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The Phase Retrieval Problem

The Phase Retrieval Problem

@ The Phase Retrieval problem concerns recovering a signal given the
modulus of its linear transform;
@ It is important in many applications, e.g.,
o X-ray crystallography imaging [Har93];
Diffraction imaging [BDP*07];
Optics [Wal63];
Microscopy [MISEO8];

@ The Fourier transform is considered;

¢ ¢ ©
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The Phase Retrieval Problem

Problem Statement

@ Recover the signal x : R* — C from intensity measurements of its
Fourier transform, [%(u)| = | [, x(t) exp(—2mu - tv/=1)dt|;

@ Discrete form
find x € CmxmxXns 5t |Ax| = b,

where x = vec(x) € R", n=nyny---ns and A € C™*" defines the
Discrete Fourier transform;
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The Phase Retrieval Problem

Difficulties and Oversampling

@ Solution of the discrete form may be not unique.
@ Oversampling in the Fourier domain is a standard method to obtain
a unique solution.
o No benefit for most 1D signals, see e.g., [San85].
¢ Give a unique solution for multiple dimensional problems for
constrained signals, see e.g. [BS79, Hay82, San85].
@ Algorithms based on alternating projection are used.

PhaseLift by low-rank Riemannian optimization methods 4



The Phase Retrieval Problem

Other Frameworks

@ PhaselLift [CESV13] and PhaseCut [WDM13]: Combining using
multiple structured illuminations or masks with convex programming;

@ A unique rank one solution up to a global phase factor
[CESV13, CL13, CSV13, WDM13];

@ Stability [CL13, CSV13, WDM13];

@ Convex programming solvers, e.g., SDPT3 [TTT99] or TFOCS
[BCG11];

@ The PhaseLift framework is considered in this presentation.
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PhaseLift Framework

PhaseLift: Using lllumination Fields

@ The known illumination fields on the discrete signal domain
w, € CmxmXefs p =1 . ¢

@ Let w, denote vec(w,). One illumination field gives an equation
|ADiag(w)x| = b,

where Diag(w,) denotes an n-by-n diagonal matrix the diagonal
entries of which are w;,.

@ / fields yields

(ol

A Diag(wy)

1

A Diag(ws) by
i x| = . =b

A Diag(w;) by
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PhaseLift Framework

PhaseLift: Using lllumination Fields

@ Therefore, the linear operator A for PhaselLift using the Fourier
transform, denote Z, is

A Diag(ws)
A Diag(ws)
Z= ,
A Diag(wy)
@ PhaselLift problem:
find x € C",

s. t. |Zx| = b, or equivalently, diag(Zxx*Z*) = b?,

where x denotes the conjugate transpose operator.
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PhaseLift Framework

PhaseLift: Lifting to Convex Problem

@ Let X € C"*" denote xx*. The Phase Retrieval problem becomes
find X, s. t. diag(ZXZ*) = b*, X > 0 and rank(X) = 1,
or equivalently
minrank(X), s. t. diag(ZXZ*) = b?, and X >0,

where X > 0 denotes X is Hermitian positive semidefinite.

@ Convex programming

mintrace(X), s.t. diag(ZXZ*)= b? and X > 0.
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PhaseLift Framework

PhaseLift: Noise Measurements

@ Measurements with noise, b> € R™, are sampled from a probability
distribution p(+; 1), where p = diag(ZXZ*).
@ Minimize the negative log-likelihood function

min — log(p(b; 1))
such that p = diag(Zxx* Z*),
@ Similarly, an alternate problem can be used:
min — log(p(b; 1)) + w trace(X), s. t. diag(ZXZ*) = b?, and X > 0.

where K is a positive constant.

9 If the likelihood is log-concave, then it is a convex problem, e.g., for
Poisson or Gaussian distributions.
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PhaseLift Framework

PhaselLift: Nonconvex Approach

@ The complexity can be too high in convex approach.
@ The alternate problems are

noiseless: )rp>|r(1) |b? — diag(ZXZ*)||3 + & trace(X),

noise: )rp>|r8 — log(p(b; diag(ZXZ*))) + & trace(X)

where K is a positive constant;

@ They are used in [CESV13] and reweighting is used to promote
low-rank solutions;

@ This motivates us to consider the optimization problem

iy )

and the desired minimizer is low rank. In particular for the PhaseLift
problem, the rank of desired minimizer is 1.
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Optimization on Hermitian Positive Semidefinite Matrices

Optimization on Hermitian Positive Semidefinite Matrices

@ Suppose the rank of desired minimizer r* is at most p.
@ The domain {X € C"™"|X > 0} can be replaced by D,, where
D, ={X € C"™"|X > 0,rank(X) < p}.

@ An alternate cost function can be used:
Fp:C™P 5 R:Y,— H(YPY;).

@ Note that for the PhaseLift problem, choosing p =1 is equivalent
not to do the Lifting step. Choosing p > 1 yields computational and
theoretical benefits.

@ This idea is not new and has been discussed in [BMO03] and
[JBAS10] for real positive semidefinite matrix constraints.
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Optimization on Hermitian Positive Semidefinite Matrices

First Order Optimality Condition

If Y, € C"™P is a rank deficient minimizer of Fj, then Y,Y, is a
stationary point of H.
In addition, if H is a convex cost function, Y,Y, is a global minimizer of
H.

@ The real version of the optimality condition is given in [JBAS10].
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Optimization Framework

Optimization Framework

o Equivalence: if Y, Y; = ¥, V7, then F,(Y,) = Fo(V});
@ Quotient manifolds are used to remove the equivalence:
o Equivalent class of Y, € CJ*" is [Y;] = {Y,O/| O, € O,}, where
1 < r < p, CI*" denotes the n-by-r complex noncompact Stiefel
manifold and O, denote the r-by-r complex rotation group;
o A fixed rank quotient manifold C1*"/O, = {[Y/]|Y; € CI*"},
1<r<p;

@ Function on a fixed rank manifold is
fr:CP*"/0, = R: Y] = F(Y:) = H(Y, YY),

@ Optimize the cost function f, and update r if necessary;

@ A similar approach is used in [JBAS10] for real problems;
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Optimization Framework

Update Rank Strategy

@ Most of work is to choose a upper bound k for the rank and
optimize over C"*k or Rk,
@ Increasing rank by a constant [JBAS10, UV14]
o Descent
o Globally converge
@ Dynamically search for a suitable rank [ZHG"15]

o Not descent
o Globally converge

PhaseLift by low-rank Riemannian optimization methods 14



Optimization Framework

Update Rank Strategy

@ Rank reduce is used for the problem in PhaseLift;
@ The rank is reduced if the singular values of an iterate have notable
bias:
@ Suppose r is the rank of current iterate and o1 > 02... > o, are its
singular values;
@ Given a threshold § € (0,1), the next rank is q if o4 > 65 and
0g+1 < 65, where & = || Diag(oy,...,0/)|r//T;

@ The next iterate is given by truncating relative small singular values;
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Optimization Framework

Riemannian Optimization

Riemannian optimization algorithms are used to optimize the problem on
the fixed rank manifold CI*"/O,.

Line search Newton (RNewton) [AMSO08]
Trust region Newton (RTR-Newton) [Bak08]
BFGS (RBFGS) [RW12, HGAI4]
Limited memory version of BFGS (LRBFGS) HGA14
Trust region symmetric rank one update method HAG14
(RTR-SR1)

Limited memory version of RTR-SR1 (LRTR-SR1) [HAG14
Riemannian conjugate gradient method (RCG) [AMSO08
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Optimization Framework

Algorithm 1

1: Set initial rank r = p;

2: for k=0,1,2,... do

3:  Apply Riemannian method for cost function f, over CI*" /O, with
initial point [Y¥)] until i-th iterate [W()] satisfying
| grad £,([W])|| < € or the requirement of reducing rank with

threshold §;
. if || grad £([WD))|| < e then
5: Find a minimizer [W] = [W()] over CI*P /0O, and return;

else {iterate in the Riemannian optimization method meets the
requirements of reducing rank}

7 Reduce the rank to g < r based on truncation with threshold ¢
and obtain an output W € C"*9:

8: r < q and set [Y,(k+1)] = [W);

9. endif

10: end for
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Numerical Experiments

Numerical Experiments

@ Atrtificial Data sets

@ The entries of true solution x, and the masks w;,i =1,...,/ are
drawn from the standard normal distribution;

o X, is further normalized by ||x.||2;

o w;,i =1,...,/is further normalized by \/n;

o The measurements b? is set to be diag(Zx.x;Z*) + ¢, where the
entries of ¢ € R™ are drawn from the normal distribution with mean
0 and variance 7.
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Numerical Experiments

Cost function and Complexities

@ The cost function in this case is

162 — diag(ZY, Y Z*)I3

+ rtrace( Y, Y));

@ The closed forms of gradient and action of Hessian are known
[HGZ14];
@ Their complexities respectively are

@ Function evaluation: O(£pns max;(log(ni)));
o Gradient evaluation: O({£pnsmax;(log(n:))) + O(np®) + O(p*);
o Action of Hessian: O(¢pnsmax;(log(n;)) + O(np®) + O(p*);

@ If p << n (it is true in practice), then all these complexities are
dominated by O(¢pns max;(log(n;));

PhaseLift by low-rank Riemannian optimization methods 19



Numerical Experiments

Default Setting

©

All tests are performed in Matlab R2014a on a 64 bit Ubuntu system
with 3.6 GHz CPU (Intel (R) Core (TM) i7-4790).

The stopping criterion requires the norm of gradient to less than
1076,

The number of masks ¢ is 6;

[

[

[

The coefficient & in the cost function is 0;
Threshold § = 0.9 for rank reduction;

©
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Numerical Experiments

Representative Riemannian Algorithms

@ RNewton, RTR-Newton, LRBFGS, LRTR-SR1 and RCG;
@ Noiseless measurements, i.e., 7 = 0;
@ Initial rank pg = 8;

@ Average of 10 random runs;
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Numerical Experiments

Representative Riemannian Algorithms

Table: n = nina. The subscript v indicates a scale of 10”.

(ny, np) (32, 32) (32, 64) (64, 64) (64, 128) (128, 128) (128, 256) (256, 256)
nf 3.24; 3.36; 3.58) 7127 7.58] 5741 5.88]
ng 2.34; 2.58) 2.92; 3.26; 3.8 4.561 5.14]
RNewton nH 4.56, 3.39, 3.86 4.005 4.21y 4.88y 5.73;
fr 1.25 13 2.17_13  1.37_4  4.83_p3 1.59_14 2.32 1 3.79 13
t 2.54 3.25 9.28 1.724 3.02; 7.57; 1.98,
nf 2.82; 2.66, 2.84; 3.06; 3.42; 3.62; 3.36;
ng 2.82) 2.66; 2.84; 3.06; 3.42; 3.621 3.36;
RTR-Newton  nH 3.00, 6.13, 4.363 484 5.27) 5.33, 5.773
fr 211 )4  2.86_13  4.53_13  4.69_j3 3.03_13 9.74_ 14 3.45_14
t 1.83 5.45 8.23 1.92¢ 3.42 6.07; 1.42,
nf 9.78; 1.06, 1.20, 133 .45, .84, 191
ng 9.6 1.045 1.16, 1.29, 1.40, 1.77, 1.87,
LRBFGS f 6.40 15  6.82_1p  T7.61_1p  1.04_1g 1.58_19 2.24_py 3.55_11
t 6.00 1 1.03 1.90 3.37 6.86 1.59; 3.27;
nf 1.45, .44, 1.56, 171, 1.88, 2.29, 2.43,
ng 1.45, 1.44, 1.56, 1.715 1.88, 2.29, 2.43,
LRTR-SR1 f 1.24 "y 1.08_3;  1.50_q;  3.67_q 3.10 11 4.82 11 2.04_19
t 9.97_ 1.64 3.16 6.20 1.22; 3.141 6.817
nf 2.66, 2.50, 2,775 2.89, 311, 3.45, 373,
ng 2.55, 250 266 2.80, 3.02, 3.365 3.65,
RCG fr 3.11_1p  3.47_1p  5.42_1p  7.94_1p 1.16 11 1.60 11 2.53_qp
t 1.18 2.00 3.74 7.18 1.47; 3.63; 9.54;

LRBFGS is chosen to be the representative Riemannian algorithm.

N
NS
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Numerical Experiments

Compare with a Convex Programming Solver

@ Compare with convex programming

FISTA [BT09] in Matlab library TFOCS [BCG11];

X can be too large to be handled by the solver;

A low rank version of FISTA is used, denoted by LR-FISTA;
The approach is used in [CESV13, CSV13];

Works in practice but no theoretical results.

¢ ¢ ¢ ¢ ¢
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Numerical Experiments

Compare with a Convex Programming Solver

]

ni = np, = 64; n = nyn, = 4096;

o IXO X -6 o ;
LR-FISTA stops if X < 107" or iter > 2000;
Noise and noiseless problems are tested;

[

©

@ For noise measurements:

22
o 7=10"" i.e, the signal-to-noise ration (SNR) 10 log;, (Hb'i‘:gguz)
2

is 31.05 dB, where b* = diag(Zx.x;Z*) and b is the noise
measurements;
o Multiple k are used;
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Numerical Experiments

Noiseless Measurements

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.
ff represents the number of iterations reach the maximum. The relative
mean-square error (RMSE) is min,, ;=1 [|ax — X« ||2/][Xx[|2-

noiseless . LR-FISTA (k)
Algorithm 1 1 5 2 8 16
iter 124 1022 377 601 1554 20007
nf 129 2212 804 1278 3360 4322
ng 124 1106 402 639 1680 2161
fr 4.62_1, 8.18_12 4.50_11 4.64_1, 1.54_11 1.27 4
RMSE 6.34_¢ 1.01_5 1.74 _5 1.46_5 1.10_4 2.56_3
t 2.12 1.27, 5.25; 9.35; 3.48, 6.867

@ Algorithm 1 is faster and gives smaller RMSE.
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Numerical Experiments

Noise Measurements

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.

RMSE denotes min,.5=1 ||ax — X«||2/||x«||2. § represents the number of

iterations reach the maximum.

) ; LR-FISTA (k
noise K Algorithm 1 1 5 2 (k) 8 16
iter 1072 84 409 20007 20007 20007 20007
10~* 122 978 2000% 2000" 2000% 2000%
oF 1o—j 86 886 4280 4284 4290 4280
10~ 129 2116 4296 4316 4300 4318
ng 1072 84 526 3468 3376 3242 3371
10~* 122 1105 2148 2158 2150 2159
, 102 1.63_; 1.63_; 1.77_; 2.24_; 275_; 3.04_;
1074 1.80_3 1.80_3 1.81_3 2193 455_3 7.01_3
RMSE 1o—j 1.80_; 1.80_; 264_; 3.60_; 4.19_; 4.45_;
10~ 2.63_3 2.63_3 6.46_3 2.17_, 4.98_ 6.57_,
R 1072 1.59 5.17, 3.79, 4.48, 5.73; 9.45,
10~* 2.06 1.21, 3.05, 3.17, 4.80, 7.85,

PhaseLift by low-rank Riemannian optimization methods



Numerical Experiments

Noise Measurements (Continue)

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.
RMSE denotes min,.5=1 ||ax — X«||2/||x« |2 § represents the number of
iterations reach the maximum.

) ) LR-FISTA (k)
noise K Algorithm 1 1 5 2 8 16
iter 10°° 128 1027 20007 20007 20007 20007
0 138 1070 2000% 2000" 2000% 2000%
of 10-° 132 2210 4266 4312 4336 4316
0 143 2306 4308 4322 4314 4320
10°° 128 1105 2712 2156 2168 2158
g 0 138 1153 2154 2161 2157 2160
P 10°° 1.84_5 1.84_5 1.91_5 235_5 3.55_5 7.62_5
f 0 4.08_7 408_; 116_s 6.27_¢ 251_5 8.89_s
RMSE 10°° 6.72_4 6.72_4 1.09_3 2.10_3 3.53_3 6.27_3
0 6.70_4 6.70_4, 1.09_3 2.18_3 4.01_3 7.29_3
. 10~° 2.13 1.27, 2.75; 3.01, 4.64, 7.04,
0 2.20 1.34, 2.63; 2.98, 4.32, 6.91,
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Numerical Experiments

The Gold Ball Data

max

Figure: Image of the absolute value of the 256-by-256 complex-valued image.
n = 65536. The pixel values correspond to the complex transmission
coefficients of a collection of gold balls embedded in a medium.

Thank Stefano Marchesini at Lawrence Berkeley Notional Laboratory for providing the gold balls data set and granting permission to use it.
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Numerical Experiments

The Gold Ball Data

A set of binary masks contains a mask that is all 1 (which yields the

original image) and several other masks comprising elements that are 0 or
1 with equal probability.

Table: RMSE and computational time (second) results with varying number
and types of masks are shown in format RMSE/TIME. § represents the
computational time reaching 1 hour, i.e., 3.63 seconds.

Algorithm 1 LR-FISTA

SNR (dB) 20 40 inf 20 40 inf

6 Gaussian | 8.32_3/4.30;  8.32_5/4.50; 3.12_4/4.10; | 8.32_3/8 3.12_4/f 3.12_4/7
6 binary 7.2371/7.902 1.2971/4.242 1.0971/4.422 8.2471/ﬁ 4.9871/ﬁ 4.9871/ﬁ
32 binary 2.2171/6.842 3.0273/7.362 2.5773/6.542 6.0771/ﬁ 5.8271/ﬁ 5.7871/ﬁ
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Numerical Experiments

The Gold Ball Data

6 Gaussian masks, SNR: Inf 6 Binary masks, SNR: Inf 32 Binary masks, SNR: Inf

10 times error 10 times error 10 times error
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Numerical Experiments

The Gold Ball Data

6 Gaussian masks, SNR: 20 6 Binary masks, SNR: 20 32 Binary masks, SNR: 20

10 times error 10 times error 10 times error
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Numerical Experiments

Conclusion

@ A low-rank problem is proposed to replace optimization problems on
Hermitian positive semidefinite matrices;

@ The first order optimality condition is given;

@ For the PhaseLift problem, an algorithm based on a rank reduce
strategy and a state-of-the-art Riemannian algorithm is suggested,;
@ Experiments of noise, noiseless, Gaussian masks and binary masks

are tested and show that the new algorithm is more efficient and
effective than the LR-FISTA algorithm.
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Numerical Experiments
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