# A Riemannian Optimization Technique for Rank Inequality Constraints 

Guifang Zhou ${ }^{1}$, Wen Huang ${ }^{2}$, K. A. Gallivan ${ }^{1}$, Paul Van Dooren ${ }^{2}$, P.-A. Absil ${ }^{2}$<br>${ }^{1}$ Florida State University, ${ }^{2}$ Université Catholique de Louvain

(20)

## Problem and Applications

This study considers combining rank inequality constraints with a matrix manifold constraint in a problem of the form

$$
\begin{equation*}
\min _{x \in \mathcal{M}<k} f(x) \tag{1}
\end{equation*}
$$

where $\mathcal{M}_{\leq k}=\{x \in \mathcal{M} \mid \operatorname{rank}(x) \leq k\}$ and $\mathcal{M}$ is a submanifold of $\mathbb{R}^{m \times n}$. Numerous ap plications exist, e.g., [ZW03, FHB04, MLP ${ }^{+} 06$ JHSX11].
The details of this work can be found in $\left[Z^{2} G^{+} 15\right]$.

## Background

Riemannian optimization methods play important roles:

- $\mathcal{M}=\mathbb{R}^{m \times n}$ in most of applications;
- $\mathbb{R}_{r}^{m \times n}:=\left\{x \in \mathbb{R}^{m \times n} \mid \operatorname{rank}(x)=r\right\}$ is a Riemannian manifold.

Existing methods choose the $k$ in (1) a priori. However, it is not easy to choose a suitable $k$.

- The solution with too small $k$ may be unacceptable;
- The computational time may be unacceptable with too large $k$.


## Contribution

- Generalize the admissible set from $\mathbb{R}_{\leq k}^{m \times n}$ to $\mathcal{M}_{\leq k}$;
- Define an algorithm solving a rank inequality constrained problem while finding a suitable rank for approximation;
- Prove theoretical convergence results;
- Implementations based on Riemannian optimization methods.


## Basic Idea

Apply Riemannian optimization methods on a fixed rank manifold $\mathcal{M}_{r}$ while efficiently and effectively updating the rank $r$

## Increase Rank

Increase rank if next two conditions hold.

- Condition I (angle threshold $\theta_{0}$ ):
$\angle\left(\operatorname{grad} f_{\mathrm{F}}\left(x_{r}\right), \operatorname{grad} f_{r}\left(x_{r}\right)\right)=\theta>\theta_{0}$,
- Condition II (difference threshold, $\epsilon_{2}$ ):
$\left\|\operatorname{grad} f_{\mathrm{F}}\left(x_{r}\right)-\operatorname{grad} f_{r}\left(x_{r}\right)\right\| \geq \epsilon_{2}$,
where $x_{r} \in \mathcal{M}_{r}, \operatorname{grad} f_{\mathrm{F}}(x)$ and $\operatorname{grad} f_{r}(x)$ are the Riemannian gradients with respect to $\mathcal{M}$ and $\mathcal{M}_{r}$ respectively.


Figure 1. Strategy of increasing the rank.

## Rank-Related Objects

The new concepts of rank-related vector and rank-related retraction play an important role in updating the rank and avoiding increasing it excessively.


Figure 2. $x \in \mathcal{M}_{r} ; r<\tilde{r} ; \eta_{x, \tilde{r}}$ is a rank- $\tilde{r}$-related vector, i.e., there exists a curve $\gamma(t)$ such that $\gamma(0)=x, \dot{\gamma}(0)=$ $\eta_{x, \tilde{r}}$ and $\operatorname{rank}(\gamma(t))=\tilde{r} ; R$ is a rank-related retraction, i.e., $\operatorname{rank}\left(R_{x}\left(t \eta_{x, \tilde{r}}\right)\right)=\tilde{r}$ for $t \in(0, \delta), \delta>0$.

## Reduce Rank

- Truncate rank and retract to $\mathcal{M}$
- May increase the function value
- Do not destroy the progress that is made in the previous rank increasing step, i.e.,
$f\left(X_{i+1}\right)-f\left(X_{s}\right) \leq c\left(f\left(X_{s+1}\right)-f\left(X_{s}\right)\right)$,
where $s$ is such that the latest rank increase was from $X_{s}$ to $X_{s+1}, 0<c<1$.


## Algorithm

## Algorithm 1

for $n=0,1,2, \ldots$ do
Approximately optimize $f$ over $\mathcal{M}_{r}$ with initial point $x_{n}$ and obtain $\tilde{x}_{n}$;
if $\tilde{x}_{n}$ is not close to $\mathcal{M}_{\leq r-1}$ then if Both Conditions I and II are satisfied then

Find the updated rank $\tilde{r} \in(r, k]$ such that $\left\|\operatorname{grad} f_{F}\left(\tilde{x}_{n}\right)-\eta^{*}\right\|_{F}$ is sufficiently small, where $\eta^{*} \in$ $\arg \min _{\eta \in \mathrm{T}_{\tilde{x}_{n}} \mathcal{M}_{\leq \tilde{r}} \| \operatorname{grad} f_{F}\left(\tilde{x}_{n}\right)}$ $\eta \|_{F}$ is a rank- $\tilde{r}$-related vector.
Obtain $x_{n+1}$ by applying a line search algorithm along $\eta^{*}$ using a rank-related retraction;
else
If $x_{n+1}$ is accurate enough, stop. end if
else
Reduce the rank of $\tilde{x}_{n}$ if the progress made in the previous rank increasing step is not destroyed; Update $r$; Obtain next iterate $x_{n+1}$;
end if
end for

## Main Theoretical Results

Under some reasonable assumptions:

- (Global Result) The sequence $\left\{x_{n}\right\}$ generated by Algorithm 1 satisfies $\liminf _{n \rightarrow \infty}\left\|P_{\mathrm{T}_{x_{n}} \mathcal{M}_{\leq k}}\left(\operatorname{grad} f_{\mathrm{F}}\left(x_{n}\right)\right)\right\| \leq$ $\left(\sqrt{1+\frac{1}{\epsilon_{1}^{2}}}\right) \epsilon_{2}$, where $\epsilon_{1}=\tan \left(\theta_{0}\right)$.
- (Local Result) The sequence $\left\{x_{n}\right\}$ enters a neighborhood $\mathcal{U}_{*}$ of a minimizer $x_{*}$ and remains in $\mathcal{U}_{*}$. The distance $\operatorname{dist}\left(x_{n}, x_{*}\right)$ is bounded based on $\epsilon_{1}, \epsilon_{2}$ and Hess $f_{\mathrm{F}}\left(x_{*}\right)$. The ranks of $\left\{x_{n}\right\}$ are fixed eventually.


## Weighted Low Rank Problems

Weighted low rank problem concerns solving

$$
\min _{X \in \mathcal{M}_{\leq k}}\|A-X\|_{W}^{2}
$$

where $\mathcal{M}=\mathbb{R}^{m \times n}, A$ is given, $W \in \mathbb{R}^{m n \times m n}$ is symmetric positive definite and $\|A-X\|_{W}^{2}=$ $\operatorname{vec}(A-X)^{T} W \operatorname{vec}(A-X)$

## Experiments

Algorithm 1 is compared with the state-of-theart methods for weighted low rank approximation problems.
The matrix $A$ is generated by $A_{1} A_{2}^{T} \in \mathbb{R}^{80 \times 10}$, where $A_{1} \in \mathbb{R}^{80 \times 5}, A_{2} \in \mathbb{R}^{10 \times 5}$. $W=U \Sigma U^{T}$ where $U \in \mathbb{R}^{800 \times 800}$ is a random orthogonal matrix generated by Matlab's RAND and QR. The 800 singular values of $W$ are generated by Matlab LOGSPACE with condition number 100 and mutiplying, element-wise, by a uniform distribution matrix on the interval [0.5, 1.5].

|  | k | rank | $f$ | R_err | time(s) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $(1)$ | 3 | 3 | $8.65_{1}$ | $3.10_{-1}$ | $6.16_{-1}$ |
|  | 5 | 5 | $3.29_{-22}$ | $1.09_{-13}$ | $5.19_{-1}$ |
|  | 7 | 5 | $3.65_{-17}$ | $1.87_{-10}$ | $4.43_{-1}$ |
| $(2)$ | 3 | 3 | $8.65_{1}$ | $3.10_{-1}$ | 3.03 |
|  | 5 | 5 | $1.25_{-20}$ | $3.45_{-12}$ | 3.05 |
|  | 7 | $5.02_{99 \%}$ | $2.13_{-17}$ | $3.740_{-11}$ | 1.63 |
| $(3)$ | 3 | 3 | $8.65_{1}$ | $3.10_{-1}$ | 3.96 |
|  | 5 | 5 | $3.05_{-12}$ | $5.41_{-8}$ | 1.06 |
|  | 7 | $7_{0 \%}$ | $2.23_{-12}$ | $4.77_{-8}$ | 2.07 |
| $(4)$ | 3 | 3 | $8.65_{1}$ | $3.10_{-1}$ | 9.11 |
|  | 5 | 5 | $8.28_{-10}$ | $8.93_{-7}$ | 4.05 |
|  | 7 | $7_{0 \%}$ | $2.34_{-10}$ | $4.86_{-7}$ | 6.89 |

Table 1. An average of 100 random runs. (1), (2), (3) and (4) denote Alg. 1, DMM [BM06], SULS [SU14] and APM [LPW97] respectively. $\epsilon_{1}$ and $\epsilon_{2}$ are chosen to be $\sqrt{3}$ and $10^{-4}$ for Algorithm 1. R_err denotes $\|A-X\|_{W} /\|A\|_{W}$. The subscript $\pm k$ indicates a scale of $10^{ \pm k}$. The subscript $m \%$ denotes that the percentage of runs that find the true rank.

## references

[^0]
[^0]:    [BM06] I. Brace and J. H. Manton. An improved BFGS-on-ma
    [FHB04] M. Fazel, H. Hindi, and S. Boyd. Rank minimization
    [JHSX11] H. Ji. S.-B. Huang, $Z$ Sh S. Boyd. Rank minimization and applications in system theory. Proceedings of American Control Conference, 2004.
    [LPW97] W.S. I, S. Huang, Z. Shen, and Y. Xu. Robust video restoration by joint sparse and low rank matrix approximation. SIAM Jourral on Imaging Sciences, pages 1-19, 2011.
    [LPW97] W.-S. Lu, S.-C. Pei, and P.-H. Wang. Weighted low-rank approximation of general complex matrices and its application in the design of 2-d digital filters. IEEE Transaction
    Systems, 44(7):650-655, 1997.
    MLP $^{+}{ }^{06]}$ I. Markovsky, M. Luisa Rastello, A. Premoli, A.
    [SU14] R. Schneider and A. Uschmajew. Convergence results for projected line-search methods on varieties of low-rank matrices via lojasiewicz inequality. February 2014. 1402.5284.
    Z $\mathrm{HGG}^{+}{ }^{15]}$ G. Zhou, W. Huang K. A. Gallivan P. Van Dooren, and P-A. Absil. Rank-constrained optimization: A Riemanian maifold
    [ZW03] Z. Zhang and L. Wu. Optimal low-rank approximation to a correlation matrix. Linear Algebra and its Applications, 364:161-187, May 2003. doi:10.1016/S0024-3795(02)00551-7.

