Riemannian Optimization for Elastic Shape Analysis

W. Huang*, K. A. Gallivan*, A. Srivastava* and P.-A. Absil[†]

* Florida State University

[†]Catholic University of Louvain

MTNS 2014, Groningen, The Netherlands

Elastic Shape Analysis

- Elastic shape analysis invariants:
 - Rescaling
 - Translation
 - Rotation
 - Reparametrization
- Square Root Velocity Function framework used (Srivastava, Klassen, Joshi, and Jermyn [8]).
- extensive analysis and application of elastic shape
- much less work on understanding efficient and robust algorithms

Figure : All are the same shape.

Preshape space, denoted l_n , removes translation and rescaling for L_2 .

- A shape is represented by a function $\beta : \mathbb{D} \to \mathbb{R}^2$, where \mathbb{D} is [0, 1] for open curves and unit circle \mathbb{S}^1 for closed curves.
- Square Root Velocity (SRV) function of the shape β is

$$q(t) = \begin{cases} \frac{\dot{\beta}(t)}{\sqrt{\|\dot{\beta}(t)\|_2}} & \text{if } \|\dot{\beta}(t)\|_2 \neq 0; \\ 0 & \text{if } \|\dot{\beta}(t)\|_2 = 0. \end{cases}$$

• Preshape spaces (closure condition added for closed curves)

$$\mathfrak{l}_{n}^{o} = \{q: [0,1] \to \mathbb{R}^{n} | \int_{0}^{1} ||q(t)||_{2}^{2} dt = 1\}$$
$$\mathfrak{l}_{n}^{c} = \{q: \mathbb{S}^{1} \to \mathbb{R}^{n} | \int_{\mathbb{S}^{1}} ||q(t)||_{2}^{2} dt = 1, \int_{\mathbb{S}^{1}} q(t) ||q(t)||_{2} dt = 0\}$$

Shape space removes rotation and reparameterization. Inherits metric from \mathbb{L}_2

$$SO(n) = \{ O \in \mathbb{R}^{n \times n} | O^T O = I_n, \det(O) = 1 \}$$
$$SO(n) \times \mathfrak{l}_n \to \mathfrak{l}_n : (O, q) \to Oq$$

$$\begin{split} \mathsf{\Gamma} &= \{\gamma: \mathbb{D} \to \mathbb{D} | \gamma \text{ is a diffeomorphism.} \} \\ \mathfrak{l}_n \times \mathsf{\Gamma} \to \mathfrak{l}_n: (q, \gamma) \to (q \circ \gamma) \sqrt{\dot{\gamma}} \end{split}$$

$$[q] = \{(O, (q, \gamma)) | O \in \mathrm{SO}(n), \gamma \in \Gamma\}$$

$$\mathfrak{L}_n = \mathfrak{l}_n / \mathrm{SO}(n) \times \Gamma = \{ [q] | q \in \mathfrak{l}_n \}.$$

글 > : < 글 >

Э.

Best Rotation and Reparameterization

$$(O_*, \gamma_*) = \operatorname*{argmin}_{(O, \gamma) \in \mathrm{SO}(n) imes \Gamma} \operatorname{dist}_{I_n}(q_1, O\sqrt{\dot{\gamma}}q_2 \circ \gamma).$$

Figure : Align representation of $[q_2]$ with q_1 .

Technicality

- The orbit [q] is not closed. (O_*, γ_*) may not exist.
- Closure of orbits can be characterized using a semigroup Γ_s .

$$\label{eq:Gamma} \begin{split} \mathsf{\Gamma}_{s} = \{\gamma_{s}: \mathbb{D} \to \mathbb{D} | \gamma_{s} \text{ is an absolutely continuous, non-decreasing} \\ \text{ and surjective function } \} \end{split}$$

and the group action is the same as that of $\boldsymbol{\Gamma}.$

- An orbit with Γ_s is $\overline{[q]}$, the closure of [q].
- Γ and [q] are dense in Γ_s and $\overline{[q]}$ respectively.
- Minimization problem

$$\min_{\substack{O\in \mathrm{SO}(n), \gamma_s, \tilde{\gamma}_s \in \Gamma_s}} \mathrm{dist}_{l_n}(\sqrt{\dot{\tilde{\gamma}}_s}q_1 \circ \tilde{\gamma}_s, O\sqrt{\dot{\gamma}_s}q_2 \circ \gamma_s).$$

3

• Approximation solution is considered using diffeomorphisms in Γ.

• Minimization problem

$$\min_{O\in \mathrm{SO}(n),\gamma\in\Gamma} \mathrm{dist}_{\mathfrak{l}_n}(Oq_1,(q_2,\gamma)).$$

Open curve

$$egin{aligned} &d_{I_n^o}(Oq_1,(q_2\circ\gamma)\sqrt{\dot\gamma})=\cos^{-1}\langle Oq_1,(q_2\circ\gamma)\sqrt{\dot\gamma}
angle_{\mathbb{L}^2}\ &H^o(O,\gamma(t))=\int_0^1\|Oq_1(t)-(q_2\circ\gamma(t))\sqrt{\dot\gamma(t)}\|_2^2dt \end{aligned}$$

- Closed curve
 - Closed form of preshape space distance is unknown.
 - Extrinsic distance is used.

$$\mathcal{H}^c(\mathcal{O},\gamma) = \int_{\mathbb{S}^1} \|\mathcal{O}q_1(t) - (q_2\circ\gamma(t))\sqrt{\dot{\gamma}(t)}\|_2^2 dt$$

3

Optimize rotation and reparameterization alternately.

- Open curves
 - Rotation: Procrustes problem solved using SVD
 - Reparameterization: Dynamic programming (DP) with slope constraints
- Closed curves
 - Choose a point on the closed curve and break it into an open curve
 - Apply coordinate relaxation method of open curves
 - Compare results for a sufficiently large number of break points

Two Shapes

물에 귀 물에 다

< 17 ▶

æ -

Coordinate Relaxation Method

One iteration, denoted CR1, is used in [8].

- Complexity is $O(N^3)$, where N is the number of points in the curves.
- Note rotation and the correspondence of portions of the structures.
- Does iterating more improve results?

Figure : Results given by CR1

Representations and Implementation Difficulties

Representation Approach 1

- q₁ and q₂ are represented by points.
- Evaluation of (q₂, γ) over iterations on q
- q₂^(k+1) = (q₂^(k), γ^(k)) computed on each iteration by evaluation of interpolating function of q₂^(k).
- New interpolating function for $q_2^{(k+1)}
 ightarrow$ Shape of q_2 changes.

Representations and Implementation Difficulties

- Representation Approach 2
 - q₁ is represented by points and q₂ is represented by an fixed interpolating curve.
- Difficulty: Lack of computtional associativity may not reduce the cost function in practice
- Cost function evaluated in DP uses points $(q_2, \gamma^{(k)})$, and evaluates $((q_2, \gamma^{(k)}), \tilde{\gamma}^{(k+1)})$.
- Next q iterate is obtained using (q₂, γ^(k) ∘ γ̃^(k+1)) = (q₂, γ^(k+1)) since fixed interpolation function for q₂
- Cost function values for the two forms of applying $\gamma^{(k+1)}$ can differ

iteration (k)	1	2	3
H ^c iterate form	0.390583	0.378312	0.390114
H^{c} in DP	0.285534	0.248016	0.241679

Table : Computed cost function values. Difference continues growing with k.

御 ト イヨ ト イヨ ト ・ ヨ ・ うへつ

Riemannian Approach

- Optimizing H is a Riemannian optimization problem on $SO(n) \times \Gamma$.
- Many Riemannian optimization algorithms have been systematically analyzed recently.
 - Riemannian trust-region Newton method (RTR-Newton) [2]
 - Riemannian Broyden family method including BFGS method and its limited-memory version (RBroyden family, RBFGS, LRBFGS)
 [7, 4, 6]
 - Riemannian trust-region symmetric rank-one update method and its limited-memory version (RTR-SR1, LRTR-SR1) [4, 5]

伺い イヨト イヨト

3

- Riemannian Newton method (RNewton) [1]
- See W. Huang's thesis, Optimization algorithms on Riemannian manifolds with applications, FSU, Math Dept. [4] for details on analysis, applications and library design

• Γ^c is represented by its covering space, i.e., $\tilde{\Gamma}\times \mathbb{R}$ where

 $\tilde{\Gamma} = \{\gamma : [0, 2\pi] \rightarrow [0, 2\pi] | \gamma \text{ is diffeomorphism} \}.$

and the $\tilde{\Gamma} \times \mathbb{R}$ group action on q is defined by

$$(q,(\gamma,m))=(q(\gamma+m ext{ mod } 2\pi))\sqrt{\dot{\gamma}}, \ \ (\gamma,m)\in \tilde{\mathsf{\Gamma}} imes \mathbb{R}.$$

• The cost function on the Riemannian manifold $\mathrm{SO}(n)\times\mathbb{R}\times\tilde{\Gamma}$ is

$$H^{c}(O,m,\gamma) = \int_{0}^{2\pi} \|Oq_{1}(t) - (q_{2}(\gamma(t)+m \mod 2\pi))\sqrt{\dot{\gamma}(t)}\|_{2}^{2}dt$$

-

where $\gamma(0)=0$, $\int_0^{2\pi}\dot{\gamma}(t)dt=2\pi$, $\dot{\gamma}>0$.

- Optimization on the manifold $\tilde{\Gamma}$ directly has some difficulties, e.g., step limits due to limited domains of the exponential map $Exp_{\gamma}(v) = \gamma + v$
- $\tilde{\Gamma}$ can be replaced with the 2-norm sphere
- Replace the term $\sqrt{\dot{\gamma}(t)}$ in H^c by a function ℓ .
- $\ell \geq 0$ and $\ell \in \mathbb{S}_{\mathbb{L}_2}$, where $\mathbb{S}_{\mathbb{L}_2} = \{\ell \in C^0 | \int_0^{2\pi} \ell^2(t) dt = 2\pi\}.$
- A constrained optimization is obtained

$$\min_{O\in \mathrm{SO}(n), m\in \mathbb{R}, \ell\in \mathbb{S}_{\mathbb{L}_2}, \ell\geq 0} \int_0^{2\pi} \|Oq_1(t) - q_2(\int_0^t \ell^2(s) ds + m \mod 2\pi)\ell(t)\|_2^2 dt.$$

3

To avoid the constrained optimization, 4-norm sphere is used instead.

- 4-norm sphere
- Replace the term $\sqrt{\dot{\gamma}(t)}$ in H^c by a function ℓ^2 .

•
$$\ell \in \mathbb{S}_{\mathbb{L}_4}$$
, where $\mathbb{S}_{\mathbb{L}_4} = \{\ell \in C^0 | \int_0^{2\pi} \ell^4(t) dt = 2\pi\}.$

• A unconstrained optimization is obtained

$$\min_{\substack{O \in \mathrm{SO}(n), m \in \mathbb{R}, \ell \in \mathbb{S}_{\mathbb{L}_4} \\ \text{where}}} L(O, m, \ell)$$
$$L(O, m, \ell) = \int_0^{2\pi} \|Oq_1(t) - q_2(\int_0^t l^4(s)ds + m \mod 2\pi)\ell^2(t)\|_2^2 dt.$$

3

• A barrier function can be added to avoid the slope of γ being zero or going to ∞ :

$$B(\gamma) = \int_{0}^{2\pi} (\dot{\gamma}(t) + rac{1}{\dot{\gamma}(t)}) \sqrt{1 + \dot{\gamma}^2(t)} dt = \int_{0}^{2\pi} (\ell^4(t) + rac{1}{\ell^4(t)}) \sqrt{1 + \ell^8(t)} dt$$

3

which satisfies the symmetric property, i.e., $B(\gamma) = B(\gamma^{-1})$.

• The user can control the approach to a slope of 0 or ∞ .

- q₁ is represented by points and q₂ is represented by an interpolating curve.
- Multiple values of *m* are used based on the variation of angle along the curve.
- Procrustes and DP on a coarse grid give initial ℓ_0 and O_0 for each m.
- Improvements
 - Keep the shape of q_2 constant
 - Avoid the problem with computational associativity of group action

3

Computational complexity reduces

< ∃ >

Э.

Known γ_T : rotation and γ off

문 🛌 🖻

Known γ_T : rotation and γ off significantly

문 문 문

Data Sets

Flavia leaf dataset [10]

- 1907 images of leaves
- 32 species

MPEG-7 dataset [9]

• 1400 binary images

• 70 clusters

• Boundary curves: BWBOUNDARIES function in Matlab

• 100 points in \mathbb{R}^2 used for each boundary

Representative of Riemannian Algorithm

- Five Riemannian methods are tested.
- 1000 pairs of shape in each data set are used.
- Based on the following table, LRBFGS is chosen to be the representative one.

		RBFGS	LRBFGS	RTR-SR1	LRTR-SR1	RSD
Elavia datacot	Lave	0.1727	0.1836	0.1772	0.1958	0.2079
	t _{ave}	0.4113	0.1525	0.4585	0.2052	0.2218
MDEC 7 dataset	L _{ave}	0.3639	0.3919	0.3735	0.4407	0.4798
MI LO-7 Udlasel	t _{ave}	1.2823	0.4370	1.3352	0.5572	0.7537

Table : Comparison of Riemannian Methods for representative sets from the Flavia and MPEG-7 datasets: average time per pair (t_{ave}) in seconds and average cost function per pair (L_{ave}) .

3

Test Environment and Tests Performed

- Environment
 - All codes written in C and compiled with gcc
 - Performs on Florida State University HPC system using Quad-Core 2356 2.3 GHz Opterons [3]
- Experiments
 - Compute all pairwise distances in the Flavia and MPEG-7 respectively
 - For CR1 method, the results of the breaking points chosen to be every 2, 4, 8, 16 point are reported.

Cost Function Ratios

- Percent of Flavia pairs reduced 99.2%, 99.4%, 99.6% and 99.8% for N/i, i=2,4,8,16
- Percent of MPEG-7 pairs reduced 98.5%, 99.0%, 99.3% and 99.6% for N/i, i = 2, 4, 8, 16

Computational Time Ratios

- LRBFGS computation time adjusts with based on the complexity of shape based on number of *m* points.
- CR1 is essentially constant due to simple choice of number of break points.
- LRBFGS generically faster even with same number of initial points.

- The quality of the extrinsic distance computations is assessed by the one nearest neighbor (1NN) metric
- The 1NN metric, μ, computes the percentage of points whose nearest neighbor are in the same cluster, i.e.,

$$\mu = \frac{1}{n} \sum_{i=1}^{n} C(i), \quad C(i) = \begin{cases} 1 & \text{if point } i \text{ and its nearest neighbor} \\ & \text{are in the same cluster;} \\ 0 & \text{otherwise.} \end{cases}$$

		I PRECS	CR1			
		LINDI GS	N/16	N/8	N/4	N/2
Flavia -	ave. time (sec.)	0.37201	0.59379	1.1026	2.1203	4.2404
	1NN of 32 species	87%	76%	79%	81%	85%
MPEG-7	ave. time (sec.)	0.74442	0.59272	1.1006	2.1164	4.2327
	1NN of 70 clusters	98%	92%	95%	96%	97%

Table : The average computation time and 1NN of LRBFGS and CR1 with break points chosen to be every 2, 4, 8 and 16 points.

3

Conclusion and Future Work

Conclusion

- CR with multiple iterations unreliable; composition unreliable
- CR1 may not be able to find an accurate solution
- Riemannian approach is faster, better results, and more robust for more complicated shapes than CR1
- Future work
 - Intrinsic optimization for closed curves
 - Analysis of effects of discretization on accuracy
 - Test the influence of the accuracy of distance in other shape analyses, e.g., geodesic, means
 - Combination with more robust global reparameterization optimization of Klassen et al.

References I

- P.-A. Absil, R. Mahony, and R. Sepulchre. Optimization algorithms on matrix manifolds. Princeton University Press, Princeton, NJ, 2008.
- [2] C. G. Baker.

Riemannian manifold trust-region methods with applications to eigenproblems. PhD thesis, Florida State University, 2008.

[3] Florida State University Research Computing Center. FSU high performance computing system.

[4] W. Huang.

Optimization algorithms on Riemannian manifolds with applications.

3

PhD thesis, Florida State University, 2013.

 W. Huang, P.-A. Absil, and K. A. Gallivan.
 A Riemannian symmetric rank-one trust-region method. Mathematical Programming, 2014. [6] W. Huang, K. A. Gallivan, and P.-A. Absil. A Broyden class of quasi-Newton methods for Riemannian optimization.

Submitted for publication, 2014.

- [7] W. Ring and B. Wirth.
 Optimization methods on Riemannian manifolds and their application to shape space.
 SIAM Journal on Optimization, 22(2):596–627, January 2012.
- [8] A. Srivastava, E. Klassen, S. H. Joshi, and I. H. Jermyn. Shape analysis of elastic curves in Euclidean spaces. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 33(7):1415–1428, September 2011.
- [9] Temple University. Shape similarity research project.

[10] S. G. Wu, F. S. Bao, E. Y. Xu, Y.-X. Wang, Y.-F. Chang, and Q.-L. Xiang.

A leaf recognition algorithm for plant classification using probabilistic neural network.

2007 IEEE International Symposium on Signal Processing and Information Technology, pages 11–16, 2007.