A C++ Riemannian Optimization Library

Wen Huang¹, P.-A. Absil¹, Kyle A. Gallivan²

1- Université Catholique de Louvain 2- Florida State University

19 May 2015

Develop a library to find an optimum of a real-valued function f on a Riemannian manifold, i.e.,

min $f(x), x \in \mathcal{M}$.

Many libraries exist, e.g. ManOpt [BMAS14].

- Reliable computational time
- Interfaces for various languages users
- Can be built in other packages

C++ Package

Available on http://www.math.fsu.edu/~whuang2/ROPTLIB

- $\bullet\$ C++ is a popular and object-oriented programming language
 - Not difficult to maintain
 - Built in other packages
 - Reliable computational time
- Use standard linear algebra packages, BLAS and LAPACK

Space Manifold Problem

Framework

The framework partly inspires by ManOpt [BMAS14] and GenRTR [ABG07], and include four parts:

- Solvers: State-of-the-art algorithms
- Space: Storing elements on manifolds, tangent vectors and linear operators
- Manifold: Operations of manifolds
- Problem: Cost function, gradient, etc.

Introduction Framework Matlab Environment Solvers Space Manifo Proble

Inheritance

- $\bullet\,$ Multiple base classes $\rightarrow\,$ a derived class
- Make it easy to maintain the code
- Overwrite a function, e.g. Print()

Solvers Space Manifold Problem

Solvers

Table: Riemannian algorithms in the package

Riemannian trust-region Newton (RTRNewton)	[ABG07]
Riemannian trust-region symmetric rank-one update (RTRSR1)	[HAG15]
Limited-memory RTRSR1 (LRTRSR1)	[HAG15]
Riemannian trust-region steepest descent (RTRSD)	[AMS08]
Riemannian line-search Newton (RNewton)	[AMS08]
Riemannian Broyden family (RBroydenFamily)	[HGA14]
Riemannian BFGS (RWRBFGS and RBFGS)	[RW12, HGA14]
Limited-memory RBFGS (LRBFGS)	[HGA14]
Riemannian conjugate gradients (RCG)	[NW06, AMS08, SI13]
Riemannian steepest descent (RSD)	[AMS08]

Solvers Space Manifold Problem

Solvers

• Line search based methods

• $x_{k+1} = R_{x_k}(t_k\eta_k)$

- Line search algorithm is used to find a step size t_k
- Different algorithms use different search direction η_k
- Trust region based methods
 - Approximately solve the local model $\eta_k = \operatorname{argmin}_{\|\eta\| \in \mathbb{D}} f(x_k) + g(\operatorname{grad} f(x_k), \eta) + \frac{1}{2}g(\mathcal{B}_k\eta, \eta)$ and accept or reject $\tilde{x}_{k+1} = R_{x_k}(\eta_k)$ based on the quality of the approximation
 - \mathcal{B}_k is the Hessian approximation
 - Different algorithms use different Hessian approximation

Solvers Framework Matlab Environment

Solvers

Figure: Relationships among classes of solvers in the package. Arrows are from base class to derived class.

Solvers Framework Matlab Environment

Solvers

Figure: Relationships among classes of solvers in the package. Arrows are from base class to derived class.

Solvers Framework Matlab Environment

Solvers

Figure: Relationships among classes of solvers in the package. Arrows are from base class to derived class.

Solvers

Figure: Relationships among classes of solvers in the package. Arrows are from base class to derived class.

Solvers Space Manifold Problem

Solvers

Figure: Relationships among classes of solvers in the package. Arrows are from base class to derived class.

Copy-on-Write strategy is used

>> A = randn(1000, 1000); >> tic; B = A; toc %% 0.000006 seconds >> tic; B(1,1) = 1; toc %% 0.006373 seconds.

- Elements on Product of manifolds
 - Consecutive memory
 - Spatial locality
- Shared memory

Memory of $x \in \mathcal{M}$

 $x \mid x$ related temp data

Space

Space

Space

Eramework Matlab Environment

Space

Space

Space

Introduction Solvers Framework Manifold Matlab Environment Problem

Manifold

Define basic operations on Manifold

- Metric
- Retraction
- Vector transport
- Projection onto tangent space
- Euclidean gradient to Riemannian gradient
- Euclidean Hessian to Riemannian Hessian
- etc

Provide functions to check correctness of operations.

Introduction Solvers Framework Space Matiab Environment Problem

Manifold

Figure: Relationships among classes of Manifolds in the package. Arrows are from base class to derived class.

- Define cost function, gradient and action of Hessian
- Convert Euclidean gradient and action of Euclidean Hessian to Riemannian gradient and action of Riemannian Hessian
- Check correctness of gradient and action of Hessian

Introduction Solvers Framework Space Matlab Environment Problem

Problem

"MexProblem" is the bridge between C++ and Matlab
It converts function handles of Matlab to C++ functions

Installation Examples

Installation

Only Matlab environment is shown.

- Set up the mex environment properly. Follow the webpage: www.mathworks.com/support/compilers/R2014b/index.html
- Run "GenerateMyMex.m"
- Use "MyMex.m" to compile code

>> GenerateMyMex
Generate MyMex.m file ...
>> MyMex TestStieBrockett
Building with 'g++-4.7'.
MEX completed successfully.

Installation Examples

Interface of Matlab

- Run "MyMex DriverMexProb" to obtain the driver "DriverMexProb" for Matlab
- "DriverMexProb" is wrapped by the matlab script "DriverOPT.m"
- "DriverOPT.m" can be called by

 $\begin{bmatrix} Xf, fv, gfv, gf0, iter, nf, ng, nR, nV, nVp, nH, time, FS, GFS, TS \end{bmatrix} = DriverOPT(fh, gfh, Hh, SolverParams, ManiParams, HasHHR, initialX)$

Installation Examples

An Example

• The Brockett cost function: Minimize

$$\operatorname{trace}(X^{\mathsf{T}}BXD) \tag{1}$$

such that
$$x \in \text{St}(p, n)$$
, where $B \in \mathbb{R}^{n \times n}$, $B = B^T$, $D = \text{diag}(\mu_1, \mu_2, \dots, \mu_p)$ and $\mu_1 > \mu_2 > \dots > \mu_p$.

 The columns of a global minimizer, X^{*}e_i, are eigenvectors for the p smallest eigenvalues, λ_i, ordered so that λ₁ ≤ ··· ≤ λ_p [AMS08, §4.8].

Installation Examples

Interface of Matlab

```
function output = testBrockett()
 n = 5; p = 2;
                                 % size of the Stiefel manifold
 B = randn(n, n); B = B + B'; % data matrix
                               % data matrix
 D = sparse(diag(p : -1 : 1));
 fhandle = Q(x)f(x, B, D);
                               % cost function handle
 gfhandle = @(x)gf(x, B, D); % gradient
 Hesshandle = @(x, eta) Hess(x, eta, B, D); % Hessian
 SolverParams, method = 'RSD': % Use RSD solver
 ManiParams, name = 'Stiefel': % Domain is the Stiefel manifold
 ManiParams n = n:
                                 % assign size to manifold parameter
                                 % assign size to manifold parameter
 ManiParams.p = p;
 initialX.main = orth(randn(n, p)); % initial iterate
 % call the driver
 output = DriverOPT (fhandle, gfhandle, Hesshandle, SolverParams, ManiParams, initialX);
end
```

```
function [output, x] = f(x, B, D)
x.BUD = B * x.main * D;
output = x.main(:)' * x.BUD(:);
end
function [output, x] = gf(x, B, D)
output.main = 2 * x.BUD;
end
function [output, x] = Hess(x, eta, B, D)
output.main = 2 * B * eta.main * D;
```

end

Installation Examples

An Example

• Summation of three Brockett cost functions: Minimize

trace
$$(X_1^T B_1 X_1 D_1)$$
 + trace $(X_2^T B_2 X_2 D_2)$ + trace $(X_3^T B_3 X_3 D_3)$
(2)
such that $(X_1, X_2, X_3) \in \operatorname{St}(p, n) \times \operatorname{St}(p, n) \times \operatorname{St}(q, m)$, where
 $B_1, B_2 \in \mathbb{R}^{n \times n}, B_3 \in \mathbb{R}^{m \times m}, B_1 = B_1^T, B_2 = B_2^T, B_3 = B_3^T,$
 $D_1 = \operatorname{diag}(\mu_1, \mu_2, \dots, \mu_p), \mu_1 \ge \mu_2 \ge \dots \ge \mu_p,$
 $D_2 = \operatorname{diag}(\nu_1, \nu_2, \dots, \nu_p), \nu_1 \ge \nu_2 \ge \dots \ge \nu_p,$
 $D_3 = \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_q), \text{ and } \sigma_1 \ge \sigma_2 \ge \dots \ge \sigma_q.$

Installation Examples

Future Work

- Interface with ManOpt
- More manifolds
- Interfaces for other languages, e.g., python
- Automatic differentiation

Installation Examples

References I

P.-A. Absil, C. G. Baker, and K. A. Gallivan.

Trust-region methods on Riemannian manifolds. Foundations of Computational Mathematics, 7(3):303–330, 2007.

P.-A. Absil, R. Mahony, and R. Sepulchre. *Optimization algorithms on matrix manifolds.* Princeton University Press, Princeton, NJ, 2008.

N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre. Manopt, a Matlab toolbox for optimization on manifolds. *Journal of Machine Learning Research*, 15(1455-1459), 2014.

W. Huang, P.-A. Absil, and K. A. Gallivan.

A Riemannian symmetric rank-one trust-region method. Mathematical Programming, 150(2):179–216, February 2015.

W. Huang, K. A. Gallivan, and P.-A. Absil.

A Broyden class of quasi-Newton methods for Riemannian optimization. *Submitted for publication*, 2014.

J. Nocedal and S. J. Wright.

Numerical optimization. Springer, second edition, 2006.

Installation Examples

References II

W. Ring and B. Wirth.

Optimization methods on Riemannian manifolds and their application to shape space. *SIAM Journal on Optimization*, 22(2):596–627, January 2012. doi:10.1137/11082885X.

H. Sato and T. Iwai.

A new, globally convergent riemannian conjugate gradient method. *Optimization*, page 22, February 2013. 1302.0125.