Multivariable \mathcal{H}_{2}-optimal approximation

P. Van Dooren, K.A. Gallivan, P.A. Absil

CESAME, Université Catholique de Louvain, Belgium Department of Mathematics, Florida State University

Continuous- and Discrete-time State-space Models

$$
\begin{gathered}
{\left[u_{k}\right]_{1} \longrightarrow} \\
{\left[u_{k}\right]_{2} \longrightarrow} \\
\vdots \\
{\left[u_{k}\right]_{m} \longrightarrow}
\end{gathered} \begin{gathered}
\longrightarrow\left[y_{k}\right]_{1} \\
x_{k} \in \mathbb{R}^{N}, N \gg m, p \\
\\
\end{gathered}
$$

(explicit) continuous time-invariant

$$
\left\{\begin{array}{l}
\dot{x}=A x+B u \\
y=C x
\end{array}\right.
$$

(explicit) discrete time-varying

$$
\left\{\begin{array}{l}
x_{k+1}=A_{k} x_{k}+B_{k} u_{k} \\
y_{k}=C_{k} x_{k}
\end{array}\right.
$$

Time invariant model reduction idea

where $\quad n \ll N, \quad \hat{A}=W^{T} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V$

$$
P=V W^{T} \quad \text { is a projector for } W^{T} V=I_{n}
$$

Error model (CT)

The difference of the systems

$$
\left\{\begin{array} { l }
{ \dot { x } = A x + B u } \\
{ y = C x }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
\dot{\hat{x}}=\hat{A} \hat{x}+\hat{B} u \\
\hat{y}=\hat{C} \hat{x}
\end{array}\right.\right.
$$

is the error model, where $e:=y-\hat{y}$

$$
\left\{\begin{array}{l}
\dot{\tilde{x}}=A_{e} \tilde{x}+B_{e} u \\
e=C_{e} \tilde{x}
\end{array} \quad E(s):=H(s)-\hat{H}(s)=C_{e}\left(s I-A_{e}\right)^{-1} B_{e}\right.
$$

with

$$
\left(A_{e}, B_{e}, C_{e}\right):=\left(\left[\begin{array}{ll}
A & \\
& \hat{A}
\end{array}\right],\left[\begin{array}{l}
B \\
\hat{B}
\end{array}\right],\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]\right)
$$

Reduced Model via $\|E(s)\|_{\mathcal{H}_{2}}$ (CT)

$$
\mathcal{J}=\|E(s)\|_{\mathcal{H}_{2}}=\operatorname{tr}\left(C_{e} P_{e} C_{e}^{T}\right)=\operatorname{tr}\left(B_{e}^{T} Q_{e} B_{e}\right)
$$

where gramians P_{e} and Q_{e} solve the Lyapunov equations

$$
A_{e} P_{e}+P_{e} A_{e}^{T}+B_{e} B_{e}^{T}=0, \quad Q_{e} A_{e}+A_{e}^{T} Q_{e}+C_{e}^{T} C_{e}=0
$$

One can also partition

$$
P_{e}:=\left[\begin{array}{cc}
P & X \\
X^{T} & \hat{P}
\end{array}\right], \quad Q_{e}:=\left[\begin{array}{cc}
Q & Y \\
Y^{T} & \hat{Q}
\end{array}\right]
$$

Reduced Model via $\|E(z)\|_{\mathcal{H}_{2}}$ (CT)

Solve partitioned equations for gramians

$$
\begin{aligned}
& {\left[\begin{array}{ll}
A & \\
& \hat{A}
\end{array}\right]\left[\begin{array}{cc}
P & X \\
X^{T} & \hat{P}
\end{array}\right]+\left[\begin{array}{cc}
P & X \\
X^{T} & \hat{P}
\end{array}\right]\left[\begin{array}{ll}
A^{T} & \\
& \hat{A}^{T}
\end{array}\right]+\left[\begin{array}{c}
B \\
\hat{B}
\end{array}\right]\left[\begin{array}{ll}
B^{T} & \hat{B}^{T}
\end{array}\right]=0,} \\
& \text { and } \\
& {\left[\begin{array}{cc}
A^{T} & \\
& \hat{A}^{T}
\end{array}\right]\left[\begin{array}{cc}
Q & Y \\
Y^{T} & \hat{Q}
\end{array}\right]+\left[\begin{array}{cc}
Q & Y \\
Y^{T} & \hat{Q}
\end{array}\right]\left[\begin{array}{ll}
A & \\
& \hat{A}
\end{array}\right]+\left[\begin{array}{c}
C^{T} \\
-\hat{C}^{T}
\end{array}\right]\left[\begin{array}{ll}
C & -\hat{C}
\end{array}\right]=0 .} \\
& \mathcal{J}=\operatorname{tr}\left(B^{T} Q B+2 B^{T} Y \hat{B}+\hat{B}^{T} \hat{Q} \hat{B}\right)=\operatorname{tr}\left(C P C^{T}-2 C X \hat{C}^{T}+\hat{C} \hat{P} \hat{C}^{T}\right),
\end{aligned}
$$

Gradients (CT)

Theorem 1.1 (Wilson 70, but rederived several times).

$$
\nabla_{\hat{A}} \mathcal{J}=2\left(\hat{Q} \hat{P}+Y^{T} X\right), \quad \nabla_{\hat{B}} \mathcal{J}=2\left(\hat{Q} \hat{B}+Y^{T} B\right), \quad \nabla_{\hat{C}} \mathcal{J}=2(\hat{C} \hat{P}-C X)
$$

where

$$
\begin{gathered}
A^{T} Y+Y \hat{A}-C^{T} \hat{C}=0, \quad \hat{A}^{T} \hat{Q}+\hat{Q} \hat{A}+\hat{C}^{T} \hat{C}=0, \\
X^{T} A^{T}+\hat{A}^{T} X^{T}+\hat{B} B^{T}=0, \quad \hat{P} \hat{A}^{T}+\hat{A} \hat{P}+\hat{B} \hat{B}^{T}=0
\end{gathered}
$$

Imposing zero gradients yields non-minimal optimality conditions

Tangential Interpolation

Given $\left(\Sigma_{\sigma} \in \mathbb{R}^{n \times n}, \quad R \in \mathbb{R}^{m \times n}\right)$ and $\left(\Sigma_{\mu} \in \mathbb{R}^{n \times n}, \quad L \in \mathbb{R}^{p \times n}\right)$
Solve two Sylvester equations:

$$
\begin{gathered}
A V-V \Sigma_{\sigma}+B R=0 \\
W^{T} A-\Sigma_{\mu}^{T} W^{T}+L^{T} C=0
\end{gathered}
$$

Define:

$$
\{\hat{A}, \hat{B}, \hat{C}\}:=\left\{\left(W^{T} V\right)^{-1} W^{T} A V,\left(W^{T} V\right)^{-1} W^{T} B, C V\right\}
$$

If $W^{T} V$ is invertible, this uniquely determines the projected system $\{\hat{A}, \hat{B}, \hat{C}\}$.

Can specify $n(m+p)$ parameters which is good for generic strictly proper transfer functions $\operatorname{Rat}_{p m}^{n}$.

Tangential Interpolation

Eigenvalues of Σ_{σ} and Σ_{μ} and columns of R and L specify the interpolation.

If realization is real then at most $n(m+p)$ real conditions due to conjugate pairs.

For $\lambda \in \mathbb{R}$

$$
\begin{aligned}
& {[H(s)-\hat{H}(s)] \sum_{i=1}^{k} r_{i}(s-\lambda)^{i-1}=O(s-\lambda)^{k}, \quad r_{1}^{T} r_{1}=1} \\
& \sum_{i=1}^{k} \ell_{i}^{T}(s-\lambda)^{i-1}[H(s)-\hat{H}(s)]=O(s-\lambda)^{k}, \quad \ell_{1}^{T} \ell_{1}=1
\end{aligned}
$$

where $\left\{r_{1}, \cdots, r_{k}\right\}$ are columns from $R,\left\{\ell_{1}, \cdots, \ell_{k}\right\}$ are columns from L corresponding to the Jordan blocks.

Tangential Interpolation

For $\lambda, \bar{\lambda} \in \mathbb{C}$

$$
\begin{aligned}
& {[H(s)-\hat{H}(s)] \sum_{i=1}^{k}\left(r_{2 i-1}+j r_{2 i}\right)(s-\lambda)^{i-1}=O(s-\lambda)^{k}} \\
& \sum_{i=1}^{k}\left(\ell_{2 i-1}+j \ell_{2 i}\right)^{T}(s-\lambda)^{i-1}[H(s)-\hat{H}(s)]=O(s-\lambda)^{k} \\
& r_{1}^{T} r_{2}=0, r_{1}^{T} r_{1}+r_{2}^{T} r_{2}=1, \ell_{1}^{T} \ell_{2}=0, \ell_{1}^{T} \ell_{1}+\ell_{2}^{T} \ell_{2}=1
\end{aligned}
$$

where $\left\{r_{1}, \cdots, r_{2 k}\right\}$ are columns from R or $\left\{\ell_{1}, \cdots, \ell_{2 k}\right\}$ are columns from L, corresponding each of the pair of Jordan blocks.

Stationary Points (CT)

At stationary points A, B, C and $\hat{A}, \hat{B}, \hat{C}$ are related via:
Theorem 1.2. At every stationary point of \mathcal{J} where \hat{P} and \hat{Q} are invertible, we have the following identities

$$
\hat{A}=W^{T} A V, \quad \hat{B}=W^{T} B, \quad \hat{C}=C V, \quad W^{T} V=I_{n}
$$

where $W:=-Y \hat{Q}^{-1}, V:=X \hat{P}^{-1}$ and X, Y, \hat{P} and \hat{Q} satisfy the Sylvester equations

$$
\begin{gathered}
A^{T} Y+Y \hat{A}-C^{T} \hat{C}=0, \quad \hat{A}^{T} \hat{Q}+\hat{Q} \hat{A}+\hat{C}^{T} \hat{C}=0, \\
X^{T} A^{T}+\hat{A}^{T} X^{T}+\hat{B} B^{T}=0, \quad \hat{P} \hat{A}^{T}+\hat{A} \hat{P}+\hat{B} \hat{B}^{T}=0
\end{gathered}
$$

Stationary Points (CT)

Rewriting the Sylvester equations shows the relation with the tangential interpolation equations:

Stationary point:

$$
\begin{gathered}
W^{T} A+\left(\hat{Q}^{-1} \hat{A} \hat{Q}\right)^{T} W^{T}+\left(\hat{C} \hat{Q}^{-1}\right) C=0 \\
A V+V\left(\hat{P} \hat{A}^{T} \hat{P}^{-1}\right)+B\left(\hat{B}^{T} \hat{P}^{-1}\right)=0
\end{gathered}
$$

T.I. problem:

$$
\begin{gathered}
W^{T} A-\Sigma_{\mu}^{T} W^{T}+L^{T} C=0 \\
A V-V \Sigma_{\sigma}+B R=0
\end{gathered}
$$

$\hat{A}=-\Sigma_{\sigma}=-\Sigma_{\mu}$ implies tangential interpolation at the mirror images of the poles of $\hat{H}(s)$. (independent of order of the poles)

Distinct Poles (CT)

$$
\hat{A} s_{i}=\hat{\lambda}_{i} s_{i}, \quad \hat{C} s_{i}=\hat{c}_{i}, \quad t_{i}^{H} \hat{A}=\hat{\lambda}_{i} t_{i}^{H}, \quad t_{i}^{H} \hat{B}=\hat{b}_{i}^{H} .
$$

Theorem 1.3. Let $\hat{H}(s)=\sum_{i=1}^{n} \hat{c}_{i} \hat{b}_{i}^{H} /\left(s-\hat{\lambda}_{i}\right)$ have distinct first order poles $\hat{\lambda}_{i}$ where $\left(\hat{\lambda}_{i}, \hat{b}_{i}, \hat{c}_{i}\right), i=1, \ldots, n$ is self-conjugate, and let $-\hat{\lambda}_{i}$ not be poles of $H(s)$. Then

$$
\begin{aligned}
\frac{1}{2}\left(\nabla_{\hat{B}} \mathcal{J}\right)^{T} s_{i} & =\left[H^{T}\left(-\hat{\lambda}_{i}\right)-\hat{H}^{T}\left(-\hat{\lambda}_{i}\right)\right] \hat{c}_{i} \\
\frac{1}{2} t_{i}^{H}\left(\nabla_{\hat{C}} \mathcal{J}\right)^{T} & =\hat{b}_{i}^{H}\left[H^{T}\left(-\hat{\lambda}_{i}\right)-\hat{H}^{T}\left(-\hat{\lambda}_{i}\right)\right] \\
\frac{1}{2} t_{i}^{H}\left(\nabla_{\hat{A}} \mathcal{J}\right)^{T} s_{i} & =\left.\hat{b}_{i}^{H} \frac{d}{d s}\left[H^{T}(s)-\hat{H}^{T}(s)\right]\right|_{s=-\hat{\lambda}_{i}} \hat{c}_{i} \\
\frac{1}{2} t_{i}^{H}\left(\nabla_{\hat{A}} \mathcal{J}\right)^{T} s_{j} & =\frac{1}{2\left(\hat{\lambda}_{i}-\hat{\lambda}_{j}\right)}\left[\hat{b}_{i}^{H}\left(\nabla_{\hat{B}} \mathcal{J}\right)^{T} s_{j}-t_{i}^{H}\left(\nabla_{\hat{C}} \mathcal{J}\right)^{T} \hat{c}_{j}\right], i \neq j,
\end{aligned}
$$

Distinct Poles (CT)

Corollary 1.4. If $\left(\nabla_{\hat{B}} \mathcal{J}\right)^{T}=0,\left(\nabla_{\hat{C}} \mathcal{J}\right)^{T}=0$ and diag $S^{-1}\left(\nabla_{\hat{A}} \mathcal{J}\right)^{T} S=0$ then $\nabla_{\hat{A}} \mathcal{J}=0$ and the following tangential interpolation conditions are satisfied for all $\hat{\lambda}_{i}, i=1, \ldots, n$:

$$
\begin{gather*}
{\left[H^{T}\left(-\hat{\lambda}_{i}\right)-\hat{H}^{T}\left(-\hat{\lambda}_{i}\right)\right] \hat{c}_{i}=0, \quad \hat{b}_{i}^{H}\left[H^{T}\left(-\hat{\lambda}_{i}\right)-\hat{H}^{T}\left(-\hat{\lambda}_{i}\right)\right]=0} \\
\left.\hat{b}_{i}^{H} \frac{d}{d s}\left[H^{T}(s)-\hat{H}^{T}(s)\right]\right|_{s=-\hat{\lambda}_{i}} \hat{c}_{i}=0 \tag{1}
\end{gather*}
$$

Equivalently, in terms of the Taylor expansion of $H(s)-\hat{H}(s)$:

$$
\begin{gathered}
{\left[H^{T}(s)-\hat{H}^{T}(s)\right] \hat{c}_{i}=O\left(s+\hat{\lambda}_{i}\right), \quad \hat{b}_{i}^{H}\left[H^{T}(s)-\hat{H}^{T}(s)\right]=O\left(s+\hat{\lambda}_{i}\right)} \\
\hat{b}_{i}^{H}\left[H^{T}(s)-\hat{H}^{T}(s)\right] \hat{c}_{i}=O\left(s+\hat{\lambda}_{i}\right)^{2}
\end{gathered}
$$

This yields $n(m+p)$ conditions.
Antoulas, Beattie, Gugercin; Bunse Gerstner et al.; Van Dooren et al,

A Second Order Case

Assume a real second order reduced model

$$
\hat{H}(s)=\frac{c b^{H}}{s-\lambda}+\frac{\bar{c}^{H}}{s-\bar{\lambda}}
$$

At every stationary point of \mathcal{J} :

$$
\begin{gathered}
H^{T}(-\lambda) c=-b \frac{c^{H} c}{2 \lambda}, \quad b^{H} H^{T}(-\lambda)=-c^{H} \frac{b^{H} b}{2 \lambda} \\
\left.b^{H} \frac{d}{d s} H^{T}(s) c\right|_{s=-\lambda}=-\frac{b^{H} b c^{H} c}{4 \lambda^{2}}
\end{gathered}
$$

$\therefore b$ and c must be the dominant singular vectors of $H^{T}(-\lambda)$ and can be eliminated from the optimization problem

Plot error $\|E(s)\|_{\mathcal{H}_{2}}$ as a function of interpolation point λ

$\log (\mathrm{H} 2-$ error $)$

$\log (\mathrm{H} 2-\mathrm{error})$

Higher Order Poles (CT)

$\hat{A} S_{i}=S_{i} \hat{A}_{i}, \quad \hat{C} S_{i}=\hat{C}_{i}, \quad T_{i}^{H} \hat{A}=\hat{A}_{i} T_{i}^{H}, \quad T_{i}^{H} \hat{B}=\hat{B}_{i}^{H}, \quad T_{i}^{H} S_{i}=I_{k}$.
Theorem 1.5. Let $\hat{H}(s)=\sum_{i=1}^{\ell} \hat{C}_{i}\left(s I-\hat{A}_{i}\right)^{-1} \hat{B}_{i}^{H}$ where \hat{A}_{i} is a Jordan block of size k_{i} for $\hat{\lambda}_{i}$, and where $-\hat{\lambda}_{i}$ is not a pole of $H(s)$ or $\hat{H}(s)$. Then with

$$
\begin{aligned}
\psi_{\hat{\lambda}_{i}}(s) & :=\left[\begin{array}{llll}
\left(s+\hat{\lambda}_{i}\right)^{k_{i}-1} & \ldots & \left(s+\hat{\lambda}_{i}\right) & 1
\end{array}\right], \hat{b}_{i}^{H}(s):=\psi_{\hat{\lambda}_{i}}(s) \hat{B}_{i}^{H} \\
\phi_{\hat{\lambda}_{i}}(s) & :=\left[\begin{array}{llll}
1 & \left(s+\hat{\lambda}_{i}\right) & \ldots & \left(s+\hat{\lambda}_{i}\right)^{k_{i}-1}
\end{array}\right]^{T}, \hat{c}_{i}(s):=\hat{C}_{i} \phi_{\hat{\lambda}_{i}}(s)
\end{aligned}
$$

we have

$$
\begin{aligned}
\frac{1}{2}\left(\nabla_{\hat{B}} \mathcal{J}\right)^{T} S_{i} \phi_{\hat{\lambda}_{i}}(s) & =\left[H^{T}(s)-\hat{H}^{T}(s)\right] \hat{c}_{i}(s)+O\left(s+\hat{\lambda}_{i}\right)^{k_{i}} \\
\frac{1}{2} \psi_{\hat{\lambda}_{i}}(s) T_{i}^{H}\left(\nabla_{\hat{C}} \mathcal{J}\right)^{T} & =\hat{b}_{i}^{H}(s)\left[H^{T}(s)-\hat{H}^{T}(s)\right]+O\left(s+\hat{\lambda}_{i}\right)^{k_{i}}
\end{aligned}
$$

T.I. for Higher Order Poles (CT)

We do not have expressions for $T_{i}^{H}\left(\nabla_{\hat{A}} \mathcal{J}\right)^{T} S_{j}$ that are clean extensions of the first order poles. We have:
Theorem 1.6. With usual assumptions. if $\nabla_{\hat{B}} \mathcal{J}=0, \nabla_{\hat{C}} \mathcal{J}=0$ and $\nabla_{\hat{A}} \mathcal{J}=0$, then the following tangential interpolation conditions are satisfied for $i=1, \ldots, \ell$:

$$
\begin{aligned}
{\left[H^{T}(s)-\hat{H}^{T}(s)\right] \hat{c}_{i}(s) } & =O\left(s+\hat{\lambda}_{i}\right)^{k_{i}} \\
\hat{b}_{i}(s)^{H}\left[H^{T}(s)-\hat{H}^{T}(s)\right] & =O\left(s+\hat{\lambda}_{i}\right)^{k_{i}} \\
\hat{b}_{i}(s)^{H}\left[H^{T}(s)-\hat{H}^{T}(s)\right] \hat{c}_{i}(s) & =O\left(s+\hat{\lambda}_{i}\right)^{2 k_{i}}
\end{aligned}
$$

where $\hat{b}_{i}^{H}(s):=\psi_{\hat{\lambda}_{i}}(s) \hat{B}_{i}^{H}$ and $\hat{c}_{i}(s):=\hat{C}_{i} \phi_{\hat{\lambda}_{i}}(s)$.
These conditions do not follow easily from earlier tangential interpolation conditions of Vandendorpe et al.

Algorithms for minimizing $\|E(z)\|_{\mathcal{H}_{2}}$

Define $(X, Y, \hat{P}, \hat{Q})=F(\hat{A}, \hat{B}, \hat{C})$ where

$$
\begin{gathered}
A^{T} Y \hat{A}-C^{T} \hat{C}=Y, \quad \hat{A}^{T} \hat{Q} \hat{A}+\hat{C}^{T} \hat{C}=\hat{Q}, \\
\hat{A} X^{T} A^{T}+\hat{B} B^{T}=X^{T}, \quad \hat{A} \hat{P} \hat{A}^{T}+\hat{B} \hat{B}^{T}=\hat{P}
\end{gathered}
$$

and then compute $(\hat{A}, \hat{B}, \hat{C})=G(X, Y, \hat{P}, \hat{Q})$ from
$W:=-Y \hat{Q}^{-1}, V:=X \hat{P}^{-1} \hat{A}=W^{T} A V, \hat{B}=W^{T} B, \hat{C}=C V$,
The fixed point of $(\hat{A}, \hat{B}, \hat{C})=G(F(\hat{A}, \hat{B}, \hat{C}))$ are also stationary points of $\|E(z)\|_{\mathcal{H}_{2}}$ and satisfy the interpolation conditions
Simpler forms of $\hat{H}(s)$ make more efficient algorithms
One can also define a CG-like method or a Newton-like method see Antoulas,Sorenson; Beattie-Gugercin

Theorem 1.7. Let $\hat{H}(s)=\hat{C}\left(s I_{n}-\hat{A}\right)^{-1} \hat{B}$ be a given stable n-th degree transfer function, then there always exists a stable N-th degree transfer function $H(s)=C\left(s I_{N}-A\right)^{-1} B$ with $N>n$, for which $\hat{H}(s)$ is a stationary point of the \mathcal{H}_{2} error function.

Theorem 1.8. Let $\hat{H}(s)=\hat{C}\left(s I_{n}-\hat{A}\right)^{-1} \hat{B}$ and
$H(s)=C\left(s I_{N}-A\right)^{-1} B$ be stable and minimal transfer functions such that $\hat{H}(s)$ is a stationary point of the error function
$J=\|H(s)-\hat{H}(s)\|_{\mathcal{H}_{2}}$. Then every (sufficiently) nearby transfer function $\hat{H}_{\Delta}(s)$ is a stationary point of a nearby system $H_{\Delta}(s)$. The same holds for every nondegenerate local minimum.

$$
\begin{gathered}
\hat{H}(s)=1 /(s-a)^{2}, a=-1 \\
\hat{A}=\left(\begin{array}{ll}
a & 1 \\
0 & a
\end{array}\right), \hat{B}=\binom{0}{1}, \hat{C}=\left(\begin{array}{ll}
1 & 0
\end{array}\right) \\
H(s)=\left(0.25 s^{2}-0.5 s+9.25\right) /\left(s^{3}+7 s^{2}+19 s+9\right) \\
A=\left(\begin{array}{lll}
a & 1 & d \\
0 & a & e \\
e & d & f
\end{array}\right), B=\left(\begin{array}{l}
0 \\
1 \\
g
\end{array}\right), C=\left(\begin{array}{lll}
1 & 0 & g
\end{array}\right) \\
f=-5, \quad g=.5, \quad d=4 a g, \quad e=4 a^{2} g
\end{gathered}
$$

are stable and satisfies the stationarity conditions.
\hat{H} is also a local minimum of $\|H-\hat{H}\|_{\mathcal{H}_{2}}$

- We have a completely general expression of the stationarity conditions of the \mathcal{H}_{2} error function with \hat{H} in Jordan canonical form and its relation to T.I.
- Using first order form of $\hat{H}(s)$ should be numerically sensitive if minimum is near a higher order pole minimum.
- For large scale problems, is this problem observed?
- If not common are there important classes of problems with higher order pole minima?
- Over-parameterization of $\hat{A}, \hat{B}, \hat{C}$ in optimization \Leftrightarrow efficiency?

Some references

- \mathcal{H}_{2} model reduction admits for efficient optimization Antoulas,Beattie,Gugercin
- Stationary points of time-invariant case amounts to interpolation Wilson; Antoulas,Beattie,Gugercin; Bunse Gerstner et al.; vDooren-Gallivan-Absil
- Higher order case and T.I.-based projection methods Gallivan,Vandendorpe,vDooren; vDooren-Gallivan-Absil
- Extension to discrete time-varying systems
vDooren,Gallivan,Absil

Time-varying case

$$
\begin{aligned}
& \left\{\begin{array} { r l }
{ x _ { k + 1 } } & { = A _ { k } x _ { k } + B _ { k } u _ { k } } \\
{ y _ { k } } & { = C _ { k } x _ { k } }
\end{array} \left\{\begin{array}{rl}
\hat{x}_{k+1} & =\hat{A}_{k} \hat{x}_{k}+\hat{B}_{k} u_{k} \\
\hat{y}_{k} & =\hat{C}_{k} \hat{x}_{k}
\end{array}\right.\right. \\
& e_{k}:=y_{k}-\hat{y}_{k}, \quad \mathcal{E}:=\left\{\begin{aligned}
x_{k+1}^{e} & =A_{k}^{e} x_{k}^{e}+B_{k}^{e} u_{k} \\
e_{k} & =C_{k}^{e} x_{k}^{e}
\end{aligned}\right. \\
& \text { where } A_{k}^{e}:=\left[\begin{array}{cc}
A_{k} & \\
& \hat{A}_{k}
\end{array}\right], \quad B_{k}^{e}=\left[\begin{array}{c}
B_{k} \\
\hat{B}_{k}
\end{array}\right], \quad C_{k}^{e}=\left[\begin{array}{ll}
C_{k} & -\hat{C}_{k}
\end{array}\right] \\
& x_{k_{0}}^{e}=0 \Rightarrow x_{k}^{e}=\sum_{i=k_{0}}^{k-1} \Phi_{k, i+1}^{e} B_{i}^{e} u_{i}, \quad \Phi_{k+1, i}^{e}=A_{k}^{e} \Phi_{k, i}^{e}(k \geq i), \quad \Phi_{k, k}^{e}=I
\end{aligned}
$$

The "stacked" error system response is $\tilde{e}=E \tilde{u}$ and the cost function to minimize are given by

$$
\|\mathcal{E}\|_{\mathcal{H}_{2}}^{2}:=\mathcal{J}\left(k_{0}, k_{f}\right):=\operatorname{tr}\left(E^{T} E\right)=\operatorname{tr}\left(E E^{T}\right)
$$

It follows that

$$
\mathcal{J}\left(k_{0}, k_{f}\right):=\operatorname{tr} \sum_{k=k_{0}+1}^{k_{f}+1} C_{k}^{e} P_{k}^{e} C_{k}^{e^{T}}=\operatorname{tr} \sum_{k=k_{0}}^{k_{f}} B_{k}^{e^{T}} Q_{k}^{e} B_{k}^{e}
$$

where

$$
\begin{aligned}
& P_{k+1}^{e}=\left[\begin{array}{ll}
A_{k} & \\
& \hat{A}_{k}
\end{array}\right] P_{k}^{e}\left[\begin{array}{ll}
A_{k}^{T} & \\
& \hat{A}_{k}^{T}
\end{array}\right]+\left[\begin{array}{c}
B_{k} \\
\hat{B}_{k}
\end{array}\right]\left[\begin{array}{ll}
B_{k}^{T} & \hat{B}_{k}^{T}
\end{array}\right], \quad P_{k_{0}}^{e}=0 \\
& Q_{k-1}^{e}=\left[\begin{array}{ll}
A_{k}^{T} & \\
& \hat{A}_{k}^{T}
\end{array}\right] Q_{k}^{e}\left[\begin{array}{ll}
A_{k} & \\
& \hat{A}_{k}
\end{array}\right]+\left[\begin{array}{c}
C_{k}^{T} \\
\hat{C}_{k}^{T}
\end{array}\right]\left[\begin{array}{ll}
C_{k} & \hat{C}_{k}
\end{array}\right], \quad Q_{k_{f}+1}^{e}=0
\end{aligned}
$$

Gradients are given by

$$
\begin{gathered}
\nabla_{\hat{A}_{k}} \mathcal{J}=2\left(\hat{Q}_{k} \hat{A}_{k} \hat{P}_{k}+Y_{k}^{T} A_{k} X_{k}\right) \\
\nabla_{\hat{B}_{k}} \mathcal{J}=2\left(\hat{Q}_{k} \hat{B}_{k}+Y_{k}^{T} B_{k}\right) \\
\nabla_{\hat{C}_{k}} \mathcal{J}=2\left(\hat{C}_{k} \hat{P}_{k}-C_{k} X_{k}\right)
\end{gathered}
$$

Updating rules and fixed point results are as before

$$
\begin{gathered}
W_{k}:=Y_{k} \hat{Q}_{k}^{-1}, V_{k}=X_{k} \hat{P}_{k}^{-1} \\
\left(A_{k}^{e}, B_{k}^{e}, C_{k}^{e}\right):=\left(W_{k}^{T} A_{k} V_{k}, W_{k}^{T} B_{k}, C_{k} V_{k}\right)
\end{gathered}
$$

where $X_{k}, \quad Y_{k}, \quad \tilde{P}_{k}, \quad \tilde{Q}_{k}$ satisfy Stein like recurrences

$$
\begin{gathered}
X_{k+1}=A_{k} X_{k} \hat{A}_{k}^{T}+B_{k} \hat{B}_{k}^{T}, \quad X_{k_{0}}=0 \\
\hat{P}_{k+1}=\hat{A}_{k} \hat{P}_{k} \hat{A}_{k}^{T}+\hat{B}_{k} \hat{B}_{k}^{T}, \quad \hat{P}_{k_{0}}=0 \\
Y_{k-1}=A_{k}^{T} Y_{k} \hat{A}_{k}^{T}-C_{k}^{T} \hat{C}_{k}, \quad Y_{k_{f}+1}=0 \\
\hat{Q}_{k-1}=\hat{A}_{k}^{T} Q_{k} \hat{A}_{k}+\hat{C}_{k}^{T} \hat{C}_{k}, \quad \hat{Q}_{k_{f}+1}=0
\end{gathered}
$$

