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The Phase Retrieval Problem

The Phase Retrieval problem concerns recovering a signal given the
modulus of its linear transform;

It is important in many applications, e.g.,

X-ray crystallography imaging [Har93];
Diffraction imaging [BDP+07];
Optics [Wal63];
Microscopy [MISE08];

The Fourier transform is considered;
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Problem Statement

Recover the signal x : Rs → C from intensity measurements of its
Fourier transform, |x̃(u)| =

∣

∣

∫

Rs x(t) exp(−2πu · t
√
−1)dt

∣

∣;

Discrete form

find x ∈ C
n1×n2×...×ns , s. t. |Ax | = b,

where x = vec(x) ∈ Rn, n = n1n2 · · · ns and A ∈ Cm×n defines the
Discrete Fourier transform;
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Difficulties and Oversampling

Solution of the discrete form may be not unique.

Oversampling in the Fourier domain is a standard method to obtain
a unique solution.

No benefit for most 1D signals, see e.g., [San85].
Give a unique solution for multiple dimensional problems for
constrained signals, see e.g. [BS79, Hay82, San85].
Algorithms based on alternating projection are used.
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Other Frameworks

PhaseLift [CESV13] and PhaseCut [WDM13]: Combining using
multiple structured illuminations or masks with convex programming;

A unique rank one solution up to a global phase factor
[CESV13, CL13, CSV13, WDM13];

Stability [CL13, CSV13, WDM13];

Convex programming solvers, e.g., SDPT3 [TTT99] or TFOCS
[BCG11];

The PhaseLift framework is considered in this presentation.
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PhaseLift: Using Illumination Fields

The known illumination fields on the discrete signal domain
wr ∈ Cn1×n2×...ns , r = 1, . . . ℓ.

Let wr denote vec(wr ). One illumination field gives an equation

|ADiag(wr )x | = br

where Diag(wr ) denotes an n-by-n diagonal matrix the diagonal
entries of which are wr .

ℓ fields yields
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PhaseLift: Using Illumination Fields

Therefore, the linear operator A for PhaseLift using the Fourier
transform, denote Z , is

Z =











A
A

. . .

A


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Diag(w1)
Diag(w2)

...
Diag(wℓ)











PhaseLift problem:

find x ∈ Cn,

s. t. |Zx | = b, or equivalently, diag(Zxx∗Z ∗) = b2,

where ∗ denotes the conjugate transpose operator.
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PhaseLift: Lifting to Convex Problem

Let X ∈ C
n×n denote xx∗. The Phase Retrieval problem becomes

find X , s. t. diag(ZXZ ∗) = b2,X ≥ 0 and rank(X ) = 1,

or equivalently

min rank(X ), s. t. diag(ZXZ ∗) = b2, and X ≥ 0,

where X ≥ 0 denotes X is Hermitian positive semidefinite.

Convex programming

min trace(X ), s. t. diag(ZXZ ∗) = b2, and X ≥ 0.
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PhaseLift: Noise Measurements

Measurements with noise, b2 ∈ R
m, are sampled from a probability

distribution p(·;µ), where µ = diag(ZXZ ∗).

Minimize the negative log-likelihood function

min
x
− log(p(b;µ))

such that µ = diag(Zxx∗Z ∗),

Similarly, an alternate problem can be used:

min− log(p(b;µ)) + κ trace(X ), s. t. diag(ZXZ ∗) = b2, and X ≥ 0.

where κ is a positive constant.

If the likelihood is log-concave, then it is a convex problem, e.g., for
Poisson or Gaussian distributions.
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PhaseLift: Nonconvex Approach

The complexity can be too high in convex approach.

The alternate problems are

noiseless: min
X≥0
‖b2 − diag(ZXZ ∗)‖22 + κ trace(X ),

noise: min
X≥0
− log(p(b; diag(ZXZ ∗))) + κ trace(X )

where κ is a positive constant;

They are used in [CESV13] and reweighting is used to promote
low-rank solutions;

This motivates us to consider the optimization problem

min
X≥0

H(X )

and the desired minimizer is low rank. In particular for the PhaseLift
problem, the rank of desired minimizer is 1.
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Optimization on Hermitian Positive Semidefinite Matrices

Suppose the rank of desired minimizer r∗ is at most p.

The domain {X ∈ Cn×n|X ≥ 0} can be replaced by Dp, where
Dp = {X ∈ Cn×n|X ≥ 0, rank(X ) ≤ p}.
An alternate cost function can be used:

Fp : Cn×p → R : Yp 7→ H(YpY
∗
p ).

Note that for the PhaseLift problem, choosing p = 1 is equivalent
not to do the Lifting step. Choosing p > 1 yields computational and
theoretical benefits.

This idea is not new and has been discussed in [BM03] and
[JBAS10] for real positive semidefinite matrix constraints.
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First Order Optimality Condition

Theorem

If Y ∗
p ∈ C

n×p is a rank deficient minimizer of Fp , then YpY
∗
p is a

stationary point of H.
In addition, if H is a convex cost function, YpY

∗
p is a global minimizer of

H.

The real version of the optimality condition is given in [JBAS10].
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Optimization Framework

Equivalence: if YpY
∗
p = ỸpỸ

∗
p , then Fp(Yp) = Fp(Ỹp);

Quotient manifolds are used to remove the equivalence:

Equivalent class of Yr ∈ C
n×r
∗ is [Yr ] = {YrOr |Or ∈ Or}, where

1 ≤ r ≤ p, Cn×r
∗ denotes the n-by-r complex noncompact Stiefel

manifold and Or denote the r -by-r complex rotation group;
A fixed rank quotient manifold C

n×r
∗ /Or = {[Yr ]|Yr ∈ C

n×r
∗ },

1 ≤ r ≤ p;

Function on a fixed rank manifold is

fr : C
n×r
∗ /Or → R : [Yr ] 7→ Fr (Yr ) = H(YrY

∗
r );

Optimize the cost function fr and update r if necessary;

A similar approach is used in [JBAS10] for real problems;
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Update Rank Strategy

Most of work is to choose a upper bound k for the rank and
optimize over Cn×k or Rn×k .

Increasing rank by a constant [JBAS10, UV14]

Descent
Globally converge

Dynamically search for a suitable rank [ZHG+15]

Not descent
Globally converge
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Update Rank Strategy

Rank reduce is used for the problem in PhaseLift;

The rank is reduced if the singular values of an iterate have notable
bias:

Suppose r is the rank of current iterate and σ1 ≥ σ2 . . . ≥ σr are its
singular values;
Given a threshold δ ∈ (0, 1), the next rank is q if σq > δσ̃ and
σq+1 ≤ δσ̃, where σ̃ = ‖Diag(σ1, . . . , σr )‖F/

√
r ;

The next iterate is given by truncating relative small singular values;
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Riemannian Optimization

Riemannian optimization algorithms are used to optimize the problem on
the fixed rank manifold Cn×r

∗ /Or .

Line search Newton (RNewton) [AMS08]
Trust region Newton (RTR-Newton) [Bak08]
BFGS (RBFGS) [RW12, HGA14]
Limited memory version of BFGS (LRBFGS) [HGA14]
Trust region symmetric rank one update method
(RTR-SR1)

[HAG14]

Limited memory version of RTR-SR1 (LRTR-SR1) [HAG14]
Riemannian conjugate gradient method (RCG) [AMS08]
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Algorithm 1

1: Set initial rank r = p;
2: for k = 0, 1, 2, . . . do
3: Apply Riemannian method for cost function fr over Cn×r

∗ /Or with

initial point [Y
(k)
r ] until i-th iterate [W (i)] satisfying

‖ grad fr ([W (i)])‖ < ǫ or the requirement of reducing rank with
threshold δ;

4: if ‖ grad fr ([W (i)])‖ < ǫ then
5: Find a minimizer [W ] = [W (i)] over Cn×p

∗ /Op and return;
6: else {iterate in the Riemannian optimization method meets the

requirements of reducing rank}
7: Reduce the rank to q < r based on truncation with threshold δ

and obtain an output Ŵ ∈ C
n×q;

8: r ← q and set [Y
(k+1)
r ] = [Ŵ ];

9: end if

10: end for
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Numerical Experiments

Artificial Data sets

The entries of true solution x∗ and the masks wi , i = 1, . . . , l are
drawn from the standard normal distribution;
x∗ is further normalized by ‖x∗‖2;
wi , i = 1, . . . , l is further normalized by

√
n;

The measurements b2 is set to be diag(Zx∗x
∗
∗Z

∗) + ǫ, where the
entries of ǫ ∈ R

m are drawn from the normal distribution with mean
0 and variance τ .
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Cost function and Complexities

The cost function in this case is

fr ([Yr ]) =
‖b2 − diag(ZYrY

∗
r Z

∗)‖22
‖b2‖22

+ κ trace(YrY
∗
r );

The closed forms of gradient and action of Hessian are known
[HGZ14];

Their complexities respectively are

Function evaluation: O(ℓpnsmaxi (log(ni )));
Gradient evaluation: O(ℓpnsmaxi (log(ni ))) + O(np2) + O(p3);
Action of Hessian: O(ℓpnsmaxi (log(ni)) + O(np2) + O(p3);

If p << n (it is true in practice), then all these complexities are
dominated by O(ℓpns maxi(log(ni ));
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Default Setting

All tests are performed in Matlab R2014a on a 64 bit Ubuntu system
with 3.6 GHz CPU (Intel (R) Core (TM) i7-4790).

The stopping criterion requires the norm of gradient to less than
10−6;

The number of masks ℓ is 6;

The coefficient κ in the cost function is 0;

Threshold δ = 0.9 for rank reduction;
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Representative Riemannian Algorithms

RNewton, RTR-Newton, LRBFGS, LRTR-SR1 and RCG;

Noiseless measurements, i.e., τ = 0;

Initial rank p0 = 8;

Average of 10 random runs;
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Representative Riemannian Algorithms

Table: n = n1n2. The subscript ν indicates a scale of 10ν .

(n1, n2) (32, 32) (32, 64) (64, 64) (64, 128) (128, 128) (128, 256) (256, 256)

RNewton

nf 3.241 3.361 3.581 4.121 4.581 5.741 5.881
ng 2.341 2.581 2.921 3.261 3.81 4.561 5.141
nH 4.562 3.392 3.862 4.002 4.212 4.882 5.732
ff 1.25

−13 2.17
−13 1.37

−14 4.83
−13 1.59

−14 2.32
−12 3.79

−13
t 2.54 3.25 9.28 1.721 3.021 7.571 1.982

RTR-Newton

nf 2.821 2.661 2.841 3.061 3.421 3.621 3.361
ng 2.821 2.661 2.841 3.061 3.421 3.621 3.361
nH 3.002 6.132 4.362 484 5.272 5.332 5.772
ff 2.11

−14 2.86
−13 4.53

−13 4.69
−13 3.03

−13 9.74
−14 3.45

−14
t 1.83 5.45 8.23 1.921 3.421 6.071 1.422

LRBFGS

nf 9.781 1.062 1.202 133 1.452 1.842 191
ng 9.61 1.042 1.162 1.292 1.402 1.772 1.872
ff 6.40

−12 6.82
−12 7.61

−12 1.04
−11 1.58

−11 2.24
−11 3.55

−11
t 6.00

−1 1.03 1.90 3.37 6.86 1.591 3.271

LRTR-SR1

nf 1.452 1.442 1.562 1.712 1.882 2.292 2.432
ng 1.452 1.442 1.562 1.712 1.882 2.292 2.432
ff 1.24

−11 1.08
−11 1.50

−11 3.67
−11 3.10

−11 4.82
−11 2.04

−10
t 9.97

−1 1.64 3.16 6.20 1.221 3.141 6.811

RCG

nf 2.662 2.592 2.772 2.892 3.112 3.452 3.732
ng 2.552 250 266 2.802 3.022 3.362 3.652
ff 3.11

−12 3.47
−12 5.42

−12 7.94
−12 1.16

−11 1.60
−11 2.53

−11
t 1.18 2.00 3.74 7.18 1.471 3.631 9.541

LRBFGS is chosen to be the representative Riemannian algorithm.
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Compare with a Convex Programming Solver

Compare with convex programming

FISTA [BT09] in Matlab library TFOCS [BCG11];
X can be too large to be handled by the solver;
A low rank version of FISTA is used, denoted by LR-FISTA;
The approach is used in [CESV13, CSV13];
Works in practice but no theoretical results.
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Compare with a Convex Programming Solver

n1 = n2 = 64; n = n1n2 = 4096;

LR-FISTA stops if ‖X (i)−X (i−1)‖F

‖X (i)‖F
< 10−6 or iter > 2000;

Noise and noiseless problems are tested;

For noise measurements:

τ = 10−4, i.e., the signal-to-noise ration (SNR) 10 log10

(

‖b2‖22
‖b2−b̂2‖22

)

is 31.05 dB, where b2 = diag(Zx∗x
∗
∗Z

∗) and b̂ is the noise
measurements;
Multiple κ are used;
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Noiseless Measurements

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.
♯ represents the number of iterations reach the maximum. The relative
mean-square error (RMSE) is mina:|a|=1 ‖ax − x∗‖2/‖x∗‖2.

noiseless
Algorithm 1

LR-FISTA (k)
1 2 4 8 16

iter 124 1022 377 601 1554 2000♯

nf 129 2212 804 1278 3360 4322
ng 124 1106 402 639 1680 2161
ff 4.62

−12 8.18
−12 4.50

−11 4.64
−12 1.54

−11 1.27
−9

RMSE 6.34
−6 1.01

−5 1.74
−5 1.46

−5 1.10
−4 2.56

−3

t 2.12 1.272 5.251 9.351 3.482 6.862

Algorithm 1 is faster and gives smaller RMSE.
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Noise Measurements

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.
RMSE denotes mina:|a|=1 ‖ax − x∗‖2/‖x∗‖2. ♯ represents the number of
iterations reach the maximum.

noise κ Algorithm 1
LR-FISTA (k)

1 2 4 8 16

iter
10−2 84 409 2000♯ 2000♯ 2000♯ 2000♯

10−4 122 978 2000♯ 2000♯ 2000♯ 2000♯

nf
10−2 86 886 4280 4284 4290 4280

10−4 129 2116 4296 4316 4300 4318

ng
10−2 84 526 3468 3376 3242 3371
10−4 122 1105 2148 2158 2150 2159

ff
10−2 1.63

−1 1.63
−1 1.77

−1 2.24
−1 2.75

−1 3.04
−1

10−4 1.80
−3 1.80

−3 1.81
−3 2.19

−3 4.55
−3 7.01

−3

RMSE
10−2 1.80

−1 1.80
−1 2.64

−1 3.60
−1 4.19

−1 4.45
−1

10−4 2.63
−3 2.63

−3 6.46
−3 2.17

−2 4.98
−2 6.57

−2

t
10−2 1.59 5.171 3.792 4.482 5.732 9.452
10−4 2.06 1.212 3.052 3.172 4.802 7.852
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Noise Measurements (Continue)

Table: k denotes the upper bound of the low-rank approximation in LR-FISTA.
RMSE denotes mina:|a|=1 ‖ax − x∗‖2/‖x∗‖2. ♯ represents the number of
iterations reach the maximum.

noise κ Algorithm 1
LR-FISTA (k)

1 2 4 8 16

iter
10−6 128 1027 2000♯ 2000♯ 2000♯ 2000♯

0 138 1070 2000♯ 2000♯ 2000♯ 2000♯

nf
10−6 132 2210 4266 4312 4336 4316
0 143 2306 4308 4322 4314 4320

ng
10−6 128 1105 2712 2156 2168 2158
0 138 1153 2154 2161 2157 2160

ff
10−6 1.84

−5 1.84
−5 1.91

−5 2.35
−5 3.55

−5 7.62
−5

0 4.08
−7 4.08

−7 1.16
−6 6.27

−6 2.51
−5 8.89

−5

RMSE
10−6 6.72

−4 6.72
−4 1.09

−3 2.10
−3 3.53

−3 6.27
−3

0 6.70
−4 6.70

−4 1.09
−3 2.18

−3 4.01
−3 7.29

−3

t
10−6 2.13 1.272 2.752 3.012 4.642 7.042
0 2.20 1.342 2.632 2.982 4.322 6.912
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The Gold Ball Data

 

 

min

max

Figure: Image of the absolute value of the 256-by-256 complex-valued image.
n = 65536. The pixel values correspond to the complex transmission
coefficients of a collection of gold balls embedded in a medium.

Thank Stefano Marchesini at Lawrence Berkeley Notional Laboratory for providing the gold balls data set and granting permission to use it.
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The Gold Ball Data

A set of binary masks contains a mask that is all 1 (which yields the
original image) and several other masks comprising elements that are 0 or
1 with equal probability.

Table: RMSE and computational time (second) results with varying number
and types of masks are shown in format RMSE/TIME. ♯ represents the
computational time reaching 1 hour, i.e., 3.63 seconds.

Algorithm 1 LR-FISTA
SNR (dB) 20 40 inf 20 40 inf
6 Gaussian 8.32

−3/4.301 8.32
−5/4.501 3.12

−6/4.191 8.32
−3/♯ 3.12

−4/♯ 3.12
−4/♯

6 binary 7.23
−1/7.902 1.29

−1/4.242 1.09
−1/4.422 8.24

−1/♯ 4.98
−1/♯ 4.98

−1/♯
32 binary 2.21

−1/6.842 3.02
−3/7.362 2.57

−3/6.542 6.07
−1/♯ 5.82

−1/♯ 5.78
−1/♯

PhaseLift by low-rank Riemannian optimization methods 29



The Phase Retrieval Problem
PhaseLift Framework

Optimization on Hermitian Positive Semidefinite Matrices
Optimization Framework
Numerical Experiments

The Gold Ball Data

6 Gaussian masks, SNR: Inf

10 times error

6 Binary masks, SNR: Inf

10 times error

32 Binary masks, SNR: Inf

10 times error

PhaseLift by low-rank Riemannian optimization methods 30



The Phase Retrieval Problem
PhaseLift Framework

Optimization on Hermitian Positive Semidefinite Matrices
Optimization Framework
Numerical Experiments

The Gold Ball Data

6 Gaussian masks, SNR: 20

10 times error

6 Binary masks, SNR: 20

10 times error

32 Binary masks, SNR: 20

10 times error
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Conclusion

A low-rank problem is proposed to replace optimization problems on
Hermitian positive semidefinite matrices;

The first order optimality condition is given;

For the PhaseLift problem, an algorithm based on a rank reduce
strategy and a state-of-the-art Riemannian algorithm is suggested;

Experiments of noise, noiseless, Gaussian masks and binary masks
are tested and show that the new algorithm is more efficient and
effective than the LR-FISTA algorithm.
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