
Riemannian Optimization for Elastic Shape

Analysis

W. Huang∗, K. A. Gallivan∗, A. Srivastava∗ and P.-A. Absil†

∗Florida State University †Catholic University of Louvain

MTNS 2014, Groningen, The Netherlands

W. Huang∗ , K. A. Gallivan∗, A. Srivastava∗ and P.-A. Absil† Riemannian Optimization for Elastic Shape Analysis



Elastic Shape Analysis

Elastic shape analysis
invariants:

Rescaling
Translation
Rotation
Reparametrization

Square Root Velocity Function
framework used (Srivastava,
Klassen, Joshi, and Jermyn [8]).

extensive analysis and
application of elastic shape

much less work on
understanding efficient and
robust algorithms Figure : All are the same shape.
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SRVF and Preshape Space

Preshape space, denoted ln, removes translation and rescaling for L2.

A shape is represented by a function β : D → R
2, where D is [0, 1]

for open curves and unit circle S
1 for closed curves.

Square Root Velocity (SRV) function of the shape β is

q(t) =

{

β̇(t)√
‖β̇(t)‖2

if ‖β̇(t)‖2 6= 0;

0 if ‖β̇(t)‖2 = 0.

Preshape spaces (closure condition added for closed curves)

l
o

n = {q : [0, 1] → R
n|
∫ 1

0

‖q(t)‖22dt = 1}

l
c

n = {q : S1 → R
n|
∫

S1

‖q(t)‖22dt = 1,

∫

S1

q(t)‖q(t)‖2dt = 0}
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Shape Space

Shape space removes rotation and reparameterization. Inherits metric
from L2

SO(n) = {O ∈ R
n×n|OTO = In, det(O) = 1}

SO(n)× ln → ln : (O, q) → Oq

Γ = {γ : D → D|γ is a diffeomorphism.}
ln × Γ → ln : (q, γ) → (q ◦ γ)

√

γ̇

[q] = {(O, (q, γ))|O ∈ SO(n), γ ∈ Γ}

Ln = ln/SO(n)× Γ = {[q]|q ∈ ln}.
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Best Rotation and Reparameterization

(O∗, γ∗) = argmin
(O,γ)∈SO(n)×Γ

distln(q1,O
√

γ̇q2 ◦ γ).

[q1] [q2]

q1

q̃2

Updating O and γ

q2

Figure : Align representation of [q2] with q1.
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Technicality

The orbit [q] is not closed. (O∗, γ∗) may not exist.

Closure of orbits can be characterized using a semigroup Γs .

Γs = {γs : D → D|γs is an absolutely continuous, non-decreasing

and surjective function }

and the group action is the same as that of Γ.

An orbit with Γs is [q], the closure of [q].

Γ and [q] are dense in Γs and [q] respectively.

Minimization problem

min
O∈SO(n),γs ,γ̃s∈Γs

distln(

√

˙̃γsq1 ◦ γ̃s ,O
√

γ̇sq2 ◦ γs).

Approximation solution is considered using diffeomorphisms in Γ.
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Cost Functions

Minimization problem

min
O∈SO(n),γ∈Γ

distln(Oq1, (q2, γ)).

Open curve

dlo
n
(Oq1, (q2 ◦ γ)

√

γ̇) = cos−1 〈Oq1, (q2 ◦ γ)
√

γ̇〉L2

Ho(O, γ(t)) =

∫ 1

0

‖Oq1(t)− (q2 ◦ γ(t))
√

γ̇(t)‖22dt

Closed curve

Closed form of preshape space distance is unknown.
Extrinsic distance is used.

H
c (O, γ) =

∫

S1

‖Oq1(t)− (q2 ◦ γ(t))
√

γ̇(t)‖22dt
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Coordinate Relaxation

Optimize rotation and reparameterization alternately.

Open curves

Rotation: Procrustes problem solved using SVD
Reparameterization: Dynamic programming (DP) with slope
constraints

Closed curves

Choose a point on the closed curve and break it into an open curve
Apply coordinate relaxation method of open curves
Compare results for a sufficiently large number of break points
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Two Shapes

β
1

β
2
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Coordinate Relaxation Method

One iteration, denoted CR1, is used in [8].

Complexity is O(N3), where N is the number of points in the curves.

Note rotation and the correspondence of portions of the structures.

Does iterating more improve results?
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Figure : Results given by CR1
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Representations and Implementation Difficulties

Representation Approach 1

q1 and q2 are represented by
points.

Evaluation of (q2, γ) over
iterations on q

q
(k+1)
2 = (q

(k)
2 , γ(k)) computed

on each iteration by evaluation

of interpolating function of q
(k)
2 .

New interpolating function for

q
(k+1)
2 → Shape of q2 changes.

β
1

β
2

!

original curve 1−th iter., Hc:0.22734 2−th iter., Hc:0.17231 3−th iter., Hc:0.1646 4−th iter., Hc:0.1792
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Representations and Implementation Difficulties

Representation Approach 2

q1 is represented by points and q2 is represented by an fixed
interpolating curve.

Difficulty: Lack of compuational associativity may not reduce the
cost function in practice

Cost function evaluated in DP uses points (q2, γ
(k)), and evaluates

((q2, γ
(k)), γ̃(k+1)).

Next q iterate is obtained using (q2, γ
(k) ◦ γ̃(k+1)) = (q2, γ

(k+1))
since fixed interpolation function for q2

Cost function values for the two forms of applying γ(k+1) can differ

iteration (k) 1 2 3
Hc iterate form 0.390583 0.378312 0.390114

Hc in DP 0.285534 0.248016 0.241679

Table : Computed cost function values. Difference continues growing with k .
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Riemannian Approach

Optimizing H is a Riemannian optimization problem on SO(n)× Γ.

Many Riemannian optimization algorithms have been systematically
analyzed recently.

Riemannian trust-region Newton method (RTR-Newton) [2]
Riemannian Broyden family method including BFGS method and its
limited-memory version (RBroyden family, RBFGS, LRBFGS)
[7, 4, 6]
Riemannian trust-region symmetric rank-one update method and its
limited-memory version (RTR-SR1, LRTR-SR1) [4, 5]
Riemannian Newton method (RNewton) [1]

See W. Huang’s thesis, Optimization algorithms on Riemannian
manifolds with applications, FSU, Math Dept. [4] for details on
analysis, applications and library design
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Cost Function of Closed Curves

Γc is represented by its covering space, i.e., Γ̃× R where

Γ̃ = {γ : [0, 2π] → [0, 2π]|γ is diffeomorphism}.

and the Γ̃× R group action on q is defined by

(q, (γ,m)) = (q(γ +m mod 2π))
√

γ̇, (γ,m) ∈ Γ̃× R.

The cost function on the Riemannian manifold SO(n) × R× Γ̃ is

Hc(O,m, γ) =

∫ 2π

0

‖Oq1(t)− (q2(γ(t) +m mod 2π))
√

γ̇(t)‖22dt

where γ(0) = 0,
∫ 2π

0
γ̇(t)dt = 2π, γ̇ > 0.
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2-norm Sphere

Optimization on the manifold Γ̃ directly has some difficulties, e.g.,
step limits due to limited domains of the exponential map
Expγ(v) = γ + v

Γ̃ can be replaced with the 2-norm sphere

Replace the term
√

γ̇(t) in Hc by a function ℓ.

ℓ ≥ 0 and ℓ ∈ SL2 , where SL2 = {ℓ ∈ C 0|
∫ 2π

0
ℓ2(t)dt = 2π}.

A constrained optimization is obtained

min
O∈SO(n),m∈R,ℓ∈SL2

,ℓ≥0

∫ 2π

0

‖Oq1(t)−q2(

∫ t

0

ℓ2(s)ds+m mod 2π)ℓ(t)‖22dt.
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4-norm Sphere

To avoid the constrained optimization, 4-norm sphere is used instead.

4-norm sphere

Replace the term
√

γ̇(t) in Hc by a function ℓ2.

ℓ ∈ SL4 , where SL4 = {ℓ ∈ C 0|
∫ 2π

0
ℓ4(t)dt = 2π}.

A unconstrained optimization is obtained

min
O∈SO(n),m∈R,ℓ∈SL4

L(O,m, ℓ)

where

L(O,m, ℓ) =

∫ 2π

0

‖Oq1(t)− q2(

∫ t

0

l4(s)ds +m mod 2π)ℓ2(t)‖22dt.
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Barrier Function

A barrier function can be added to avoid the slope of γ being zero or
going to ∞:

B(γ) =

∫ 2π

0

(γ̇(t)+
1

γ̇(t)
)
√

1 + γ̇2(t)dt =

∫ 2π

0

(ℓ4(t)+
1

ℓ4(t)
)
√

1 + ℓ8(t)dt

which satisfies the symmetric property, i.e., B(γ) = B(γ−1).

The user can control the approach to a slope of 0 or ∞.
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Riemmanian Algorithm

q1 is represented by points and q2 is represented by an interpolating
curve.

Multiple values of m are used based on the variation of angle along
the curve.

Procrustes and DP on a coarse grid give initial ℓ0 and O0 for each m.

Improvements

Keep the shape of q2 constant
Avoid the problem with computational associativity of group action
Computational complexity reduces
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Example
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Known γT : rotation and γ off
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Known γT : rotation and γ off significantly
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Data Sets

Flavia leaf dataset [10]

1907 images of leaves

32 species

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

MPEG-7 dataset [9]

1400 binary images

70 clusters

1 2 3 4 5 6 7
8

9 10
11 12

13
14

15 16 17 18
19 20 21 22 23 24 25 26 27 28

29 30 31 32 33 34 35 36 37 38 39 40 41 42

43
44

45 46 47 48 49 50
51 52 53 54 55

56

57
58 59 60 61

62
63 64 65 66 67 68 69

70

Boundary curves: bwboundaries function in Matlab

100 points in R
2 used for each boundary
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Representative of Riemannian Algorithm

Five Riemannian methods are tested.

1000 pairs of shape in each data set are used.

Based on the following table, LRBFGS is chosen to be the
representative one.

RBFGS LRBFGS RTR-SR1 LRTR-SR1 RSD

Flavia dataset
Lave 0.1727 0.1836 0.1772 0.1958 0.2079
tave 0.4113 0.1525 0.4585 0.2052 0.2218

MPEG-7 dataset
Lave 0.3639 0.3919 0.3735 0.4407 0.4798
tave 1.2823 0.4370 1.3352 0.5572 0.7537

Table : Comparison of Riemannian Methods for representative sets from the
Flavia and MPEG-7 datasets: average time per pair (tave) in seconds and
average cost function per pair (Lave).
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Comparisons of LRBFGS and CR1

Test Environment and Tests Performed

Environment

All codes written in C and compiled with gcc
Performs on Florida State University HPC system using Quad-Core
2356 2.3 GHz Opterons [3]

Experiments

Compute all pairwise distances in the Flavia and MPEG-7
respectively
For CR1 method, the results of the breaking points chosen to be
every 2, 4, 8, 16 point are reported.
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Cost Function Ratios
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Percent of Flavia pairs reduced 99.2%, 99.4%, 99.6% and 99.8% for
N/i , i = 2, 4, 8, 16

Percent of MPEG-7 pairs reduced 98.5%, 99.0%, 99.3% and 99.6%
for N/i , i = 2, 4, 8, 16
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Computational Time Ratios
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LRBFGS computation time adjusts with based on the complexity of
shape based on number of m points.

CR1 is essentially constant due to simple choice of number of break
points.

LRBFGS generically faster even with same number of initial points.
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One Nearest Neighbor Results

The quality of the extrinsic distance computations is assessed by the
one nearest neighbor (1NN) metric

The 1NN metric, µ, computes the percentage of points whose
nearest neighbor are in the same cluster, i.e.,

µ =
1

n

n
∑

i=1

C (i), C (i) =











1 if point i and its nearest neighbor

are in the same cluster;

0 otherwise.
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One Nearest Neighbor Results

LRBFGS
CR1

N/16 N/8 N/4 N/2

Flavia
ave. time (sec.) 0.37201 0.59379 1.1026 2.1203 4.2404

1NN of 32 species 87% 76% 79% 81% 85%

MPEG-7
ave. time (sec.) 0.74442 0.59272 1.1006 2.1164 4.2327

1NN of 70 clusters 98% 92% 95% 96% 97%

Table : The average computation time and 1NN of LRBFGS and CR1 with
break points chosen to be every 2, 4, 8 and 16 points.
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Conclusion and Future Work

Conclusion

CR with multiple iterations unreliable; composition unreliable
CR1 may not be able to find an accurate solution
Riemannian approach is faster, better results, and more robust for
more complicated shapes than CR1

Future work

Intrinsic optimization for closed curves
Analysis of effects of discretization on accuracy
Test the influence of the accuracy of distance in other shape
analyses, e.g., geodesic, means
Combination with more robust global reparameterization
optimization of Klassen et al.
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