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Eigenvalue Problem Background
Problem Definition

Generalized Eigenvalue Problem

Given A,B ∈ Rn×n, solve:
Av = Bvλ,

for eigenpair (λ, v). Specifically, when A = AT , B = BT � 0, we have n
eigenpairs satisfying

(λi, vi) ∈ R× Rn and 〈vi, vj〉B = δij

Application

Many applications require only p extreme eigenpairs, AV = V Λ,
corresponding to the largest or smallest eigenvalues.

Examples include problems from structural dynamics, control, signal
processing, informatics, etc.
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Eigenvalue Problem Background
Solution Techniques

Matrix-free methods

Many applications result in matrices A,B with exploitable structure,
cultivating our interest in matrix-free methods:

Power/Krylov methods

power method, inverse iteration, subspace iteration
Arnoldi/Lanczos method

Newton methods

Rayleigh quotient iteration
Jacobi-Davidson method

Trace Minimization/Maximization methods

Generalized Davidson methods
Trace minimization (TRACEMIN) method
LOBPCG
RTR/IRTR
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Optimizing Eigensolvers
Optimization Characterization

The optimization characterization of eigenvalue problems is well-known.

Generalized Eigenvalue Optimization Problem

For s.p.d. eigenproblem, we have that

λ1 = min
x 6=0

xTAx

xTBx
and λn = max

x 6=0

xTAx

xTBx
.

For multiple eigenvalues,
V =

[
v1 . . . vp

]
is a minimizer of the generalized Rayleigh quotient:

GRQ(X) = trace
((
XTBX

)−1
XTAX

)
Similarly, the rightmost eigenvectors maximize the GRQ.
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Optimizing Eigensolvers
A Näıve First Stab

Newton’s method for GRQ

Consider optimizing with Newton’s method (p = 1 for simplicity):

∇GRQ(x) =
2

xTBx
(Ax− ρBx)

∇2GRQ(x) =
2

xTBx

(
I − 2

xTBx
BxxT

)
(A− ρB)

(
I − 2

xTBx
xxTB

)
for ρ = GRQ(x).

Newton’s method solves ∇2 GRQ(x)s = −∇GRQ(x).

If ρ 6= λi, solution is s = x, leading to the following iteration:

x 7→ 2x 7→ 4x 7→ . . ., and Newton’s method fails!

This is because GRQ(X) = GRQ(XM) for non-singular M .

GRQ is invariant to basis, depends only on subspace.

Failure not unique to GRQ; holds for functions homogenous of degree 0.
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Optimizing Eigensolvers
Ties with Classical Methods

Addressing Invariance

Jacobi-Davidson [SVdV96] and TRACEMIN [SW82,ST2000] methods explicitly
normalize X and enforce orthogonality condition on step S.

LOBPCG [Kny2001] does not specify basis for X; correction in [HL2006] adds
basis selection to address other issues.

Riemannian optimization approaches (RTR) [EAS98,ABG2006] recognize
basis invariance, optimize GRQ over Grassmann manifold of subspaces.

Relationship to Classical Optimization Approaches

J-D: Newton + subspace acceleration for better convergence

TRACEMIN: Inexact/Quasi-Newton + subspace acceleration for faster
convergence

LOBPCG: CG iteration, using Rayleigh-Ritz for exact minimization

RTR: GRQ on Riemannian manifold, solved via trust-region methods
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Recent Eigensolver Approaches
GRQ and Riemannian Eigensolver Optimization

Riemannian setting

GRQ is invariant to choice of basis, varies only with subspace.

Consider the set of p-dimensional subspaces of Rn.

This is the Grassmann manifold Grass(p, n,R)

GRQ : Grass(p, n,R)→ R : span(X) 7→ trace
((
XTBX

)−1
XTAX

)
span(X) represented by any basis X.

How to solve this problem?

Previously mentioned algorithms equivalent/analogous to

GRQ + Riemannian Newton ⇒ Jacobi-Davidson

GRQ + Riemannian Inexact-Newton ⇒ TRACEMIN

GRQ + Riemannian CG ⇒ LOBPCG

GRQ + Riemannian Trust-Region ⇒ exciting new eigensolvers!
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Recent Eigensolver Approaches
Riemannian Trust-Region Eigensolver

Trust-Region Idea

Replace GRQ with (quadratic) model mX(S):

mX(S) = trace
(
XTAX

)
+ 2 trace

(
STAX

)
+

1

2
trace

(
STAS − STBSXTAX

)
Limit step size to a “trust-region”: minSTBX=0, ‖S‖≤∆mX(S)

Actual vs. predicted performance dictates new trust-region size and
whether iterate X + S is accepted.

ρX(S) =
GRQ(X + S)−GRQ(S)

mX(S)−mX(0)

RTR developed in [ABG2007], eigensolver in [ABG2006]
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Recent Eigensolver Approaches
Implicit Trust-Region Eigensolver

Inefficiencies in the trust-region mechanism

TR too small leads to slow progress

TR too large leads to rejected updates

TR performs heuristic, based on previous performance

A New Trust-Region

Implicit RTR replaces trust-region definition. [BAG2008]

New TR is {S | ρX(S) ≥ c}; accept/reject can be discarded.

In general, this formula is difficult to work with.

However, GRQ with Newton model has nice structure (p = 1):

ρx(s) =
1

1 + sTBs

Resulting method ensures that model is always high-fidelity.
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RTR vs. IRTR: A better trust-region
Problem: BCSST24 with Cholesky preconditioner
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RTR vs. IRTR: A better trust-region
Better use of preconditioner, no stalling from rejections.
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Lessons from Optimization
Propagating solver characteristics to the GRQ

Trust-Region vs. Newton

TR algorithm has excellent convergence properties:

Global convergence, stable convergence to a local minimizer.
TR model minimization always well-posed (unlike Newton’s linear solve)
Model minimization not require to be exact.
Both methods enjoy (at least) quadratic local convergence.

Manifold setting directly addresses invariance problem of GRQ.

RTR vs. Jacobi-Davidson

TR globalization less useful; provided for JD by Rayleigh-Ritz.

JD implementations are concerned with shifting to positive definite; RTR
eigensolvers enjoy indefiniteness.

Inexact model minimization saves work in early iterations; in addition,
IRTR solver tailored to efficiency of the iteration.

Both methods can achieve cubic rate of local convergence.
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Benchmark Timings: Trilinos/C++
Average speedup of IRTR: 1.33 over RTR, 3.46 over LOBPCG

Problem Size p Prec RTR IRTR LOBPCG

BCSST22 138 5 none 2.64 1.90 39.03
BCSST22 138 5 inexact 1.11 1.03 3.17
BCSST22 138 5 exact 0.29 0.24 0.45

BCSST20 485 5 inexact 49.04 34.40 *151.00
BCSST20 485 5 exact 0.11 0.08 0.14

BCSST13 2,003 25 exact 12.86 7.81 6.20
BCSST13 2,003 100 exact 79.41 56.95 56.12

BCSST23 3,134 25 exact 28.25 22.10 16.86
BCSST23 3,134 100 exact 168.76 129.06 180.40

BCSST24 3,562 25 exact 9.34 8.17 7.76
BCSST24 3,562 100 exact 98.23 69.83 108.20

BCSST25 15,439 25 exact 361.40 85.25 *3218.00
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Extreme Singular Value Decomposition
Problem definition

Definition

The singular value decomposition of an m× n matrix A is

A = UΣV T =
[
U1 U2

] [Σ
0

]
V T = U1ΣV T

with orthogonal U , V ; Σ diagonal with non-decreasing, non-negative entries.

Extreme SVD

Many application require only p extreme singular triplets (typ. largest).

Compute the dominant/subordinate left and right singular bases for A.

This is an optimization problem on orthogonal Stiefel manifolds.

Optimize f(U, V ) = trace
(
UTAV N

)
This includes problems from structural dynamics, control, signal
processing, and informatics (e.g., PCA, KLT, POD).
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Extreme Singular Value Decomposition
Solution Techniques

Numerous characterizations with numerous solutions

Compute the full SVD using dense methods and truncate.

Transform to an eigenvalue problem:

B =

[
AT

A

]
or B = AAT or B = ATA

Compute relevant eigenvectors via an iterative eigensolver, then
back-transform.

Use iterative SVD solver to compute just the desired singular triplets:

Non-linear equation → JD-SVD [Hochstenbach2000]

Riemannian optimization gives many approaches [ABG2007]

Low-rank incremental methods

Some of these are only amenable to computing the dominant singular triplets.
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Extreme SVD Solvers
Low-Rank Incremental Methods

More efficient approach

The low-rank incremental SVD methods follow the example of the SVD
updating methods, but track only a low-dimensional subspace.

History

Repeatedly and independently described in the literature:

1995: Manjunath et al.: “Eigenspace Update Algorithm”

2000: Levy, Lindenbaum: “Sequential Karhunen-Loeve”

2001: Chahlaoui, Gallivan, Van Dooren: “Recursive SVD”

2002: Brand: “Incremental SVD”

2004: Baker, Gallivan, Van Dooren (generalization, efficiency)

2012: Baker, Gallivan, Van Dooren (convergence, efficiency)
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Extreme SVD Solvers
Low-Rank Incremental Methods

Kernel Step

Given a matrix A with factorization A = UΣV T , compute updated
factorization of augmented matrix

[
A A+

]
:

U+Σ+V
T
+ =

[
A A+

]
=
[
UΣV T A+

]
IncSVD consumes all columns, making a single pass through the data matrix.
Maintaining low-rank allows for high efficiency, at the expense of accuracy.

Related to an Optimizing Eigensolver

algorithm can be restarted to take multiple passes through data

multi-pass algorithms is globally convergent

equivalent to a coordinate-ascent/descent eigensolver on ATA

gradient information can be injected to speed convergence
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Extreme SVD Solvers
Optimizing Singular Value Solvers

Direct optimization approach

Given A ∈ Rm×n, consider the objective function:

f : St(k,m,R)× St(k, n,R)→ R
: (U, V ) 7→ trace

(
UTAV N

)
Compact Stiefel Manifold: St(k,m,R) =

{
U ∈ Rm×k | UTU = Ik

}
Riemannian optimization characterization allows application of
constellation of solvers over Riemannian manifolds.

Can only compute dominant SVD, via maximization:

minimization of f yields (−U1, V1), f(−U1, V1) = −max(U1, V1)
minimization of f2 yields (U1, V2), f(U1, V2) = 0

Additional constraint needed to find subordinate singular triplets.

Incremental SVD natively addresses this.
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Other Problems
Linear and Multi-Linear Riemannian Optimization Problems

Grassmannian/Subspace Optimizations

Tensor Factorization/HO-SVD [Ishteva et al.][many many others]

Compute optimal-rank tensor factorization of tensor A, via

f(U, V,W ) = ‖A •1 UT •2 V T •3 WT ‖2

H2-optimal reduced order models [Absil, Gallivan, Van Dooren]

f(Ĥ) = ‖Ĥ(s)−H(s)‖2H2

Interpolation of linear ROMs across parameter changes
[Amsallem, Farhat, Lieu]

Optimal linear subspace for face recognition [Liu, Srivastava, Gallivan]
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Other Problems
Linear and Multi-Linear Riemannian Optimization Problems

Basis Optimizations (Stiefel/Oblique)

ICA, blind-source separation, (“cocktail party problem”) [Absil, Gallivan][many

others]

f(Y ) =

N∑
i=1

trace
(
off
(
Y TCiY

)
Y TCiY

)
Extreme singular triplets

Orthogonal Group Optimizations

Computer vision problems over SO(3) = O(2)× R3

Pose estimation
Motion recovery

Full SVD over O(M)×O(N)

Full eigenvalue decomposition over O(M)

C.G. Baker, http://www.csm.ornl.gov/~cbaker — Optimization and Linear Algebra, ORNL/UTK Numerical Day, April 30 2012 21/22

http://www.csm.ornl.gov/~cbaker


intro eigs() svds() other problems conclusion

Conclusion

Optimization-derived Solvers

Discussed links between well-understood optimization methods and
(sometimes) less-understood eigenvalue and singular value solvers.

Out-of-the-box optimization methods can produce fast linear algebra
solvers, with robust convergence theory.

Knowledge of the underlying linear algebra problem is still very useful in
improving performance of these methods.

Technology transfer between the domains critical for solver development,
especially for non-traditional problems.
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