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Introduction

Networks

What are networks?
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Introduction

Computer Networks

Figure: A small computer network
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Introduction

Social Networks

Figure: Twitter brower as a network of interconnections.
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Introduction

Collaboration Networks

Figure: Collaboration network between scientists working in Santa Fe Institute.

Jeremy M. Brown , Guifang Zhou , Jeremy Ash , Wen Huang , Melissa Marchand , Kyle A. Gallivan , Jim C. Wilgenbusch (short)Network Analysis on Phylogenetic Data October 26, 2015 6 / 32



Introduction

Biology Networks

Figure: Yeast protein interaction network
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Introduction

Networks of Trees?

Figure: Tree Sets
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Introduction

Networks of Trees

Type I: Topology-based Network

Nodes: trees

Links:
topological
(dis)similarities
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Introduction

Networks of Trees

Type I: Topology-based Network

Links: Affinity matrix

Reciprocal of pairwise distance
Exponential of pairwise distance
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Introduction

Networks of Trees

Type II: Bipartition-based Network

Nodes:
bipartitions

Links:
covariance
values
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Introduction

Community

A community is a group of related nodes that

are densely interconnected
have sparser connections with the rest of the network

Figure: A small network with community structure
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Introduction

Network Communities

Social networks
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Introduction

Network Communities

Citation networks
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Introduction

Networks of Trees

Type I: Topology-based Network
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Introduction

Networks of Trees

Type II: Bipartition-based Network
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Introduction

Community Detection

How can we divide the network into several parts?
= How can we find the “community” structure?
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Methods

Methods to discover communities

No Null Model:
H({σ}) = −

∑
i ,j

Ai ,jδ(σi , σj).

Compare to a randomized network:

Erdos-Renyi Model

H({σ}) = −
∑
i,j

[Ai,j − c2(λ+p+
ij − λ

−p−ij )]δ(σi , σj),

where pij is the probability of a positive (p+
ij ) or negative (p−ij ) between

nodes i , j , λ+, λ− are tuning parameters.
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Methods

Methods to discover communities

Compare to a randomized network:

Configuration Null Model

H({σ}) = −
∑
i,j

[Ai,j − λ+
k+
i k

+
j

m+
− λ−

k−
i k−

j

m− )]δ(σi , σj),

where ki is either the sum of the absolute value of all positive edges
(k+

i ) or negative edges (k−
i ) of node i . m is either the sum of the

absolute values of all positive edges (m+) or negative edges (m−).

Constant Potts Model

H({σ}) = −
∑
i ,j

[Ai ,j − c2(λ+ − λ−)]δ(σi , σj),

where c is the size of the community.
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Application

Phylogenetics

Phylogenetic trees illustrate the evolutionary relationships among
species, populations, individuals or genes (taxa in a general sense)

The results of phylogenetic analysis are usually presented as a
collection of nodes and branches.
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Application

Bipartition Representation

Evolutionary relationships are represented by edges

Remove an edge, the taxa (nodes) will be split into two nonempty
subsets

A phylogenetic tree can be represented as a set of splits (bipartitions)
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Application

Project Motivations

Multi-source data often produce conflicting trees

Existing methods hide potential conflicts
Consensus tree

Discards information concerning competing trees

Project into low dimensional Euclidean space

May be difficult to interpret

Community detection is used to explore conflicting signal in sets of
phylogenies

Develop software to analyze phylogenetic data
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Application

Method

Simulation of tree sets with conflicting signals

Two guide trees are only differed in their placement of taxon 5 (the
rogue taxon)
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Application

Method

Covariance matrix based on presence or absence of bipartitions in the
phylogenetic trees

Construct a network by covariance matrix

Nodes: bipartitions
Links: covariance values
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Application

Experiment Results
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Application

TreeScaper Software

Functionality:

NLDR

Dimensionality estimation

Distance/Affinity matrix

Covariance matrix

Community Detection methods

Interactive visualization interface
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Application

TreeScaper Software

Link: http://sourceforge.net/projects/treescaper/
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Conclusion

Conclusion

Networks exist in many fields

Community detection provides a valuable tool for understanding
structure in massive networks

Many methods are capable to detect communities

Which one(s) is better? Choice depends on

Metric
Algorithm
Relationship to the computing platform

Community detection provides a new quantitative approach for
exploring conflicting signal in phylogenetic data.
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Conclusion

Future Work

Other community detection methods

Overlapping Community Detection

Other network properties

Centrality
Similarity
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Conclusion
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Conclusion
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