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1 Motivation
DOA tracking:

Let us consider p incoming signals arriving on an antenna
array with incident angles θ1, ..., θp.
When a time-division multiple access technique is ap-
plied, we measure some data burst matrices Yi =[
yi . . . yi+p−1

]
... ... ...

yj

...

yj+p−1yi yi+p−1

data burst i data burst j k

where yi is the vector of the received signal at time i.

Goal: find the time-varying directions of arrival θ1(i), ..., θp(i)
using the data burst matrices Yk up to time i

Method: identify the signal subspace and then apply the
ESPRIT algorithm to recover the directions of arrival

Object tracking on a video:

Goal: draw a rectangle frame enclosing the object to track

• The object is represented by the dominant subspace
of a covariance matrix built from the previous frames.

• Due to object deformations and illumination varia-
tions, this subspace must be updated.

=⇒ Filtering techniques for subspaces are required.

2 Geometric viewpoint
The unknown signal subspaces and their measurements
col(Yi) belong to the Grassmann manifold G(n, p), i.e., the
set of all p-dimensional subspaces of Rn or Cn.
A point on G(n, p) can be represented by the column space
of an orthogonal n × p matrix X, i.e., by an element of the
Stiefel manifold St(n, p).
The tangent space to G(n, p) at X is represented by:

TXG = {V ∈ Cn×p|X>V = 0}.

Thus, a tangent vector is also represented by an n× p ma-
trix.
G(n, p) is a Riemannian manifold with the corresponding
distance function:

d(X,Y ) =

p∑
i=1

σ2
i

where the σi are the principal angles.

Two useful mappings:

Exponential map:
Let γ(t) be the geodesic curve s.t. γ(0) = X and γ̇(0) = VX .

expX : TXG 7→ G, VX 7→ expX(VX) = γ(1)

Parallel transport: along the geodesic joining X to Y

ΓX→Y : TXG 7→ TYG, VX 7→ VY

It is an isometry.

On G(2, 1)On the sphere
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VX

X
VX

γ(1)

VX

VY

X

YX

VX

Y

VY

3 Filtering problem
Problem: We measure corrupted data col(Yk) ∈ G(n, p). The goal is to filter these data to reduce the influence of the noise
and the outliers.
Approach: We assume that these data are the outputs of the following dynamical system on G(n, p):
State space model: It is a stochastic piecewise geodesic model.

Xk = expXk−1
(Vk−1)

Vk = ΓXk−1→Xk(Vk−1) + Ωk where Ωk ∈ TXkG is an i.i.d. Gaussian vector of mean 0 and variance σ2
model

Observation model: Yk = expXk
(Uk) where Uk ∈ TXkG is an i.i.d. Gaussian vector of mean 0 and variance σ2

data

Associated distribution: p(Yk|Xk) = Ce
− d(Xk,Yk)2

σ2data

4 Main steps of the particle filtering technique
1. Initialization: choose a set of M initial particles X1

1 , ..., X
M
1 and associated velocities V 1

1 ∈ TX1
1
G, ..., VM

1 ∈ TXM
1
G
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k−1 Xi

k

ΓXi
k−2
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k−1
(V i

k−2)

V i
k−1
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k
(V i

k−1)

G(n, p)

TXi
k
GTXi

k−1
G
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k−1

XM
k−1
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k

X1
k

Resampling

Averaging

2. Prediction: for each particle,
go in the direction V i

k−1 following the
geodesic curve passing through Xi

k−1:
Xi

k = expXi
k−1

(V i
k−1)

generate M samples V 1
k , ..., V

M
k of speed

according to the prior model:
V i
k = ΓXi

k−1→Xi
k
(V i

k−1) + Ωi
k

3. Resampling: compute the importance
weights βi

k for i = 1, ...,M using the
observation model and resample the
set Sk =

{
(X1

k , V
1
k ), ..., (XM

k , VM
k )
}

with
respect to the βi

k

4. Averaging: compute the Karcher mean

µ(X1
k , ..., X

M
k ) = arg min

Y ∈G
1

2M

M∑
i=1

d(Xi
k, Y )2

and iterate

=⇒ An efficient way to simulate the state space model is needed.

5 Computation
Using the matrix exponential Our approach (as in [2])

state representation: (Xk, X⊥,k, Ak) with Vk = X⊥,kAk state representation: (Xk, Vk)
size: n2 + (n− p)p size: 2np

[Xk|X⊥,k] = [Xk−1|X⊥,k−1]e

 0 A>k−1
Ak−1 0


Ak = Ak−1 +Nk

where Nk is a Gaussian (n− p)× p matrix

Vk−1 = Uk−1Σk−1W
>
k−1 (compact svd)

Dk−1 = Xk−1Wk−1
Xk = (Dk−1 cos Σk−1 + Uk−1 sin Σk−1)Wk−1

>

Vk = (−Dk−1 sin Σk−1 + Uk−1 cos Σk−1) Σk−1Wk−1
>

+(Ωk −XkXk
>Ωk) where Ωk is an n× p matrix

Approximation of the state space equations using retractions and parallel transports

Xk = q(Xk−1 + Vk−1)

Vk =
(In −XkXk

>)Vk−1‖Vk−1‖F
‖(In −XkXk

>)Vk−1‖F
+ (In −XkXk

>)Ωk

Xk−1

Xk−1 + Vk−1 = QR

Xk

q(Xk−1 + Vk−1) = Q

Vk−1

St(n, p)

col(Xk−1)

Computational time comparison (in percent of the computational time spent when the ’expm’ function of Matlab is used)
our approach approximation

n = 100, p = 5 7 % 10 %
n = 100, p = 25 34 % 19 %
n = 100, p = 50 97 % 37 %

• our approach is more efficient if n >> p

• the approximation is interesting when p is close to
n

2

Quality of the approximation

‖A0‖F mean error mean error with the approximation
0.1118 0.0186 0.0190
0.2236 0.0231 0.0250
0.3354 0.0269 0.0358
0.4472 0.0342 0.1147

• for a stochastic piecewise geodesic trajectory on
G(4, 2) with σmodel = 0.05‖A0‖F

• the error is the distance between the data and the
filtered data

• the approximation gives similar results if the
speed ‖A0‖F is small
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