SIAM J. SCI. STAT. COMPUT. © 1987 Society for Industrial and Applied Mathematics
Vol. 8, No. 6, November 1987 015

TIMELY COMMUNICATIONS

Under the *““timely communications™ policy for the SIAM Journal of Scientific and Statistical Computing,
papers that have significant timely content and do not exceed five pages automatically will be considered for a
separate section of this journal with an accelerated reviewing process. It will be possible for the note to appear
approximately six months after the date of acceptance.

THE USE OF BLAS3 IN LINEAR ALGEBRA ON A PARALLEL PROCESSOR
WITH A HIERARCHICAL MEMORY*

KYLE GALLIVANY, WILLIAM JALBY{# AND ULRIKE MEIER?$

Abstract. This note describes work at CSRD which shows that a third level of the BLAS (BLAS3) is
needed to achieve high-performance on multivector processors with a shared hierarchical memory.

Key words. BLAS3 or third-level BLAS, numerical linear algebra, numerical software, parallel comput-
ing, cache management

AMS(MOS) subject classifications. Primary 68B99; secondary 65F05, 65F25, 65F30

1. Introduction. The design of efficient numerical linear algebra codes which are
also reasonably portable for vector machines such as the CRAY or CYBER 205 has
been simplified considerably by the use of standard kernel subroutines known as the
BLAS [3]. These routines are primitives based on vector-vector operations such as
dotproduct and DAXPY (v = a+ yb). The success of these routines depends upon the
fact that many linear algebra algorithms are easily expressed in terms of vector-vector
operations and that for high-performance pipelined architectures the optimization of
performance is straightforward (the longer the vectors the better). Further consideration
of algorithm performance has led to the development of the extended BLAS (called
BLAS2 below) [4]. These routines are primitives based on matrix-vector operations.
BLAS?2 retains all of the positive aspects of the BLAS and possesses some unique
advantages. On register-to-register vector machines the matrix-vector operations pro-
vide much more efficient register management and are able to more efficiently exploit
memory bandwidth. Further, the presence of two-dimensional parallelism allows the
BLAS2 primitives to be efficiently implemented on the newer supercomputers which
provide concurrency as well as vectorization.

Unfortunately, most of the multivector processors make use of a hierarchical
memory system, typically a small fast cache and a slower large main memory, to
provide data at the required rates (ST-100, CRAY 2, ETA 10 and CEDAR). For these
machines a third factor which influences algorithm performance is added to concurrency
and vectorization. Algorithms must contain a reasonable amount of data locality in
order to make full use of the resources of a multivector processor with a shared
hierarchical memory. The data locality present in the BLAS and BLAS2 primitives
and algorithms expressed in terms of these primitives is minimal. Hence, neither of

* Received by the editors October 20, 1986; accepted for publication January 21, 1987. This work was
supported in part by the National Science Foundation under grants DCR84-10110 and DCR85-09970, the
U.S. Department of Energy under grant US DOE DE-FG02-85ER25001, and the IBM Donation.

T Center for Supercomputing Research and Development, University of Illinois, Urbana, Illinois 61801.

% This author was on leave from Institut National de Recherche en Informatique et en Automatique,
domaine de Voluceau, Rocquencourt, B.P.105 78150, Le Chesnay, France.

§ This author was on leave from ZAM, KFA Juelich GmBH, Postfach 1913, D-5170 Juelich, West
Germany.

1079




1080 TIMELY COMMUNICATION

the first two levels of the BLAS is a suitable basis for algorithm development on such
architectures.

Recent work at CSRD has demonstrated that a third level of the BLAS is needed
in order to design algorithms which efficiently exploit the resources of a multivector
processor with a hierarchical shared memory system [1], [S], [6]. This third level of
the BLAS (called BLAS3 below) comprises primitives based on matrix-matrix
operations. These primitives possess as much exploitable concurrency and vectorization
as BLAS and BLAS?2 primitives, if not more, and their data locality is far better. The
numerical library under development for the CEDAR machine uses ‘““block™ methods
implemented via BLAS3 primitives for many of the basic linear algebra tasks such as
matrix factorization.

The effect of data locality, concurrency and vectorization on the performance of
an algorithm can be investigated by writing the total time required to perform the
algorithm as

T= Ta+T,=na1',,+n,'r;

where T,, T;, n, and n; are the arithmetic time (the time spent computing assuming
all operands are in cache), data load time (the time spent transferring data from main
memory to cache), number of operations and number of data loads, respectively. The
quantities 7, and 7, defined by this expression can be viewed as the “average” times
for arithmetic and data load operations. The component T, is largely the result of
satisfying the aspects of concurrency and vectorization while data locality dictates the
size of T,. The effect of data locality on performance can be investigated by expressing
the relative amount of time spent loading data in terms of a cache-miss ratio and a
cost ratio which are A = /7, and u = n;/ n,, respectively. The relative amount of time
spent loading data is then T,/ T=pu/(A"'+pu). In [5] and [6] it is shown that by
analyzing the data locality of a linear algebra algorithm via these two parameters the
influence of the memory system can be reduced to a negligible amount for a large
number of machines. The algorithm designer is then free to concentrate on the
characteristics of his particular machine and their influence on the arithmetic time of
the algorithm under consideration. For many algorithms this technique of optimizing
the components T, and T; separately and then choosing parameters of the final
algorithm from within the intersection of regions of near-optimal behavior for each
of the terms yields remarkable results. This is the basic technique that has been used
at CSRD in analyzing the performance of algorithms in the numerical library being
developed for the CEDAR project.

This correspondence contains a brief survey of the results of some of the work
done at CSRD which led to the recommendation of the use of the BLAS3 in the design
of algorithms for the numerical library on the CEDAR machine and shared hierarchical
memory machines in general. First, the results of the analysis of the basic BLAS3
primitive of C « C + AB are discussed in § 2 and experimental results clearly demon-
strating the superiority of BLAS3-based algorithms are presented in § 3.

2. Analysis of a BLAS3 primitive. The first task which results from recommending
the use of the BLAS3 primitives in algorithm design is that of generating efficient
algorithms for the primitives themselves. In this section the results of analyzing the
BLAS3 primitive C < C + AB presented in [S] are discussed. If A and B are vectors
then this primitive is the rank-1 update of BLAS2. In BLAS3 usage, this primitive is
usually a rank-k update but it can, of course, be used as a dense matrix multiplication
primitive when A, B and C are all large. One of the most commonly used instances




TIMELY COMMUNICATION 1081

of this primitive is the case where C is n, by n3, A is n, by n, and B is n, by n;. The
values of n, and n; are assumed large while n, may or may not be. It is assumed that
the multivector processor of interest contains p vector processors which share a small
high-speed cache and a large slower main memory (for example an ALLIANT FX/8
which is used as a single CEDAR cluster).

Let A, B and C be partitioned into submatrices of dimension m, by m,, m, by
my and m, by m,, respectively. The goal of the analysis is to determine block sizes
which deliver near-optimal performance of this BLAS3 primitive on a machine with
the assumed architecture.

The algorithm for obtaining the matrix C is as follows:

doi=1,k,
do k=1,k,
doj=1,k;
Cij=Cy+ Ay * By,
end do

where n, = k,m;, n,=k,m, and n;=kym, with k,, k, and k, are integers greater than
1. The block operations C; ;= C; ;+ A, * B, ; contain a reasonable amount of potential
parallelism, so the algorithm proceeds by first partitioning the matrices and then
dedicating the full resources of the machine to each of the block operations in turn.

The kernel algorithm for the block operation uses m,-adic operations on each
processor to accumulate p columns of C;; at a time. (This should be a fairly portable
approach since the multiply-add vector instruction tends to be the highest performance
instruction on register-to-register vector processors.) Hence, the minimization of the
T, component of the algorithm time requires that: m, is a multiple of the length of
the vector registers (32 for a CEDAR cluster); m, is large enough so that a significant
fraction of the peak performance of the m,-adic instruction is achieved (greater than
24 or so on a CEDAR cluster); and m; is either large or a multiple of p (p=8 on a
CEDAR cluster).

The minimization of the component T; requires more effort. If it is assumed that
Ay is fetched from memory once and B; and C;; are fetched as needed then the
minimization of the number of loads is equivalent to minimizing p = m;'+ m5' subject
to the constraints my(p+m;)=CS, 1=m,;=n, and 1 =m,=n, where CS denotes the
cache size. These constraints trace a rectangle and a hyperbola in the parameter plane.
In [5] it is shown that the solution to the minimization problem, under reasonable
assumptions including n,>+/CS, is divided into two cases:

(1) If ny(p+n,)=CS then m;=n, and m,=n,. This yields the theoretical
minimum for the number of loads for this primitive.

(2) If ny(p+n;) = CS then m,=min (n,, CS[VCS+p]") and m,=(CS/m,) —p.

When this primitive is used as a rank-n, update it is reasonable to assume that
n,=+/CS and that n, and n; are large enough for the second case above to be applicable.
The cache-miss ratio for this primitive is p = 1/2n,. This implies that the relative cost
of data loading is A/(2n,+ A ). Clearly for BLAS2 where n,=1 the cost is too high.
For a single CEDAR cluster it is reasonable to assume that A =3 implying that 60
percent of the total time of the algorithm is spent loading data for the BLAS2 primitive
while if, say, rank-32 updates are used this falls to an acceptable 4.5 percent. The
difference in the performance of the basic primitives in the three levels of the BLAS
on a single CEDAR cluster is dramatic. For example, experiments run at CSRD show
that DAXPY for vectors of length n and a rank-1 update to an n by n matrix run at
about 5.5 and 6.5 Megaflops respectively for n ranging from 256 to 1024. A rank-32




1082 TIMELY COMMUNICATION

update on an n by n matrix runs at approximately 42 Megaflops for the same range
of n.

3. Matrix factorizations. Many classical linear algebra algorithms can be
expressed in terms of BLAS2 and BLAS3 primitives [1], [5]. In this section the LU
decomposition and the modified Gram-Schmidt algorithm are considered as examples
of the superiority of BLAS3 over BLAS2 on multivector processors with a hierarchical
memory. In the following subsections the block algorithms are described and experi-
mental results obtained on a single CEDAR cluster are presented.

3.1. The LU decomposition. The goal of the LU decomposition is to factor an
n X n-matrix A into the product of a lower triangular matrix L and an upper triangular
matrix U. The classical LU factorization consists essentially of dotproducts, i.e., the
classical BLAS or BLAS], it can however also be expressed in terms of rank-1 updates,
i.e., BLAS2 (see [3]).

In order to use the efficient BLAS3, a block LU factorization must be performed.
This algorithm decomposes A into the products of block lower triangular matrix L;
and an block upper triangular matrix U, with blocks of the size kX k (it is assumed
for simplicity that n is divisible by k). Let A be a diagonally dominant matrix partitioned

in the following way:
a= (B A (10U U
Ay An L, I 0 B

where A, is of order k.
The first step of the algorithm is

A11“A;11, Az €« Ly = Ay Ay, Ap<B=A—LyAp.

The above computations are then performed recursively on the smaller matrix B. Note
that the BLAS?2 version of the classical LU decomposition is a special case of this
algorithm for k=1.

This block LU algorithm consists mainly of matrix-matrix operations. The only
difficulty lies in inverting the k x k blocks on the diagonal. This can be done by using
the Gauss-Jordan algorithm which can be implemented efficiently on a CEDAR cluster.
Such an algorithm is numerically stable for the diagonally dominant case [7]. Pivoting
can be added to the block algorithm in a straightforward manner while maintaining
performance superior to that of a BLAS2 implementation with pivoting [2]. This is
due to the fact that the number of data loads required is not significantly affected by
the addition of pivoting [5].

The block algorithm increases the number of operations by a factor of approxi-
mately (1+2k>/n?) over the classical LU factorization which requires about 2n°/3
operations.

3.2. A block Gram-Schmidt algorithm. The goal of this algorithm is to factor an
m X n-matrix A into the product of an orthonormal m X n-matrix Q and an upper
rectangular n X n-matrix R where m>n and A is of maximal rank. A is partitioned
into two blocks A; and B where A, consists of s columns of order m, with Q and R
partitioned accordingly.

(A, B)=(Q,, P) (R" R"').

0 Ry
The first step of the algorithm comprises the computations
A= QRy,, R12=Q;rBa B« B,=B-QRy.




TIMELY COMMUNICATION 1083

The above computations are then performed recursively on the smaller problem
B = PRy, etc. It is easily seen that this algorithm consists mainly of matrix operations.
The second and third statements require approximately 4ms(n—s) floating point
operations while the first, the decomposition of A, into the orthonormal matrix Q,
and the upper triangular matrix R;,, for which the modified Gram-Schmidt algorithm
is used, requires only 2ms>. The BLAS? version of the modified Gram-Schmidt
algorithm is obtained by setting s to 1.

3.3. Experimental results. The classical method and the block variant of the LU
factorization were implemented on a single CEDAR cluster using BLAS2 and BLAS3
primitives, respectively. Figure 1 illustrates the performance of both methods for
systems of varying sizes. The block algorithm is about 3.5 times as fast as the classical
LU factorization if n > 500,

Mflops Mflops 4
35 1 lock LU 4
block LU (BLAS3) 3 block G-§ (BLAS3)
30 4 30
25 25 1
20 L 20 4
15 4 15 JL
10 10 4
~ N ] modified G-S (BLAS?2)
5 classical LU (BLAS2) 5 T
+ | 0 '
128 512 1024 »n 128 512 1024 n

F1G. 1. Performance results.

Similar experiments were performed for the Gram-Schmidt orthogonal factoriz-
ation algorithm. A BLAS2 version as well as a BLAS3 version of the algorithm with
s =32 have been implemented on a single CEDAR cluster. The resulting performance
is shown in Fig. 1. Increasing the order of A obviously improves the performance for
the BLAS3 version as the matrix-matrix operations dominate the computation.

4. Conclusion. This correspondence has surveyed recent work at CSRD which
has shown that a third level of the BLAS (BLAS3) based on matrix-matrix primitives
is required in order to achieve high performance on multivector processors with a
shared memory hierarchy. In this work the relative cost of data loading from memory
to cache was expressed in terms of two generic systems parameters, the cache-miss
and cost ratios. This model provides an intuitive and theoretically sound basis for
analyzing the influence of the memory system on the performance of algorithms
implemented on such architectures.

A numerical library based on the BLAS3 is currently under development at CSRD.
Numerical experiments based on these algorithms have clearly shown the superiority
of designing with BLAS3 primitives on systems such as CEDAR. The definition of
BLAS3 is evolving as this work progresses, but at present some of the primitives are:
C<C+AB; C<C+A"B,; triangular solvers for matrix equations LX = B and UX =
B; an inversion primitive using Gauss-Jordan reduction; and, of course, matrix
decomposition primitives such as A = LU




1084 TIMELY COMMUNICATION

REFERENCES

[1] M. BERRY, K. GALLIVAN, W. HARROD, W. JALBY, S. Lo, U. MEIER, B. PHILLIPE AND A. SAMEH,
Parallel numerical algorithms on the CEDAR system, CSRD Report, CSRD University of Illinois
at Urbana-Champaign, Urbana, IL, 1986.

[2] D. CALAHAN, Block-oriented, local-memory-based linear equation solution on the CRAY-2: uniprocessor
algorithms, Proc. ICPP 1986, IEEE Computer Society Press, Washington D.C., August 1986.

[3] J. DONGARRA, J. BUNCH, C. MOLER AND G. W. STEWART, LINPACK User’s Guide, Society for
Industrial and Applied Mathematics, Philadelphia, PA, 1979.

[4] J. DONGARRA, J. DUCROZ, S. HAMMARLING AND R. HANSON, A proposal for an extended set of
Fortran basic linear algebra subprograms, Technical Memo #41, Mathematics and Computer
Science Division, Argonne National Laboratory, Argonne, IL, December 1984.

[5] K. GALLIVAN, W. JALBY, U. MEIER AND A. SAMEH, The impact of hierarchical memory systems on
linear algebra algorithm design, CSRD Report, CSRD University of Illinois at Urbana-Champaign,
Urbana, IL, 1986.

[6] W. JaLBY AND U. MEIER, Optimizing matrix operations on a parallel multiprocessor with a two-level
memory hierarchy, CSRD Report, CSRD University of Illinois at Urbana-Champaign, Urbana, IL,
1986.

[7]1 G. PETERS AND J. WILKINSON, On the stability of Gauss-Jordan elimination with pivoting, Comm.
ACM, 18 (1975), pp. 20-24.




