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Introduction
Shape analysis of curves is important in vari-
ous area such as computer vision, medical di-
agnostics, and bioinformatics. The basic idea is
to obtain a boundary curve of an object in a 2D
image or contours of a 3D object and analyse
those curves to characterize the original object.
Elastic shape analysis is receiving increasing at-
tention due to its superior theoretical results
and effectiveness. The price for the improved
effectiveness is the relative increase in expense
in computing various objects, e.g., geodesic-
s and means. In this poster, we compare the
performance of recent geodesic algorithm in
[YHGA15] to the existing geodesic algorithm in
[SKJJ11] in computing Karcher mean.

Elastic Shape Analysis
Inelastic shape analysis invariants: (i) Rescal-
ing (ii) Translation (iii) Rotation. Elas-
tic shape analysis additional invariant: (vi)
Reparametrization.

Figure 1: All are the same shape.

Elastic shape analysis has been studied in
many papers, e.g., [You98, KSMJ04, YMSM08,
SKJJ11].

Figure 2: Geodesics without and with reparameterization are
given by the frameworks of landmark-based Kendall’s shape
analysis [Ken84, DM98] and elastic shape analysis [SKJJ11] re-
spectively.

Square Root Velocity
The square root velocity (SRV) framework giv-
en in [SKJJ11] for elastic shape analysis of gen-
eral n dimensional curves is considered.
In this poster, we only consider closed curves
β(t) : S1 → Rn. Its square root velocity (SRV)
function is q(t) = β̇(t)√

‖β̇(t)‖
, where ‖ · ‖ denotes

2-norm.
The preshape space ln (that removes translation
and rescaling) is{
q ∈ L2|

∫
S1
||q(t)||dt = 1,

∫
S1
q(t)||q(t)||dt = 0

}
.

The shape space Ln (that further removes rota-
tion and reparameterization) is

ln/(Γ× SO(n)) = {[q]|q ∈ ln},

where [q] denotes the closure of [q] :={
O(q ◦ γ)

√
γ̇|(γ,O) ∈ Γ× SO(n)

}
, and SO(n)

and Γ denote the rotation group and the repa-
rameterization group respectively.

Karcher Mean
The Karcher mean of shapes [qi], i = 1, 2, . . . , N
is defined to be the minimizer of the cost func-
tion

[q∗] = arg min[q]∈Ln

1

2N

N∑
i=1

d2
Ln

([q], [qi]). (1)

where

dLn
([q], [qi]) = inf

(γ,O)∈Γ×SO(n)
dln(q,O(qi◦γ)

√
γ̇).

A representation of the gradient of (1) is giv-
en by 1

N

∑N
i=1 α̇i(1), where αi ⊂ ln is the mini-

mum geodesic such that αi(1) = q and αi(0) ∈
[qi]. (Numerically, we only guarantee to find a
constant velocity geodesic.)

Geodesic Algorithm
The closed form of distance dLn is unknown,
hence we compute it with an algorithm s-
ketched in Figure 3.
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Figure 3: Left: Path-straightening method [SKJJ11] in lcn;
Right: Remove rotation and reparameterization.

Two approaches for removing rotation and
reparameterization (i.e., finding q∗2 in [q2]) are
used: (i) Coordinate descent method [SKJJ11]
(ii): Riemannian quasi-Newton method
[YHGA15].
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Algorithm
Algorithm 1 Karcher Mean

Input: Curves βi, i = 1, . . . , N and initial iter-
ate β(0).

1: Compute the representations q(0) of β(0)

and qi of βi, i = 1, . . . , N in ln. Set k = 0.
2: Compute the shortest curve αi such that
αi(1) = q(k) and αi(0) ∈ [qi] for all i =
1, . . . , N . The values of the cost function (1)
and its gradient are obtained during this
computation.

3: Apply the backtracking line search algo-
rithm [DS83, Algorithm A6.3.1] and find
the step size λk and the next iterate

q(k+1) = Rq(k)(−λkζk), (2)

where ζk = 1
N

∑N
i=1 α̇i(1) is the gradient

of (1).
4: If some stopping criterion is satisfied, then

stop. Else, k ← k + 1 and goto Step 2.

Experiments
The MPEG-7 dataset [Uni] is used in the ex-
periments. Algorithm 1 with the approach-
es in [SKJJ11] and [YHGA15] are denoted by
MeanCD and MeanLRBFGS respectively.
Table 1: Computational time, number of iterations and final
cost function values of reported tests. t, iter and f denote com-
putational time (second), number of iterations and final cost
function value respectively. The subscript k indicates a scale of
10k .

MeanCD [SKJJ11] MeanLRBFGS [YHGA15]
t iter f t iter f

Figure 4 2.942 27 5.03−2 9.871 8 4.99−2
Figure 5 7.052 26 3.93−2 4.552 14 3.67−2
Figure 6 1.463 19 1.18−1 6.772 8 7.40−2

Figure 4: A representative test. The sample shapes and the
Karcher means by MeanCD and MeanLRBFGS, cost function
values and computational time are given.

Figure 5: A representative test. The sample shapes and the
Karcher means by MeanCD and MeanLRBFGS are given.

Figure 6: A representative test. The samples shapes, Karcher
means by MeanCD and MeanLRBFGS are given.

Conclusion and Future Work
Two approaches for computing elastic shape
geodesics required have been given in [SKJJ11]
and [YHGA15]. Here we have compared their
performance in computing the Karcher mean.
We have shown that Algorithm 1 with the ap-
proach in [YHGA15] converges faster.
In the future, we will test the quality of the
Karcher mean by MeanLRBFGS in the sense of
superior clustering, classification and stochas-
tic analysis.


