
A Riemannian Optimization Technique for Rank
Inequality Constraints

Guifang Zhou1, Wen Huang2, K. A. Gallivan1, Paul Van Dooren2, P.-A. Absil2
1Florida State University, 2Université Catholique de Louvain

This research was supported by the National Science Foundation under grant NSF-1262476. This paper presents research results of the Belgian Network DYSCO (Dynamical Systems, Control, and Optimization), funded by the

Interuniversity Attraction Poles Programme initiated by the Belgian Science Policy Office. This work was supported by grant FNRS PDR T.0173.13.

Problem and Applications
This study considers combining rank inequal-
ity constraints with a matrix manifold con-
straint in a problem of the form

min
x∈M≤k

f(x), (1)

where M≤k = {x ∈ M|rank(x) ≤ k} and
M is a submanifold of Rm×n. Numerous ap-
plications exist, e.g., [ZW03, FHB04, MLP+06,
JHSX11].
The details of this work can be found in
[ZHG+15].

Background
Riemannian optimization methods play impor-
tant roles:

• M = Rm×n in most of applications;
• Rm×nr := {x ∈ Rm×n|rank(x) = r} is a

Riemannian manifold.

Existing methods choose the k in (1) a priori.
However, it is not easy to choose a suitable k.

• The solution with too small k may be un-
acceptable;

• The computational time may be unac-
ceptable with too large k.

Contribution
• Generalize the admissible set from Rm×n≤k

toM≤k;
• Define an algorithm solving a rank in-

equality constrained problem while find-
ing a suitable rank for approximation;

• Prove theoretical convergence results;
• Implementations based on Riemannian

optimization methods.

Basic Idea
Apply Riemannian optimization methods on a
fixed rank manifold Mr while efficiently and
effectively updating the rank r.

Increase Rank
Increase rank if next two conditions hold.

• Condition I (angle threshold θ0):

∠(gradfF(xr), gradfr(xr)) = θ > θ0,

• Condition II (difference threshold, ε2):

‖gradfF(xr)− gradfr(xr)‖ ≥ ε2,

where xr ∈ Mr, gradfF(x) and gradfr(x) are
the Riemannian gradients with respect to M
andMr respectively.

Figure 1. Strategy of increasing the rank.

Rank-Related Objects
The new concepts of rank-related vector and
rank-related retraction play an important role
in updating the rank and avoiding increasing it
excessively.
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Figure 2. x ∈ Mr ; r < r̃; ηx,r̃ is a rank-r̃-related vector,
i.e., there exists a curve γ(t) such that γ(0) = x, γ̇(0) =

ηx,r̃ and rank(γ(t)) = r̃; R is a rank-related retraction, i.e.,
rank(Rx(tηx,r̃)) = r̃ for t ∈ (0, δ), δ > 0.

Reduce Rank
• Truncate rank and retract toM
• May increase the function value
• Do not destroy the progress that is made

in the previous rank increasing step, i.e.,

f(Xi+1)− f(Xs) ≤ c(f(Xs+1)− f(Xs)),

where s is such that the latest rank in-
crease was from Xs to Xs+1, 0 < c < 1.
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Algorithm
Algorithm 1

1: for n = 0,1, 2,. . . do
2: Approximately optimize f overMr with

initial point xn and obtain x̃n;
3: if x̃n is not close toM≤r−1 then
4: if Both Conditions I and II are satisfied

then
5: Find the updated rank r̃ ∈ (r, k]

such that ‖ grad fF (x̃n) − η∗‖F
is sufficiently small, where η∗ ∈
arg minη∈Tx̃nM≤r̃

‖ grad fF (x̃n) −
η‖F is a rank-r̃-related vector.

6: Obtain xn+1 by applying a line
search algorithm along η∗ using a
rank-related retraction;

7: else
8: If xn+1 is accurate enough, stop.
9: end if

10: else
11: Reduce the rank of x̃n if the progress

made in the previous rank increasing
step is not destroyed; Update r; Obtain
next iterate xn+1;

12: end if
13: end for

Main Theoretical Results
Under some reasonable assumptions:

• (Global Result) The sequence {xn}
generated by Algorithm 1 satisfies
lim infn→∞ ‖PTxnM≤k

(gradfF(xn))‖ ≤(√
1 + 1

ε21

)
ε2, where ε1 = tan(θ0).

• (Local Result) The sequence {xn} enters a
neighborhood U∗ of a minimizer x∗ and
remains in U∗. The distance dist(xn, x∗) is
bounded based on ε1, ε2 and Hess fF(x∗).
The ranks of {xn} are fixed eventually.

Weighted Low Rank Problems
Weighted low rank problem concerns solving

min
X∈M≤k

‖A−X‖2W

where M = Rm×n, A is given, W ∈ Rmn×mn
is symmetric positive definite and ‖A−X‖2W =
vec(A−X)TWvec(A−X).

Experiments
Algorithm 1 is compared with the state-of-the-
art methods for weighted low rank approxima-
tion problems.
The matrix A is generated by A1A

T
2 ∈ R80×10,

where A1 ∈ R80×5, A2 ∈ R10×5. W = UΣUT

where U ∈ R800×800 is a random orthogonal
matrix generated by Matlab’s RAND and QR.
The 800 singular values of W are generated by
Matlab LOGSPACE with condition number 100
and mutiplying, element-wise, by a uniform
distribution matrix on the interval [0.5, 1.5].

k rank f R_err time(s)
(1) 3 3 8.651 3.10−1 6.16−1

5 5 3.29−22 1.09−13 5.19−1

7 5 3.65−17 1.87−10 4.43−1

(2) 3 3 8.651 3.10−1 3.03
5 5 1.25−20 3.45−12 3.05
7 5.0299% 2.13−17 3.740−11 1.63

(3) 3 3 8.651 3.10−1 3.96
5 5 3.05−12 5.41−8 1.06
7 70% 2.23−12 4.77−8 2.07

(4) 3 3 8.651 3.10−1 9.11
5 5 8.28−10 8.93−7 4.05
7 70% 2.34−10 4.86−7 6.89

Table 1. An average of 100 random runs. (1), (2), (3) and
(4) denote Alg. 1, DMM [BM06], SULS [SU14] and APM
[LPW97] respectively. ε1 and ε2 are chosen to be

√
3 and

10−4 for Algorithm 1. R_err denotes ‖A − X‖W /‖A‖W .
The subscript ±k indicates a scale of 10±k . The subscript
m% denotes that the percentage of runs that find the true
rank.


