficient
than standard ILU factorization methods.
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