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Figure 1. Networks used for analyses. (a) Topologies are nodes and 
their affinities, the similarities between them, are edge weights. (b) 
Bipartitions are nodes and their positive or negative covariances are 
edge weights.  In these examples, (a) has community structure and 
clear evidence for conflicting signal, and (b) has no distinct 
community structure and little evidence for conflicting signal.  
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Introduction 
In the phylogenomic era, there exists an ever greater 
need to fully characterize the information in sets of 
phylogenies. One potentially rich and underexploited 
avenue is to use networks to characterize this 
information [1, 2, 3], either of phylogenies 
themselves or their component bipartitions. Once 
formed, community detection methods [4, 5, 6, 7] 
allow researchers to explore relationships between 
competing phylogenetic signals in these networks. 
These competing signals may indicate heterogeneity 
in evolutionary history underlying the data or 
systematic error.  We have implemented tools for 
network construction and community detection in the 
software TreeScaper [8]. Here, we perform an initial 
simulation-based benchmarking of these community 
detection approaches. Across a broad range of 
simulation scenarios, we find that when there is little 
conflicting signal in a multiple sequence alignment 
(MSA), TreeScaper recovers little evidence for 
community structure. However, when the MSA 
contains strong support for a few distinct 
phylogenies, TreeScaper recovers clear evidence for 
community structure. Network-based approaches 
provide a new, quantitative approach for exploring 
conflicting signal in sets of phylogenies. 

Future Directions 
•  Comparison of community detection methods to alternate 

rogue taxon identification methods 
•  Use of community detection in posterior prediction and 

parametric bootstrapping 
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Figure 5.  Window of guide tree branch lengths in which conflicting signal is detected.  At very short or long branches, there is a lack of phylogenetic signal and many topologies in the 
tree set.  Between these extremes, there is strong support for a few topologies. Heat maps show the number of replicates in which the known conflict was detected by TreeScaper. 
Constant-Potts Model (CPM) [5] was used for community detection.
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Methods 

Figure 2. Simulation of tree sets with conflicting signals.  Two guide 
trees that only differed in their placement of taxon 5 (the rogue 
taxon) were used to simulate in Seq-Gen [9] two equally sized MSAs.  
The MSAs were concatenated together.  Bootstrap analyses were 
performed in Garli [10] on the concatenated MSAs.
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Figure 3. Network analyses of a simulated tree set in 
TreeScaper. (a) Community structure of bipartition 
covariance network.  Blue and green edges indicate 
positive and negative covariances respectively. Colored 
communities contain conflicting bipartitions. (b) 
Community structure of topology network. Colors 
indicate the three affinity communities found by 
TreeScaper.   Non-linear dimensionality reduction 
projection [11] is for display purposes only. 


Figure 6.  Box plots of the number of communities found using several 
community detection models: Configuration Null Model (CNM) [4], 
Constant-Potts Model (CPM) [5], Erdos-Renyii Model (ERNM) [6], No Null 
Model (NNM) [7].  
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Figure 4.  Trees representative of the simulated treeset. (a-c) Consensus trees of the three affinity 
communities found by TreeScaper.  Conflicting bipartitions are in color. (d) Consensus tree of the 
entire tree set. 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Conclusions 
•  When there is little conflicting signal in a data set, 

community detection methods find little evidence for 
community structure. 

•  When there is strongly supported conflicting signal, 
community detection methods identify a few well 
supported topologies and their conflicting bipartitions. 
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